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Abstract—Tracking the value of a function computed from a
dynamic, distributed data stream is a challenging problem with
many real-world applications. Continuously forwarding data up-
dates can be costly, yet complex functions are difficult to evaluate
when data is not centralized. One general approach to continuous
distributed monitoring is the Geometric Monitoring (GM) family
of techniques. GM reduces the functional monitoring problem to
a set of local constraints that each node checks locally, and uses
a simple protocol to update those constraints as needed.

While most work on GM focuses on reducing the number
of messages exchanged by the common GM protocol, with
one recent notable exception, there has been little attention to
reducing the size of those messages, which impacts bandwidth.

We propose the Distance Scheme: a novel bandwidth-efficient
variation of the GM protocol that reduces the size of most
monitoring messages in GM to a single scalar, and is compatible
with the large body of prior work on GM. We apply it to
monitor three different functions using three real-world datasets,
and show it substantially reduces bandwidth while requiring
fewer messages to be transmitted than the current state-of-the-
art approach. We further describe a value-based scheme that,
while typically outperformed by the Distance Scheme, is simpler
to apply, matches state-of-the-art bandwidth performance with
fewer messages, and is also compatible with existing work.

I. INTRODUCTION

Consider the setting of distributed monitoring [1], where one
tries to approximate a function defined over the aggregation
of multiple distributed data streams. Computing the function
locally over each stream does not always provide insight for
the approximation over the global aggregate, yet forwarding
all the data to a single location can be prohibitive due to high
bandwidth or power consumption.

Common approaches to this problem include crafting indi-
vidual distributed protocols tailored to the specific monitored
function, or sketching, which reduces the size of transmitted
data, but still relies on data centralization.

Geometric monitoring (GM), introduced in [2] is a family
of techniques that share the same distributed protocol and
underlying principles [3]. GM reduces the global function’s
approximation bounds to a set of local constraints on each
data stream, called safe zones; as long as the constraints are
satisfied, no communication is required. Unlike the previous
function-specific approaches (which were, in addition, typi-
cally restricted to certain classes of functions – monotonic,
linear, or convex), GM techniques are generic: they can and
have been applied to monitor a large class of non-trivial

functions, including regression [4], Pearson correlation [5],
spectral gap [6], cosine-similarity [5], effective dimension [5],
and even sketches [7], [8]. Moreover, GM is modular: different
techniques and monitored functions can be composed together
to achieve dramatic reduction in communication, since they
share the same underlying distributed protocol [3].

While GM is very effective in reducing the number of sent
messages, current techniques typically require high bandwidth
whenever the local GM constraint is violated, as the resulting
violation resolution phase requires sending large data vectors
between nodes, which can offset the bandwidth-savings effects
of the other GM modules, especially for high dimensional data.

A recent insightful approach, functional geometric monitor-
ing (FGM) [9], addresses this issue by replacing the geomet-
ric monitoring protocol with a distributed counting protocol,
which only requires sending scalars as opposed to vectors.
This approach is effective in limiting bandwidth and allows
theoretically bounding the communication cost. However, it
loses some of GM’s modularity, since much of the existing
work has been designed for the GM protocol. Also, the fact
that it relies solely on the function’s value results in a certain
bias towards false alarms, especially when the monitored
function changes quickly. We elaborate on this in Section
III-D, and provide experimental evidence for this problem
in Section V. Also, as we later show, while the distributed
counting protocol is bandwidth efficient, it does result in more
message exchanges than GM. In some settings the number
of messages can be as important as bandwidth, for example
when initiating or waiting for a wireless transmission requires
substantial battery power [10], [11].

Our Contributions: We propose an adaptation of the
GM protocol that can resolve local constraint violations while
sending single scalars, thus dramatically reducing bandwidth
consumption during the violation resolution phase. Further, it
is compatible with existing GM extensions, such as reference
point prediction [12] and slack distribution protocols [7], [13].
The main contributions of this work:
• We describe a novel geometric result (the Distance Lemma)

that relates the average of vectors to the sum of their
(generalized) distance from the boundary of a convex set.

• We propose two low-bandwidth schemes for distributed
functional monitoring that are compatible with existing GM
approaches. The Distance Scheme, our main contribution,



improves the state-of-the-art in bandwidth reduction, and
scales well with the number of nodes. The other approach
is the Value Scheme, a low-bandwidth scheme based on [5].
The Value Scheme is easier to use than the Distance Scheme
and achieves similar performance to current SotA, FGM [9],
but is outperformed by the Distance Scheme for most
nonlinear functions.

• We provide an empirical evaluation for three functions
on three real-world datasets, and show that the Distance
Scheme requires up to ×2.5 less bandwidth than the current
SotA [9], while transmitting up to ×5 fewer messages.

II. BACKGROUND

In this section we review the background and important
technical details of prior work.

The continuous distributed monitoring model [1] deals with
the following setup: there are k distributed nodes (sensors,
computing nodes etc.), denoted S1 . . . Sk, and a coordinator
node C with which all nodes communicate. Each node Si
receives an unbounded stream of data, from which it locally
computes at time t a local vector vi(t) ∈ Rd. Let the global
vector v(t) be the (possibly weighted) average of all vi(t).
Note that the vectors v(t), vi(t) are dynamic: they change over
time. However, for clarity, we suppress the time variable (t)
except when required.

We study the problem of distributed functional monitoring
w.r.t the value of a function f over the aggregate of all
local vectors vi. In other words, we wish to maintain an
approximation of f(v), while minimizing communication1.

Geometric Monitoring (GM) is a family of related tech-
niques for communication-efficient distributed monitoring of
general functions2. These techniques were developed in a
series of papers, including [2], [3], [14], [15], and applied to
many problems, such as least squares models [4], entropy [7],
skyline computations [16], inner products, effective dimension
and anomaly detection [5], processing of evolving distributed
graphs [6], and monitoring machine learning models [17].

