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Warm-up: Power Sets and Counting

Question 1: What is the size of the power set of {1, 2, 3}?

Answer: 23 = 8 elements

Question 2: Can you find a single set whose power set has exactly 10 elements?
Answer: No! Power sets always have 2n elements.

Alternative Approach: Can we find two sets S1, S2 such that |2S1 ∪ 2S2 | = 10?
Yes! For example: S1 = {1, 2, 3} and S2 = {3, 4}

Then |2S1 ∪ 2S2 | = 8 + 4− 2 = 10 (they share ∅ and 3)

Question 3: Can we find two sets S1,S2 such that |2S1 ∪ 2S2 | = 13?
Answer: No!

By inclusion-exclusion: |2S1 ∪ 2S2 | = 2|S1| + 2|S2| − 2|S1∩S2|

This is always a sum/difference of powers of 2, so it cannot equal 13.

We Need Three Sets! For 13 elements, we need at least 3 sets.
Example: Consider S1 = {1, 2, 3}, S2 = {2, 3, 4}, S3 = {5}

Question: Given a number k, what is the smallest number of sets such that the union
of their power set has exactly k elements?
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Antichains and Ideals

Key Observation: In the smallest collection of sets whose power sets union to a given
size, no set is a subset of another.

• Such a collection forms an antichain

• The union of their power sets forms an ideal over the powerset lattice

Formal Definition: An ideal generated by family S = {S1, S2, . . . ,Sα} is:

ID(S) = ID(S1) ∪ ID(S2) ∪ · · · ∪ ID(Sα)

For powerset lattice, we have ID(Si ) = 2Si .

Our Question (Reformulated):
Given k, find the size of the smallest antichain |S| such that |ID(S)| = k?
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Connection to Boolean Satisfiability

Key Insight: Power sets and monotone DNF formulas are intimately connected!

Example for 13 solutions:
Consider sets: S1 = {1, 2, 3}, S2 = {2, 3, 4}, S3 = {5}

Corresponding monotone DNF: ϕ = (x4 ∧ x5) ∨ (x1 ∧ x5) ∨ (x1 ∧ x2 ∧ x3 ∧ x4)

Bijection:

• For term x4 ∧ x5 (from S1 = {1, 2, 3}): satisfying assignments are 2{1,2,3} = 8

• For term x1 ∧ x5 (from S2 = {2, 3, 4}): satisfying assignments are 2{2,3,4} = 8

• |Sol(ϕ)| = |ID({S1, S2, S3})|

Our Question (Reformulated):
Given k, find the size of the smallest monotone DNF formula ϕ such that |Sol(ϕ)| = k.
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Weighted to Unweighted Model Counting

Example Setup: φ = x1 ∨ x2 with weights w(x1) =
5
8
,w(x2) =

11
16

Goal: Compute
∑

τ |=φ

∏
xi :σ(xi )=1

w(xi )
∏

xi :σ(xi )=0

(1− w(xi ))

Reduction Strategy:

• Add formulas with fresh variables:

• Replace x1 with formula ϕ5(y1, y2, y3) having exactly 5 solutions
• Replace x2 with formula ϕ11(y4, y5, y6, y7) having exactly 11 solutions

• Construct new formula: φ̂ := φ ∧ (x1 ↔ ϕ10) ∧ (x2 ↔ ϕ11)

• W (φ) = c · |Sol(φ̂)) for some constant c

• Apply unweighted model counter on φ̂

Key Challenge: Construct small DNFs/CNFs with exactly k solutions!
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Problem Overview: Multiple Equivalent Formulations

Antichain Perspective: What is the minimum size α(k) of an antichain generating an
ideal of size k?

Set System Perspective: What is the minimum number of sets whose power sets union
to exactly k elements?

Boolean Formula Perspective: What is the minimum number of terms α(k) in a DNF
with exactly k satisfying assignments?

Are you sure this is not already studied in combinatorics?

Imre Leadre (2020): ”That’s an interesting question. I’m not aware of any work on
this problem.....Do let me know if you solve it!

Uwe Leck(2020): ”Your problem looks indeed very similar to the ones we studied in
our paper but, after giving it some thought, I feel that it is of quite a different nature.
It’s a very natural and nice question but I’m not aware of any work related to it.. How
did you run into this question.”

The journal version is under submission to Journal of Combinatorial Theory
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Prior Work: Chain Formula Construction [Chakraborty, Fried, M., Vardi 2015]

Goal: Construct formula φk,m with exactly k satisfying assignments

Construction: Given odd k < 2m, let c1c2 · · · cm be m-bit binary representation of k

Focus on odd k: Since k is odd, cm = 1 always. We can ignore the last bit.

φk,m(x1, . . . , xm) = x1 C1 (x2 C2 (· · · (xm−1 Cm−1 xm) · · · ))

For j ∈ {1, . . . ,m − 1}:
• If cj = 1, set connector Cj = ∨
• If cj = 0, set connector Cj = ∧

Example: k = 13, m = 4, binary: 1101

φ5,4(x1, x2, x3, x4) = x1 ∨ (x2 ∨ (x3 ∧ x4))

Key Result: φk,m has exactly k satisfying assignments and size O(m)
Gives: β(k) ≤ ⌈log k⌉ = O(log k) upper bound
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φ5,4(x1, x2, x3, x4) = x1 ∨ (x2 ∨ (x3 ∧ x4))

Key Result: φk,m has exactly k satisfying assignments and size O(m)
Gives: β(k) ≤ ⌈log k⌉ = O(log k) upper bound
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Our Result

What is the minimum size α(k) of collections of sets whose power set has exactly k
elements?

