%' Z:NUSS‘W

School 0f Computing

The Secrets of GANAK: Designing Scalable Exact
Model Counter

Kuldeep S. Meel!

Joint work with Shubham Sharma?, Mate Soos!, and Subhajit Roy?

INational University of Singapore
2Indian Institute of Technology Kanpur, India
Ganak+ApproxMC won two out of three tracks at Model Counting
Competition. Related Paper: 1JCAI 2019

1/24

Propositional Model Counting

® Given:
— Propositional formula F (CNF) over a set of variables X
¢ Propositional Model Counting (#SAT):

— Compute the number of satisfying assignments of F

o HASAT is #P complete problem

2/24

Propositional Model Counting

® Probabilistic Exact Model Counting

— Given a propositional formula F (CNF) and confidence ¢ € (0, 1],
counter returns count such that:

Pr[|Solutions of F| = count] > 1—4

3/24

Propositional Model Counting

® Probabilistic Exact Model Counting

— Given a propositional formula F (CNF) and confidence ¢ € (0, 1],
counter returns count such that:

Pr[|Solutions of F| = count] > 1—4

® Probabilistic Exact Model Counting is almost as hard as Exact
Model Counting?

3/24

Applications across Computer Science

Computationa
Biology

Explainable
Al

Network .
Counting

Reliability

Neural
Network
Robustness
Quantified
Information
Flow

4/24

Long Line of Work

Knowledge Compilation c2d [Darwiche, 2004], D4[Lagniez and
Marquis, 2017]

Search-based Counters Cachet[Sang et al, 2004; 2005], sharpSAT
[Thurley 2006]

Hashing-based Counting Stockmeyer 1983, Gomes et al. 2006,
Chakraborty et al. 2013-,

5/24

Main Ingredients of Search-Based Counters

® Decision Process:
- (FAD)V (FAAD mutually inconsistent
- #(F)=#(F A1) + #(F A=)

6/24

Main Ingredients of Search-Based Counters

® Decision Process:
- (FAD)V (FA-D mutually inconsistent
- #(F)=#(FNI)+ #(Fr-)
® Component Decomposition:
- F=AiNAy---A, A;i---A, does not share any variables
— #(F) = #(A1) x #(A2) -+ x #(A,) mutually disjoint

6/24

Main Ingredients of Search-Based Counters

® Decision Process:
- (FAD)V (FA-D mutually inconsistent
- #(F)=#(FNI)+ #(Fr-)
® Component Decomposition:
- F=AiNAy---A, A;i---A, does not share any variables
— #(F) = #(A1) x #(A2) -+ x #(A,) mutually disjoint

® Conflict Driven Clause Learning

6/24

Main Ingredients of Search-Based Counters

Decision Process:
- (FAN)V(FAAD mutually inconsistent
- #(F)=#(FNI)+ #(Fr-)
® Component Decomposition:
- F=AiNAy---A, A;i---A, does not share any variables
— #(F) = #(A1) X #(A2) - x #(A,) mutually disjoint

Conflict Driven Clause Learning

® Component Caching:

’ Key \ Value ‘
A; | #(A1)
Ay | #(A2)

6/24

Model Counting Algorithm

1. | <DecidelLiteral(F)
2: for lit < {/,—/} do
3: Fyjir < UnitPropagation(F, lit)

4: if Fji; contains an empty clause then
5: count([lit] < 0

6: else

7: count|lit] + 1

8: Comps < DisjointComponents(Fj;;) > Decomposition
9: for C «+— Comps do

10: count < GetCache(C)

11: if count = NOT FOUND then
12: count < Counter(C)

13: count|lit] = count[lit] x count
14: if count = 0 then

15: break

16: CacheStore(F, count[l] + count[—])

17: return count[l] + count[~l] | .

(F=(x1 VxoVx3)A(x1VxeVxs)A(—xgVxo Vx,o,)]

8/24

Example

[F =(x1VxaVx3)A(x1VxaVxs)A(—xVxo VX3))

X1

(0 Va) x5} |

| Key | Value |
()(2 V)(3) 3
(x2Vx3){xa,xs} | 12

9/24

Example

[F =01 VxVx3)A(x1VxaVxs)A(—x1Vxo VX3)]

X1 sl
e

[(Xg V x3){xa, x5}] \J

(x2 V x3) (xa V xs5)
‘ Key ‘ Value ‘
()QZ V)(3) 3

(2 Vx3){xa,xs} | 12

10/24

Example

[F =(x1VxaVx3)A(x1VxaVxs)A(—x1Vxo \/X3)]

X1 —X1
d

[(Xg \/X3){X4,X5}] \

| Key | Value |
(X2 V X3) 3

(x2Vx3){xa,xs} | 12
(X4 V X5) 3

11/24

Example

[F =(x1VxaVx3)A(x1VxaVxs)A(—x1Vxo \/X3)]

X1 —1X1
d

[(Xg V x3){xa, x5}] \

| Key | Value |
(X2 V X3) 3
(x2 V x3){xa, x5} 12
(X4 V X5) 3
(X2 V X3) VAN (X4 V X5) 9

12/24

Example

[F = (X1 V Xo VX3) A (Xl \/X4\/X5) A (—|X1 V Xo VX3)}

X1 —1X1
vl

[(XQ \/X3){X4,X5} } \

Key ‘ Value ‘
(X2 \/X3) 3
(x2 V x3){xa, x5} 12
(X4 \/X5) 3
(X2\/X3)/\(X4\/X5) 9
F=xiVxVx3)A(x1VxaVxs)A(—x1VxVxs)| 21