A. Geometric Monitoring Framework

We briefly survey the principles and definitions behind GM.
See [5] for a more complete survey of GM techniques.

As its name suggests, GM casts the monitoring problem
in a geometric setting, relying heavily on the notion of
convexity. Given the task of approximating a function f , the
GM framework defines a distributed protocol that reduces it
to monitoring threshold crossings. We next describe the GM
protocol, which is summarized in Algorithm 1.

1) Fundamentals: Let t = 0 be some initial time, referred
to as sync time, and let vi(0) and v(0) be the values of the local
and global vectors at that time; v(0) is assumed to be known to
all Si’s and will be referred to as the public vector. Given the

1Since f and vi can be defined arbitrarily over the local data, this captures
a wide variety of complicated, non-linear functions

2In this work, we refer by “GM” to the body of techniques that share the
common principles and protocols as outlined in [3], rather than to the specific
initial technique described in [2].

Algorithm 1 The three phases of the common GM protocol.
1) Eager sync: the coordinator C collects vi from all nodes.

It computes v(0), the resulting approximation bounds and
equivalent thresholds T , and the corresponding safe zone
Z. It then sends them to all nodes for monitoring (phase 2).

2) Monitoring: nodes update vi and monitor pi + λi ∈ Z.
While there is no violation, nodes remain in this phase. If
there is a local violation, report it to coordinator (phase 3).

3) Lazy sync: when a node reports a violation, C tries to
resolve it by incrementally polling nodes and updating
slacks λi. If the violation is resolved, send updated slacks
to participating nodes and go back to monitoring (phase 2).
If the violation is not resolved, go to eager sync (phase 1).

initial value f0 = f (v(0)) and the desired approximation (e.g.,
1± ε), we can maintain an approximation of f by monitoring
the constraints f(v) ≤ (1 + ε)f0 and f(v) ≥ (1 − ε)f0.
These two constraints are continuously monitored, and if one
is violated, C must be alerted. When this happens, we must
resolve the violation, for example by centralizing all data and
updating f0 and the constraints.

This allows us to monitor the value of f to arbitrary
precision. Since we have complete freedom in defining vi and
f , it turns out that many important monitoring problems can
be expressed using this formulation. We refer the reader to
[5]–[7], [17] for some recent examples.

Given a threshold constraint f(v) ≤ T for some threshold
T (for the reverse condition just reverse the signs), GM defines
the admissible region A = {u ∈ Rd | f(u) ≤ T}, the set of
vectors that satisfy the constraints. We also define a safe zone
Z ⊆ A, a convex sub-set of A which contains v(0). It may
be defined either directly [15], or via functional inequalities
[5]. Deriving the safe zone Z for a function f is a critical
component of GM. Several techniques have been developed for
this problem [5], [6], [14]; here we assume that Z was already
computed by one of these approaches, and instead focus on
reducing monitoring bandwidth. Following the previous work,
we assume that Z is defined either directly as a convex subset
of A, or as {x | g(x) ≤ T} for a suitable convex function g
such that g(x) ≥ f(x).

Let di = vi − vi(0) be the drift vector for node Si, and
define its private vector as the change from the public vector,
pi = v(0) + di. Note that pi, vi are known to Si, but not to
the other nodes nor the coordinator C. The average of private
vectors is the current global vector v: 1

k

∑k
i=1 (v(0) + di) =

1
k

∑k
i=1 vi = v. Moreover, at time t = 0 all private vectors are

equal to the public vector v(0) and are inside the safe zone
Z. In addition, C assigns to Si a slack vector λi, such that
the sum of all slacks is zero:

∑k
i=1 λi = 0.

GM replaces monitoring the global constraint v ∈ A with
monitoring the following local constraints: pi + λi = v(0) +
di + λi ∈ Z, and note that 1

k

∑k
i=1 pi + λi =

1
k

∑k
i=1 vi = v.

Since convex sets are closed under averaging, if pi + λi ∈ Z
for every node i, then v ∈ Z and therefore v ∈ A. Thus, if



pi + λi ∈ Z, the node Si can remain silent; and as long as
all nodes are silent, it is guaranteed that the global monitored
condition is satisfied.

2) Violation Resolution: If a local violation occurs – that
is, pi + λi /∈ Z – the node alerts C, which enters a violation
resolution phase to check whether the average of the vectors
{pi}ki=1 is still in Z. One way to do this is eager sync, which is
also done during initialization. The coordinator polls all nodes
for their current local vectors vi, defines the current time as
the sync time t = 0, and sends an updated v(0), approximation
thresholds, and the safe zone Z to all nodes; local slacks λi
are reset to zero. This guarantees that v(0) and pi + λi are in
the safe zone, and monitoring can continue.

However, frequently only a small percentage of the private
vectors exit Z, while v remains in Z, hence the monitored
condition continues to hold; in other words, a local violation
(at a node) typically does not indicate a global violation –
where v /∈ Z. Executing an eager sync for such false alarms
will therefore incur an unnecessarily large bandwidth. Hence,
GM first tries a lazy sync phase to resolve local violations
with less communication, by building a balancing set L: a set
of nodes Si such that their private vectors can be balanced
using slack variables. The coordinator polls nodes that have
not reported violations for their private vectors, and adds them
to the balancing set L. If 1

|L|
∑
i∈L (pi + λi) ∈ Z, then the

violation has been resolved: the coordinator sends re-balanced
slacks λi to all nodes in L such that pi+λi ∈ Z for all nodes
in L while

∑
i∈L λi remains unchanged, and the monitoring

continues. We refer to [7, Section 4.6] for the full details of
violation resolution.