Main Theorem: For every k ≥ 3,

log(bl(k) + 1) ≤ α(k) ≤ min
{
20

√
log k log log k, bl(k) + 1

}
Observation: α(k) does not increase monotonically with k

For Example, β(2q) = 1 for any q (exponentially large k!)

Block Binary Representation: Any k ∈ N can be written uniquely as

k = 1qb0lb · · · 1q20l21q10l1

where qi > 0 and lj > 0 (except possibly l1 = 0)

Block Count: bl(k) = b (number of 1-blocks)
Example: 49 = 1100012 = 120311 has bl(49) = 2

Key Insight: α(k) is more closely related to bl(k) than to k itself!
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The Block Count Connection
Key Lemma: If k can be written as k =

∑s
i=1(−1)xi 2yi where xi ∈ {0, 1}, then

bl(k) ≤ s.

Proof Idea: Adding/subtracting powers of 2 changes the binary representation in a
controlled way:

• Adding 2i to a number: affects at most one ”block” of consecutive 1s or 0s

• Subtracting 2i : may create cascading carries, but still

Theorem: For every k ∈ N, α(k) ≥ log(bl(k) + 1)

Proof Strategy:
• Suppose (for contradiction) that α(k) < log(bl(k) + 1)
• Then there exists a collection with t = α(k) sets whose union of power sets is

exactly k.
• By inclusion-exclusion, k can be written as sum/difference of at most 2t − 1

powers of 2
• By our key lemma, this implies bl(k) ≤ 2t − 1
• Since t < log(bl(k) + 1), we have:

2t < 2log(bl(k)+1) = bl(k) + 1

• Therefore: bl(k) ≤ 2t − 1 < bl(k) Contradiction!

Insight: Numbers with many ”blocks” in their binary representation are fundamentally
harder to express with few terms!
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Simple Upper Bound: Building Blocks

Goal: Show that α(k) ≤ bl(k) + 1

Two Fundamental Operations:
1. Splitting Lemma: α(m + k) ≤ α(m) + α(k + 1)

Intuition: To get an ideal of size m + k, combine two disjoint ideals of sizes m and
k + 1 that only share ∅.

2. Lifting Lemma: α(2t · k) ≤ α(k)

Intuition: To get an ideal of size 2t · k, take an ideal of size k and add t new elements
to every generator set.

Example: α(16 · 13) = α(208) ≤ α(13)
If {S1,S2, S3} generates ideal of size 13, then
{S1 ∪ {a, b, c, d}, S2 ∪ {a, b, c, d}, S3 ∪ {a, b, c, d}} generates ideal of size
16 · 13 = 208.
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Simple Upper Bound: The Construction

Theorem: α(k) ≤ bl(k) + 1

Proof by Induction on Block Count:
Base Case: bl(k) = 1, so k = 1q10l1 = 2q1+l1 − 2l1

Inductive Step: For k with bl(k) = b ≥ 2:
Write k = 1qb0lb · · · 1q10l1

α(k) ≤ α(1qb0lb · · · 1q20l2+q1 ) + α(2q1 ) (Splitting) (1)

≤ (b − 1) + 1 + 1 = b + 1 (Induction + Lifting) (2)

Key Insight: Each block in the binary representation contributes roughly one generator
to our construction!
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Improved Upper Bound: The Challenge

Simple bound gives: α(k) ≤ bl(k) + 1 ∈ O(log k)

But we can do much better! Our main result: α(k) ≤ O(
√
log k log log k)

Key Observation: Most numbers have small block count!

• Numbers of form 2q have bl(2q) = 1

• Numbers of form 2a + 2b have bl(2a + 2b) ≤ 2

• Most numbers k have bl(k) ≪ log k

Strategy: Focus on numbers with a specific structure that are ”hardest” to construct

Every k can be written as: k = 23q
2
+ γ · 2q2 + β

where γ = ⌊ k−23q
2

2q
2 ⌋ and 0 ≤ β < 2q

2

Main Technical Result: For m = 23q
2
+ β where β < 2q

2
:

α(m) ≤ (q + 1)⌈log q⌉+ 4q + 6 = O(q log q)
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Open Problems for everyone!

Current Gap: Lower bound Ω(log log k) vs Upper bound O(
√
log k log log k)

Key Research Questions:

Our Conjecture: α(k) = O(log (bl(k) + 1))

Complexity Theory: What is the complexity of deciding whether a DNF with t terms
and exactly k solutions exists?

Algorithmic Challenge: Our results are existential - we prove small formulas exist but
don’t provide efficient construction algorithms.

Sequence Challenge: Find the sequence?

• The smallest number that can’t be expressed as union of 2 power sets? 13

• The smallest number that can’t be expressed as union of 3 power sets? 419
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Improved Upper Bound: Putting It All Together

Step 1: Handle the ”hard” part 23q
2
+ β

Our construction gives: α(23q
2
+ β) ≤ O(q log q)

Step 2: Handle the remaining part γ · 2q2

Using splitting + lifting: α(γ · 2q2 ) ≤ α(γ)
By induction: α(γ) ≤ O(

√
log γ log log γ)

Step 3: Combine using splitting lemma

α(k) ≤ α(23q
2
+ β) + α(γ) + 1

Final Bound Calculation:

• Since k < 23(q+1)2 , we have q = O(
√
log k)

• α(23q
2
+ β) = O(q log q) = O(

√
log k log

√
log k) = O(

√
log k log log k)

• √
log γ ≤

√
log k − q2 = O(

√
log k)

Therefore: α(k) = O(
√
log k log log k)
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