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Propositional Model Counting

• Given:

– Propositional formula F (CNF) over a set of variables X

• Propositional Model Counting (#SAT):

– Compute the number of satisfying assignments of F

• #SAT is #P complete problem
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Propositional Model Counting

• Probabilistic Exact Model Counting

– Given a propositional formula F (CNF) and confidence δ ∈ (0, 1],
counter returns count such that:

Pr
[
|Solutions of F| = count

]
≥ 1− δ

• Probabilistic Exact Model Counting is almost as hard as Exact
Model Counting1
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Long Line of Work

Knowledge Compilation c2d [Darwiche, 2004], D4[Lagniez and
Marquis, 2017]

Search-based Counters Cachet[Sang et al, 2004; 2005], sharpSAT
[Thurley 2006]

Hashing-based Counting Stockmeyer 1983, Gomes et al. 2006,
Chakraborty et al. 2013-,
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Main Ingredients of Search-Based Counters

• Decision Process:

– (F ∧ l) ∨ (F ∧ ¬l) mutually inconsistent
– #(F ) = #(F ∧ l) + #(F ∧ ¬l)

• Component Decomposition:

– F = ∆1 ∧∆2 · · ·∆n ∆1 · · ·∆n does not share any variables
– #(F ) = #(∆1)×#(∆2) · · · ×#(∆n) mutually disjoint

• Conflict Driven Clause Learning

• Component Caching:

Key Value

∆1 #(∆1)

∆2 #(∆2)
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Model Counting Algorithm

1: l ←DecideLiteral(F )
2: for lit ← {l ,¬l} do
3: F|lit ← UnitPropagation(F , lit)
4: if F|lit contains an empty clause then
5: count[lit]← 0
6: else
7: count[lit]← 1
8: Comps ← DisjointComponents(F|lit) . Decomposition
9: for C ← Comps do

10: count ← GetCache(C )
11: if count = NOT FOUND then
12: count ← Counter(C )

13: count[lit] = count[lit]× count
14: if count = 0 then
15: break
16: CacheStore(F , count[l ] + count[¬l ])
17: return count[l ] + count[¬l ]
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Example

F = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x4 ∨ x5) ∧ (¬x1 ∨ x2 ∨ x3)
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Example

F = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x4 ∨ x5) ∧ (¬x1 ∨ x2 ∨ x3)

(x2 ∨ x3){x4, x5}

x1

Key Value

(x2 ∨ x3) 3

(x2 ∨ x3){x4, x5} 12
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Example

F = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x4 ∨ x5) ∧ (¬x1 ∨ x2 ∨ x3)
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F = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x4 ∨ x5) ∧ (¬x1 ∨ x2 ∨ x3) 21
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Our Contribution

1 Probabilistic Component Caching (PCC)

2 Variable Branching Heuristic (CSVSADS)

3 Phase Selection Heuristic (PC)

4 Independent Support (IS)

5 Learn and Start Over (LSO)
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Probabilistic Component Caching (PCC)

F = (¬x3 ∨ ¬x5 ∨ x6) ∧ (¬x1 ∨ x4 ∨ ¬x6) ∧ (x2 ∨ x3 ∨ x6)

Schema Key Value

STD2 -3, -5, 6, 0, -1, 4, -6, 0, 2, 3, 6, 0 #(F )

HC3 1, 2, 3, 4, 5, 6, 1, 2, 3 #(F )

GANAK
m bit hash of HC/STD

clhash: universal hash functions #(F )
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Variable Branching Heuristic (CSVSADS)

• Score(VSADS)4 = p × Score(VSIDS) + q × Score(DLCS)

– VSIDS: Prioritize variables present in recently generated conflict
clauses

– Dynamic Largest Com-bined Sum(DLCS): Prioritize the highest
occurring variable in the residual formula

• Score(CSVSADS) = α × CacheScore + β × Score(VSADS)
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Phase Selection Heuristic (PC)

•
DLIS =

{
l |l | ≥ |¬l |
¬l otherwise

• We reduce our trust on DLIS by adding randomness in DLIS if the
difference in |l | and |¬l | is not overwhelmingly high
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Independent Support (IS)

• An independent support, I ⊆ Vars(F ), is a subset of the support
such that if two satisfying assignments σ1 and σ2 agree on I, then
σ1 = σ2

• Example: (x ∨ ¬y) ∧ (¬x ∨ y) I = {x}
• We use the MIS5 algorithm for computing the minimal I for hard

instances
• Perform decision process on variables from I

1 If residual formula is SAT – model count equal to 1
2 If residual formula is UNSAT – model count equal to 0
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Learn and Start Over (LSO)

• Modern SAT solvers use random restarts aggressively in search of a
good variable ordering that can quickly lead to a satisfiable
assignment6

• Restart solver after the first 5000 decisions

• Learn from the previous invocation by maintaining all the scores
obtained in the previous run to explore different and better
ordering of decision variables
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Tool

• GANAK7: First Scalable Probabilistic Exact Model Counter

• Given a propositional formula F (CNF) and confidence δ ∈ (0, 1]
GANAK(F , δ) returns count such that

Pr [|Sol(F )| = count] ≥ 1− δ

• Tool is available at: https://github.com/meelgroup/ganak
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Experimental Evaluation

• Benchmarks arising from probabilistic reasoning, plan recognition,
DQMR networks, ISCAS89 combinatorial circuits, quantified
information flow, etc

• Objectives:

1 Study the impact of different configurations of heuristics Shubham’s
Talk

2 Study the performance of GANAK with respect to the
state-of-the-art model counters
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Experimental Evaluation: Comparison with other tools
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• In our experiments, the model count returned by GANAK was
equal to the exact model count for all benchmarks

22/24



Experimental Evaluation: Individual Analysis
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• GANAK performed best when all the heuristics are turned on
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Conclusion

• GANAK demostrates that #SAT solvers can significantly benefit
from probabibistic component caches, especially when ably
supported by heuristics like IS, CSVSADS, PC and LSO

• We believe that the heuristics proposed in this work will also
significantly benefit exhaustive DPLL-based knowledge compilation
frameworks and related tools (like c2d [Darwiche, 2004], D4
[Lagniez and Marquis, 2017], DSHARP [Muise et al., 2012])

• Tool is available at: https://github.com/meelgroup/ganak
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