III. METHODS

In this section we introduce two novel monitoring schemes:
the Distance Scheme and the Value Scheme.

Most of the effort in GM research addressed the goal of
finding efficient local conditions. However, with the notable
exception of the recent [9] (which will be discussed in further
detail in Section VI), when a local violation occurs, nodes –
not just the violating ones, but all members of the balancing
set – transmit their entire local data vectors to the coordi-
nator. Thus while GM offers a widely-applicable solution for
reducing the number of messages, their size may still be large,
as it is proportional to the dimension d of the local vectors.
Here, we address this problem, and study two schemes – the
Distance Scheme and the Value Scheme – to the problem;
these schemes are compatible with the large body of existing
techniques that use the GM framework.

We next describe the Distance Scheme, which rests on a
geometric result that allows to modify the violation resolution
and lazy sync phases in GM, and replaces transmission of
vectors with transmission of scalars. Then, we will discuss a
value-based scheme, and compare it with the Distance Scheme.
We will mathematically demonstrate that the Value Scheme
is inherently biased towards false alarms, as opposed to the
Distance Scheme, and that this bias becomes more evident as
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Fig. 1. Illustration of the Distance Lemma: if the sum of the signed distances
li from vectors x1, . . . , x5 to the closed convex set B is non-positive then
their average x is inside B. Formally,

∑5
i=1 li ≤ 0 =⇒ 1

5

∑5
i=1 xi ∈ B.

x4 is not in B and further away from the boundary than all other vectors,
but is still balanced by the points inside B.

the monitored functions changes more rapidly. This analysis
is backed by extensive experiments (Section V).

A. Distance Lemma
To resolve a local violation, it is necessary to determine

whether the global vector v is still in Z, even if pi + λi /∈ Z
for some values of i; our goal is to achieve this while not
communicating the entire local vector. The following Distance
Lemma allows just that. Plainly put, the Lemma states that
if the sum of absolute distances from the boundary of the
points inside a convex set is larger than the corresponding
sum for the points outside the same set, then the average of all
points is inside the convex set (Fig. 1). Applying it enables,
in some cases, to resolve a local violation (i.e. to conclude
that v ∈ Z), while communicating a single scalar per node.
The proof rests on representing each point outside Z as a
combination of a boundary point and an “overflow” vector
outside Z. We then balance the sum of the overflows with the
distance to the boundary of vectors inside Z.

Lemma 1 (Distance Lemma). Let B be a closed convex set
in a normed linear space, with the distance function induced
by the norm (i.e the distance between vectors x, y is ||x−y||).
Let x1, . . . , x` be vectors inside B, and x`+1, . . . , xk vectors
outside B. Denote the signed distance of xi from the boundary
of B by li (negative if xi ∈ B, positive otherwise). Assume
that

∑k
i=1 li ≤ 0. Then the average of x1, . . . , xk is inside B.

Proof. Since a convex set is closed under averaging, it suffices
to produce a set of k vectors in B such that their sum is equal
to
∑k
i=1 xi.

For the vectors outside B (` < i ≤ k), denote by ci the point
on the boundary of B which is closest to xi, let ui = xi − ci
be the vector from ci to xi, and note |li| = ||ui||. Then:

x1 + . . .+ xk

= x1 + . . .+ x` + c`+1 + . . .+ ck + (u`+1 + . . .+ uk) .

Next, denote u = u`+1+. . .+uk and αi =
|li|

|l1|+ . . .+ |l`|
,

and note
∑`
i=1 αi = 1. We’ll decompose u to a weighted sum

of ` vectors:
x1 + . . .+ xk

= x1 + . . .+ x` + c`+1 + . . .+ ck + u

= x1 + . . .+ x` + c`+1 + . . .+ ck + (α1 + . . .+ α`) · u
= (x1 + α1 · u) + . . .+ (x` + α` · u) + c`+1 + . . .+ ck .



By definition, c`+1 . . . ck are inside B, so we only have to
show that xi + αi · u ∈ B for i ∈ {1 . . . `}.

Note that since lj ≤ 0 for j ∈ {` + 1 . . . k}, and by the
Lemma’s assumption

∑k
i=1 li ≤ 0, it holds that |l`+1|+ . . .+

|lk| ≤ |l1|+ . . .+ |l`|. From the triangle inequality:

‖u‖ ≤ ‖u`+1‖+ . . .+ ‖uk‖
= |l`+1|+ . . .+ |lk| ≤ |l1|+ . . .+ |l`| ,

therefore, for i ∈ {1 . . . `} it holds that:

‖αi · u‖ =
|li|

|l1|+ . . .+ |l`|
‖u‖

≤ |li|
|l1|+ . . .+ |l`|

(|l1|+ . . .+ |l`|) = |li| .

Hence, since xi ∈ B and |li| is the distance from xi to the
boundary of B, it follows that xi + αi · u ∈ B for i = 1 . . . `,
thus completing the set of k vectors in B.

Note that this result is true for any norm, not just the
standard Euclidean one; this will turn out to be useful, as
choosing a suitable norm can further reduce communication
(Section IV-B3).

It is quite possible that the average of the xi is inside
B, while the sum of the distances is positive (that is, the
condition is not “if and only if”); still, in practice, as supported
by the experimental results (Section V), the Distance Lemma
substantially reduces communication overhead.

B. The Distance Scheme

Armed with the Distance Lemma, we now describe a mod-
ification to the GM monitoring protocol (Alg. 1 in Section II).