13/24

Our Contribution

@ Probabilistic Component Caching (PCC)
@® Variable Branching Heuristic (CSVSADS)
© Phase Selection Heuristic (PC)

® Independent Support (IS)

@ Learn and Start Over (LSO)

14/24

Probabilistic Component Caching (PCC)

FZ(ﬁXg\/ﬁX5\/X6)/\(—|X1 \/X4\/ﬁX6)/\()
’ Schema ‘ Key ‘ Value ‘
STD? |-3,-5,6,0, -1, 4, -6, 0, , 0 | #(F)

HC3 1,2,3,4,5,6,1,2, #(F)

m bit hash of HC/STD
GANAK | clhash: universal hash functions | #(F)

15/24

Variable Branching Heuristic (CSVSADS)

® Score(VSADS)* = p x Score(VSIDS) + q x Score(DLCS)

— VSIDS: Prioritize variables present in recently generated conflict
clauses

— Dynamic Largest Com-bined Sum(DLCS): Prioritize the highest
occurring variable in the residual formula

16/24

Variable Branching Heuristic (CSVSADS)

® Score(VSADS)* = p x Score(VSIDS) + q x Score(DLCS)

— VSIDS: Prioritize variables present in recently generated conflict
clauses

— Dynamic Largest Com-bined Sum(DLCS): Prioritize the highest
occurring variable in the residual formula

® Score(CSVSADS) = o x CacheScore + 5 x Score(VSADS)

16/24

_ =
DD = { -/ otherwise

17/24

Phase Selection Heuristic (PC)

pus={ ! M=1
-/ otherwise

® We reduce our trust on DLIS by adding randomness in DLIS if the
difference in |/| and |—/| is not overwhelmingly high

17/24

Independent Support (IS)

® An independent support, Z C Vars(F), is a subset of the support
such that if two satisfying assignments o7 and oy agree on Z, then
01 =02

18/24

Independent Support (IS)

® An independent support, Z C Vars(F), is a subset of the support
such that if two satisfying assignments o7 and oy agree on Z, then
01 =02

e Example: (xV=y)A(=xVy) Z={x}

18/24

Independent Support (IS)

¢ An independent support, Z C Vars(F), is a subset of the support
such that if two satisfying assignments o7 and oy agree on Z, then
01 =02

e Example: (xV=y)A(=xVy) Z={x}

® We use the MIS® algorithm for computing the minimal T for hard
instances

18/24

Independent Support (IS)

¢ An independent support, Z C Vars(F), is a subset of the support
such that if two satisfying assignments o7 and oy agree on Z, then
01 = 02

e Example: (xV=y)A(=xVy) Z={x}

® We use the MIS® algorithm for computing the minimal T for hard
instances

® Perform decision process on variables from Z

@ If residual formula is SAT — model count equal to 1
@ If residual formula is UNSAT — model count equal to 0

18/24

Learn and Start Over (LSO)

® Modern SAT solvers use random restarts aggressively in search of a
good variable ordering that can quickly lead to a satisfiable
assignment®

19/24

Learn and Start Over (LSO)

® Modern SAT solvers use random restarts aggressively in search of a
good variable ordering that can quickly lead to a satisfiable
assignment®

® Restart solver after the first 5000 decisions

® |earn from the previous invocation by maintaining all the scores
obtained in the previous run to explore different and better
ordering of decision variables

19/24

Tool

e GANAKY: First Scalable Probabilistic Exact Model Counter

® Given a propositional formula F (CNF) and confidence ¢ € (0, 1]
GANAK(F,) returns count such that

Pr[|Sol(F)| = count] > 1—¢

® Tool is available at: https://github.com/meelgroup/ganak

20/24

https://github.com/meelgroup/ganak

Experimental Evaluation

® Benchmarks arising from probabilistic reasoning, plan recognition,
DQMR networks, ISCAS89 combinatorial circuits, quantified
information flow, etc

21/24

Experimental Evaluation

® Benchmarks arising from probabilistic reasoning, plan recognition,
DQMR networks, ISCAS89 combinatorial circuits, quantified
information flow, etc
® QObjectives:
@ Study the impact of different configurations of heuristics Shubham'’s
Talk
® Study the performance of GANAK with respect to the
state-of-the-art model counters

21/24

Experimental Evaluation: Comparison with other tools

5000

—o— GANAK

—&— SharpSAT
4000 J %
3000 J
2000

0 il
1400 1425 1450 1475 1500 1525

instances

CPU time (s)

1550 1575 1600

® |n our experiments, the model count returned by GANAK was
equal to the exact model count for all benchmarks

22/24

Experimental Evaluation: Individual Analysis

e
B

PAR2
3000

2800
2600
01- 3025 3020 3006 3004 3009 2998 2990 2996 2400

1S-LSO
5

00- 3020 3015 3008 3009 3008 3004 2989 2989

000 001 oio 011 100 101 1i0 111
PCC-CSVSADS-PC

® GANAK performed best when all the heuristics are turned on

23/24

Conclusion

® GANAK demostrates that #SAT solvers can significantly benefit

from probabibistic component caches, especially when ably
supported by heuristics like 1S, CSVSADS, PC and LSO

® \We believe that the heuristics proposed in this work will also
significantly benefit exhaustive DPLL-based knowledge compilation
frameworks and related tools (like c2d [Darwiche, 2004], D4
[Lagniez and Marquis, 2017], DSHARP [Muise et al., 2012])

® Tool is available at: https://github.com/meelgroup/ganak

24/24

https://github.com/meelgroup/ganak