Rather than monitoring the original local constraint pi +
λi ∈ Z, each node computes li, the distance of its private
vector pi from the boundary of the safe zone Z. It then
monitors the local scalar constraint li + λi ≤ 0, where λi
is a scalar slack variable assigned by the coordinator such
that

∑k
i=1 λi = 0 (Sec. II-A1). If all local constraints are

maintained, the Distance Lemma guarantees that v ∈ Z ⊆ A
and therefore the global condition is satisfied.

If a violation occurs, the nodes and coordinator proceed to
the usual violation resolution phase (Section II-A2), except
that during lazy sync we exchange scalar distances li and
scalar slacks λi rather than the entire vectors. Thus violations
can be resolved while communicating only a very small volume
of information. As before, if the coordinator cannot resolve the
violation by reassigning slacks such that

∑
i∈L(li + λi) ≤ 0

while preserving their sum (zero), it switches to a standard
eager sync where the entire local vectors are exchanged.

Note this is a variant of the original GM monitoring proto-
col: the only changes are in the constraint used for monitoring
and lazy sync, and that slacks are now scalars rather than
vectors. Therefore, the Distance Scheme is compatible with the
large body of existing work on applying the GM protocol (and
its extensions) to monitor a wide class of important functions.

To apply the Distance Lemma, it is necessary to compute,
or bound, the distance of pi from the boundary of the safe

zone Z (recall that the distance can be defined with respect to
any norm). We address this problem in Section IV.

C. The Value Scheme

For cases where computing the distance to the boundary of
the safe zone is difficult, we now describe the Value Scheme:
an easy-to-apply scheme with a similar protocol that is widely
applicable and still bandwidth-efficient.

The Value Scheme is based on the Convex Bound (CB
hereafter) variant of GM [5]. Briefly, CB uses the following
basic property of convex functions c():

c

(
x1 + . . .+ xk

k

)
≤ c(x1) + . . .+ c(xk)

k
(1)

This allows to very easily monitor the condition c(v) ≤ T :
the nodes locally check whether c(pi + λi) ≤ T , and remain
silent as long as this condition holds. To extend this to
general functions f(), CB tries to construct a convex function
c() such that c(x) ≥ f(x) for every x; then, one simply
monitors the condition c(v) ≤ T . CB is closely related to
the convex safe zone approach: the equivalent safe zone is
Z = {x | c(x) ≤ T}, whose convexity immediately follows
from convexity of c(). In [5], a few methods for constructing
CB’s are studied, and it is proved that they exist for a wide
family of functions f(). Here we assume that the CB is already
given. The equivalent notion for monitoring a lower bound is
a lower concave bound.

Given a convex bound c(), the Value Scheme pro-
ceeds as follows. Each node monitors the local constraint
c(pi) + λi ≤ T , where λi are scalar slacks that sum to zero.
If all the local conditions hold, the global one holds as well:

c(v) = c

(
1

k

k∑
i=1

vi

)
= c

(
1

k

k∑
i=1

pi

)
≤ 1

k

k∑
i=1

c(pi)

=
1

k

k∑
i=1

(c(pi) + λi) ≤
1

k
(k · T ) = T .

(2)

In case of a local violation at node Si, the node sends c(pi)
to the coordinator, which attempts to balance it with a set
of balancing nodes using lazy sync (Sec. II-A2) by finding a
subset of nodes L such that 1

|L|
∑
i∈L(c(pi) + λi) ≤ T and∑k

i=1 λi = 0. As before, if lazy sync fails, the coordinator
switches to eager sync.

D. Comparison of Value and Distance Schemes

The Distance and Value schemes share a common feature:
both use scalar quantities in order to resolve local violations.
For the Value Scheme (and also for the method in [9]), it is
the value of a convex bound; for the Distance Scheme, it is the
signed distance from Z’s boundary. While these two schemes
are related, they can yield rather different performance.

We start with a simple but illustrative examples of a convex
function (recall that the monitoring is applied not directly to
the function f(), but its convex bound c()). Fig. 2 (left) depicts
an example in which the function level sets behave very differ-
ently from the distance level sets. Assume there are two nodes,
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Fig. 2. Left: level sets for the function c(x, y) = exp(x2 + y2 − 1). While
the Value Scheme will declare a violation, the Distance Scheme will not, since
p1 is farther away from the boundary of the safe zone (solid blue circle) than
p2 (i.e., |l1| > |l2|). Right: schematic sketch for the analysis of the Distance
Scheme vs. the Value Scheme.

and we are monitoring the constraint c(x, y) ≤ T = 0.7,
hence Z is the closed disk bounded by the solid blue circle;
further assume that p1 lies on the dashed green circle (meaning
c(p1) = 0.4), and p2 is on the exterior of the dotted red circle
(meaning c(p2) > 1), and both slacks λ1 = λ2 = 0. This
implies the node holding p2 will report a violation in both
Distance and Value schemes. The Value Scheme is unable to
resolve this violation lazily: it will compute the average of
c(p1), c(p2), which is higher than T , and no slack assignment
to λ1 and λ2 can resolve this violation, since slacks must
sum to 0. Conversely, the Distance Scheme will resolve the
violation lazily, as the distance of p1 to Z’s boundary is far
larger than p2’s, hence the sum of signed distances is below 0.
The opposite cannot happen: it is impossible that the convex
bound c() increases so slowly when moving away from Z’s
boundary that the Distance Scheme reports a violation, while
the Value Scheme does not. This is due to the fact a convex
function cannot grow at a sub-linear rate.

The following analysis demonstrates that compared to the
Distance Scheme, the Value Scheme is inherently more biased
towards false alarms. We compare the two approaches in the
case in which the Distance Scheme “breaks even”, i.e., there
are two points, inside and outside Z, with equal distance τ
from Z’s boundary (Fig. 2, right). We show that in this case
the average of the values of c() at the two points will be greater
than the threshold T , hence the Value Scheme will raise an
alarm. For the sake of clarity we show this for dimension
d = 2, but the argument holds for every d.

Let us look at the restriction of c(x, y) to the line connecting
the two points, and call it g(s). Since it is the restriction of a
convex function, it is also convex. So the question reduces to
estimating the value of the average g(s0+τ)+g(s0−τ)

2 relative
to g(s0) = T . But it follows from Taylor’s theorem that

g(s0 + τ) + g(s0 − τ)
2

− T =
τ2

2
(g′′(c1) + g′′(c2)) (3)

for some points c1 resp. c2 in (s0 − τ, s0) resp. (s0, s0 + τ).
Since g(s) is convex, g′′() ≥ 0 everywhere, hence the right-
hand side of Eq. (3) is larger than zero, implying the average is
larger than T . Therefore the Value Scheme will not be able to
resolve this violation, while the Distance Scheme is successful.

It is possible to relate the average value of g′′() with the
eigenvalues of the Hessian of c(), allowing to estimate the

average “overshoot” of T . Intuitively, the more curved c()
is, the larger this overshoot will be, thereby increasing the
advantage of the Distance Scheme over the Value Scheme.

IV. APPLICATIONS

We now show how to apply the Distance Scheme to monitor
the values of three oft-used functions: inner product, AMS F2

moment frequency sketch [18], and an entropy sketch [19]. For
each monitored function f we first define its safe zones using
two auxiliary functions [5], which make distributed monitoring
possible: (i) a convex upper bound

⇀
c (v) ≥ f(v) that defines

an upper safe zone:
⇀
c (v) < T =⇒ f(v) < T ; and (ii) a

concave lower bound
⇁
c (v) ≤ f(v) that defines a lower safe

zone:
⇁
c (v) > T =⇒ f(v) > T .3 The Distance Scheme

is applied to these safe zones. That is, by “distance from the
safe zone” we mean distance from the level set

⇀
c (x) = T (or

⇁
c (x) = T ).

A. Inner Product
The inner product of two vectors is a fundamental function;

it is extensively used in numerous applications, either as a
similarity measure of data or as a basic component of other
functions in data mining and machine learning applications.

We treat the input of the inner product as a vector of twice
the dimension of the source data. Denote v = [u,w] as the
concatenation of the vectors u and w of size d

2 each. The
inner product function is defined as follows:

Finner([u,w]) = 〈u,w〉 . (4)

For v = [u,w] and the public vector v(0) = [u0, w0], the
convex upper bound is:
⇀
c (v) =

1

4
(‖u+w‖2−‖u0−w0‖2−2〈u0−w0, u−u0−w+w0〉)

and the concave lower bound is:
⇁
c (v) =

1

4
(‖u0+w0‖2+2〈u0+w0, u−u0+w−w0〉−‖u−w‖2) .

For the derivation of these bounds, please see [5].
1) L2 distance to the inner product safe zone: The L2

distance from a vector to the safe zone of the inner product has
a closed-form solution, obtained using Lagrange multipliers.
We briefly present the solution for the L2 distance to the upper
bound; calculating the distance to the lower safe zone is similar
and thus omitted.

To calculate the distance from any vector [u,w] to the
surface {[x, y] | x, y ∈ R d

2 ,
⇀
c ([x, y]) = T}, first define the

Lagrangian

G(x, y, λ) = ‖x− u‖2 + ‖y − w‖2 + λ(
⇀
c ([x, y])− T ) .

Solving the equations ∂G
∂x = 0, ∂G

∂y = 0, ∂G
∂λ = 0 yields the

following cubic equation in λ:

(λ− 1)(λ+ 2)2‖u0 − w0‖2+
(λ+ 2)2 (4T + 2〈u0 − w0, u− w〉) = 4‖u+ w‖2 .

Solving this cubic equation and then extracting x, y allows to
compute the L2 distance to the upper safe zone.

3As noted in Sec. II-A, this is the a common way of defining safe zones.



B. AMS F2 Sketch

The second frequency moment is typically used to estimate
the variance in a streaming data environment [8], [18]. Let
f1, ..., fN be the frequencies of the N unique items of a
stream; then its second moment is F2 =

∑
f2i .

In a seminal paper, Alon et al. [18] describe an efficient,
unbiased estimator for the second frequency moment of a
stream, known as the the AMS F2 sketch. They define the
sketch as follows: a four-wise independent hash function is
sampled, which uniformly maps the stream’s values to either
+1 or −1. The estimator accumulates the sums of all the +1’s
and −1 values. The expected value of the sum squared is
equal to the second moment value of the stream. Replicating
the estimator in a table M of size m× q with different hash
functions for each entry yields an estimate to the F2 function
with accuracy q−

1
2 and confidence 2−m, where the estimated

F2 value is the median of the averages of norms squared of
the table’s rows. This collection is commonly referred to as
the F2 sketch table. Let ri = 1√

q (Mi1, ...,Miq) denote the
normalized vector of values at row i. The estimate for F2 is:

Fams(M) = medianmi=1 ‖ri‖2 .

For clarity, and WLOG, we assume m is odd.
1) Deriving safe zones to the F2 sketch function: To track

the value of the AMS sketch, each node maintains its local
sketch, which is an m× q sketch table. Then, the sum of the
local sketches is the sketch table of the global stream. In order
to make the global vector be the point-wise mean of the local
vectors, and not their sum, each node multiplies its local vector
by the number of nodes k.

We apply the Convex Bound method [5] to derive safe zones
for Fams. In order to bound the function from above, since
the norm squared function is convex, only the median has to
be treated. We bound the median by taking the maximum of
the ‖ri‖2 value of the m′ = bm2 + 1c rows with the minimal
‖ri‖2 value at sync time. Let IU be the set of indices of the
m′ rows with smallest ‖ri‖2 at sync time; the convex upper
bound is thus:

⇀
c (M) = max

i∈IU
‖ri‖2 .

To derive a concave lower bound, we first bound each term
‖ri‖2 by the tangent plane 〈2ri(0), r − ri(0)〉 where ri(0) is
the vector ri of the public vector v(0). Then, we bound the
median function by taking the minimum of the tangent planes
values of the m′ rows with the maximal ‖ri‖2 value at sync
time. Let IL be the set of indices of the m′ rows with largest
‖ri‖2 at sync time; the concave lower bound is thus:

⇁
c (M) = min

i∈IL
〈2ri(0), r − ri(0)〉 .

2) L2 Distance to the Convex Upper Bound: We now show
how to derive the distance to the safe zone defined by the
convex upper bound; deriving the lower concave bound is very
similar and thus omitted. Since the monitoring is performed
over vectors, the L2 distance of the “flattened” sketch table
over the vector space is actually a Frobenius norm-metric over

matrices for the non-flattened sketch-table; thus, we’ll refer to
the Frobenius norm-metric as L2 distance over the sketch-table
space: ‖v1 − v2‖ = ‖M1 −M2‖F where the vector vi is the
flattened version of Mi.

We claim that the distance vector to the boundary for
a sketch table M which is inside the level set

⇀
c – i.e.

⇀
c (M) < T – ‘elevates’ exactly one row of M to a squared
norm of T . This occurs since

⇀
c is a maximum function over

M ’s IU rows, so the squared norm of just one row out of IU
has to be increased to “reach” the level-set.

The minimal L2 change to increasing any row ri of the
sketch table to a squared norm T is the distance from the
q-dimensional vector ri to the q-dimensional origin-centered
sphere with radius

√
T . This distance has a simple closed-

form solution,
√
T − ‖ri‖2. Hence, the inner-L2 distance is

the minimum out of the distances of the IU rows of M to the
q-dimensional sphere:

min
i∈IU

(√
T − ‖ri‖2

)
.

In contrast, computing the outer-L2 distance to the level-
set {M | ⇀c (M) = T} means we have to decrease the norm of
all IU ’s rows whose squared norm exceeds T . To decrease the
row ri to norm T , the L2 distance behaves as a L2 distance to
a zero-centered q-dimensional sphere center with radius

√
T .

So the L2 distance from outside is the accumulation of those
distances for the rows in IU whose squared norm exceeds T :√√√√ ∑

i∈IU ,‖ri‖2>T

(
‖ri‖2 −

√
T
)2

.

3) An Alternative Norm: Recall that the Distance Scheme
can resolve its violation when the inner-distances are larger
than the outer-distances. We claim that for the above L2

distance, the outer-distance inherently tends to be “heavier”
than the inner-distance, and thus isn’t suitable for the Dis-
tance Scheme. Notice that both the inner and outer distances
are computed using the distance to a q-dimensional sphere;
though, the inner distance to the safe-zone is the distance
of just one row to the sphere, while the outer-distance is an
accumulation of distances to the sphere of multiple rows of the
sketch-table. Hence, many non-violating vectors inside the safe
zone may be required to balance the other violating vectors.

Since the Distance Lemma can be used with any norm, we
introduce a “hybrid” norm L∼ for the matrix M , defined as:

‖M‖∼ = max
i

(‖ri‖2) . (5)

The L∼ norm exploits the structural properties of the safe
zone and the AMS F2 function:

⇀
c is a maximum function over

the rows of the sketch table. Calculating the L∼ distance to the
surface of the convex bound requires a change solely to one
row ri out of IU (specifically, the row with the maximal L2

distance), both from inside and from outside of the safe zone.
It thus overcomes the problem with the L2 norm described
before. The L∼ distance to the surface from inside is the
same as L2: mini∈IU

(√
T − ‖ri‖2

)
, and from outside, the



L∼ distance is the maximum of the L2 distances of IU ’s rows
to the q-dimensional sphere:

max
i∈IU ,‖ri‖2>

√
T

(
‖ri‖2 −

√
T
)

.

Note that L∼ is at least as good as L2, since its outer-distance
is lower or equal to L2’s, while their inner-distances are equal.

C. Entropy Sketch

Entropy is widely used in various applications [7], for exam-
ple identifying distributed denial of service attack and network
anomalies [20]. The Shannon entropy of the probability vector
(p1, ..., pN ) is defined as: H(p1, ..., pN ) =

∑N
i=1−pi ln(pi).

Reducing the bandwidth for monitoring the entropy can
be made more efficient by using appropriate sketches. A
near space-complexity optimal entropy-sketch was proposed
in [19], where the sketch is a linear projection of the probabil-
ity vector. The linear projection is performed by a multiplica-
tion matrix with i.i.d elements drawn from F (x; 1,−1, π/2, 0)
[19]. The sketch of the global probability vector is the mean
of the sketches of the nodes’ probability vectors, since the
operation of multiplying the probability vector by the pro-
jection matrix is linear. The entropy approximation of the d-
dimensional linear projected vector (y1, ..., yd) is:

H̃(y1, ..., yd) = ln(d)− ln

(
d∑
i=1

eyi

)
. (6)

Safe zones for this entropy sketch are described in [7]: since
the entropy sketch function H̃ is already concave, it can be
used directly for the lower bound. For the upper bound, a
tangent plane to the function is used.

1) Distance to the Safe Zone: Standard methods such as
Lagrange Multipliers do not yield a closed-form solution for
the L2 distance to the level set of H̃ . Instead, we use the
L1 distance, since the distance lemma works for every norm
metric (Section III-A). For the upper safe zone (i.e. the tangent
plane), the L1 distance is used as well; this distance has a
closed form solution, as detailed in [21]. We’ll now lay out
the mathematical details of calculating the L1 distance of a
vector v to the level set of {w | H̃(w) = T}.

2) L1 distance from inside the lower safe zone: We calcu-
late the inner L1 distance to the safe zone by utilizing [22,
Corollary 2.11], which states that a point within a convex set,
and its closest L1 point on the set’s boundary, differ in only
one coordinate. So, since H̃ is composed of a separable sum
of evj functions, the non-zero argument for increasing H̃ with
minimum L1 is achieved where the evj value is maximal. Let i
be the index of the maximal argument in v. Then, the vector u
with minimal L1 norm s.t. H̃(v + u) = T is all zeros, except
at the component ui, whose value is calculated by the equation
H̃(v + u) = T :

ln(d)− ln

∑
j 6=i

evj + evi+ui

 = T

Algorithm 2 Find q which minimizes H̃(q) on the surface of
the L1-sphere centered at v with radius δ.
Input: vector v ∈ Rd, L1 sphere radius δ
Output: q ∈ Rd, ‖q − v‖1 = δ, which minimizes H̃(q)
q ← v
j = argmaxi qi
S ← {j}
while ‖q − v‖1 < δ and |S| < d do
` = argmaxi/∈S vi
D = min{δ − ‖q − v‖1, |S| · (qj − v`)}
for all i ∈ S do
qi ← qi − D

|S|
S ← S ∪ {`}

if ‖q − v‖1 < δ then
for all i ∈ 1 . . . d do
qi ← qi − δ−‖q−v‖1

d

which yields:

ui = ln

eln(d)−T −∑
j 6=i

evj

− vi .

3) L1 distance from outside the upper safe zone: Con-
ceptually, the outer L1 distance to the convex safe zone
{w | H̃(w) ≥ T} can be computed by “inflating” an L1

sphere around v, until it intersects the surface of the safe
zone. To do so efficiently, we propose an algorithm to compute
the minimal H̃ value on a L1 sphere with radius δ; then, we
perform binary search on the radius δ of the L1 sphere for
which this minimal H̃ value is T .

Let v be the center of an L1-sphere with radius δ and
let q be the vector on the surface of the sphere for which
H̃ is minimized. We observe that v and q differ by the
most dominant (i.e., greatest) components of v, because H̃ is
composed of a separable sum of evi . We propose the following
steps to evaluate q:
1) Initialize q to v.
2) Find j, the index of the maximum component of v.
3) Decrease qj to the value of v’s second largest element vm,

while preserving ‖q − v‖1 ≤ δ.
4) Jointly decrease qj and qm to the value of v’s third largest

component vp, while preserving ‖q − v‖1 ≤ δ.
5) Continue as above; stop when ‖q − v‖1 = δ.

Algorithm 2 describes our H̃ minimization process in
detail. It is similar to the least angle regression (LARS)
algorithm [23] for L1-regularized regression, which operates
on the components that are most correlated with the response.
Due to lack of space, we omit the proof of correctness; instead,
we refer the reader to [23].

V. EXPERIMENTAL RESULTS

We empirically evaluate the communication cost of the
Distance and Value schemes using several real-world datasets,
and compare the results to other Geometric Monitoring (GM)
schemes.



Our main evaluation metric is bandwidth ratio: the band-
width required for distributed monitoring divided by the
bandwidth required by centralization – sending local vectors
to the coordinator and computing the function there. The
lower the ratio is, the better. Our aim is to evaluate the
proposed schemes, independent of any particular choice of
network and communication protocol. We therefore follow
[13] by defining message bandwidth as the number of floating
point values in a message, with small control messages such
as coordinator polling assigned a bandwidth cost of 1. We
stress that centralization is not necessarily a naive or weak
baseline. For example, for sketching approaches such as the
AMS sketch or the entropy sketch, the size of local vectors d is
already orders of magnitude smaller than the original data size;
centralization can thus be state-of-the-art for pure sketching.

A. Experimental Setup

We focus on comparing the proposed bandwidth reduction
schemes to standard GM, which is our main contribution,
rather than evaluating how well GM is for any particular
function. Thus, we have heavily relied on established work on
using GM for distributed approximation; we refer the reader to
that work for a thorough evaluation of GM for approximating
inner product, AMS sketches, and entropy (Section IV). We
evaluate the following schemes:

• Vector Scheme: standard GM protocol (Section II, Alg. 1)
using state-of-the-art safe zones described in Section IV.

• FGM: Functional Geometric Monitoring [9], which replaces
the GM protocol with a distributed counting protocol to
reduce bandwidth. The convex bounds

⇀
c (),

⇁
c () described

in Section IV are used to derive FGM’s safe functions [9].
To make sure the approximation is equivalent to the other
approaches, we set the quantization parameter εψ to 0.

• Distance Scheme: the Distance Scheme as described in
Section III using the safe zones and distances derived in
Section IV.

• Value Scheme: the Value Scheme as described in Sec-
tion III.

• RLV: Real Local Violations [5], where nodes use the
admissible region A (the global constraint) for monitoring
instead of the safe zone Z, and run lazy sync when pi /∈ A.
RLV is a hard benchmark to beat. Unlike the other schemes,
it is allowed to break the approximation bounds: since A
is not convex, it is possible that f(v) > T but locally
all f(vi) ≤ T . Moreover, by definition any local violation
in RLV (pi /∈ A) implies local violation in other schemes
(pi /∈ Z) but the reverse is not true.

• Oracle: nodes have global knowledge and run eager sync
if and only if a true violation occurs: f(v) > T . While
unrealistic, it provides a lower bound on bandwidth [8].

B. Functions and Datasets

We evaluate the benefit of the Distance and Value schemes
on the three functions described in Section IV: inner product,
AMS sketch for F2, and an entropy sketch. To make our eval-
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Fig. 3. The value of the monitored function over time for the different datasets,
with approximation bounds shown as gray band. (a) F2 AMS approximation
for cellular phone activity in Milano, with additive approximation of ±5·105.
(b) Sketched entropy of source IP address in CTU dataset 3, with additive
approximation of ±0.5. (c) Inner product between between CMT and VTS
taxi trips, with multiplicative approximation of ×(1± 0.3) .

uation more realistic, for each of the approximated functions
we use a real-world dataset.

For inner product, we use the New York City Taxi Trip
Dataset [24]. It documents taxi trips in New York City between
2010 and 2013, totalling 690M trips. Each entry records the
date and time in which the trip took place, the pickup and
drop-off coordinates, the vendor, the number of passengers, the
fare, and so on. We use the inner product function to track the
correlation of the geographical composition of trips between
two taxi vendors, VTS and CMT, over the last 24 hours.
Specifically, we divided the city into 101×101 geographical
zones, and defined local vectors of size d = 2×1012 = 20402,
where the first 1012 elements are the number of drop-offs in
each zone for the vendor VTS in a sliding window of 24
hours, and the other 1012 elements are the number of trips for
the vendor CMT for the same window. We monitor the inner
product of the two sub-vectors, which reflects the correlation
between typical routes of the two vendors in January 2013
using 24 hour sliding window with a step size of 1 hour, with a
multiplicative approximation bounds 1±ε. To determine which
node receives a record, we divide the city to equal-sized areas
and use the pickup location of the trip to determine the node.
Unless otherwise noted, we use k = 64 nodes, and vector
dimension of 2 × 1012. Figure 3(c) shows the value of the
approximated function over time.

For AMS F2, we tracked the F2-moment of cellular
phone activity in Milano, Italy. The Mobile Phone Activity
dataset [25] contains records of measurements of phone activ-
ity inside the city of Milano during November and Decemeber
2013 in 10 minutes intervals (total of 8784 activity records of
size 104 × 104 each). The datatset divides Milano into 104

regions and contains inter-region activity, resulting in a phone
activity vector of size 104 × 104 every 10 minutes. We use the
AMS sketch to track the F2 value of this high-dimensional



vector using an additive approximation ±ε computed over a
sliding window of 4 hours, with a step of 10 minutes. Unless
otherwise noted, we use a sketch of size d = 14 × 11 and
ε = 5 · 105. We distributed phone activity records into nodes
according to the grid-based location of where the phone call
originated from: we divided the 104 parts of the city into 4×4
areas which results in 16 nodes, unless specified otherwise.
Also, unless mentioned otherwise, we use the norm L∼ (sec.
IV-B3 eq. 5) when monitoring with the Distance Scheme.
Figure 3(a) shows the value of the AMS F2 moment in the
dataset over time.

For entropy, we monitor network traffic to detect attacks.
The CTU-13 dataset [26] consists of 13 datasets of records of
network traffic with different attacks. If the entropy of source
IP addresses suddenly drops, it may indicate a possible attack
since a small range of IP addresses dominate network traffic
[27], [28]. We therefore aim to monitor the entropy of the
frequency of source IP addresses in the third dataset in CTU-
13 with 4.7M network flows, defined over a sliding window
of 6 minutes and a step of one second. Since monitoring
232 IPv4 addresses is infeasible, we use an entropy sketch
to reduces the cardinality of the vectors to a sketch of size
d, and monitor that instead. The network communication was
distributed to k nodes according to the third byte of the source
IP address. Unless specified otherwise, we monitor an additive
approximation of the sketch with ε = 0.5 with a sketch size
of d = 200, and with k = 10 nodes. Figure 3(b) shows the
value of sketched entropy in the dataset over time.

C. Number of Nodes k

We first consider the effect of the number of nodes k on
communication cost. Previous work has shown that GM-based
methods can incur higher communication cost as the number
of nodes k increases, as resolving violations involves more
and more nodes [4], [7], [15].

Figure 4 shows the resulting bandwidth ratio as we vary the
number of nodes in each run. We make several observations.

First, the Distance and Value schemes are effective in reduc-
ing bandwidth costs. The Distance Scheme has substantially
lower bandwidth cost compared to both the Value Scheme and
the state-of-the-art (FGM and Vector Scheme). The bandwidth
cost for the Value Scheme is as low or slightly lower than that
of the counting-based FGM. We discuss this equivalence in
more detail in Section VI. The Vector Scheme, on the other
hand, incurs higher bandwidth costs since any violation results
in transmission of large vectors. For AMS F2 (Fig. 4(b)) with
k ≥ 256 it incurs as much bandwidth as centralization.

Second, we observe large differences in the scalability of
the different approaches. While the Vector Scheme has high
bandwidth ratio, its cost does not change much as we increase
k. For inner product (Fig. 4(a)), its cost does not increase with
more nodes (consistent with previous work [5]). Conversely,
the Value Scheme and FGM scale poorly as we increase the
number of nodes; in particular, for entropy (Fig. 4(c)) both
schemes perform worse than the Vector Scheme when k > 20.

Notably, the Distance Scheme scales much better than either
the FGM and the Value Scheme as we increase the number of
nodes k, while simultaneously using less (sometimes much
less) bandwidth than other approaches. Indeed, for inner
product and AMS, the bandwidth ratio of the Distance Scheme
is close to or better than that of both the challenging RLV
scheme (which is allowed to break approximation bound) and
the unrealistic Oracle.

We conclude that the Distance Scheme combines the scala-
bility of the Value Scheme with superior bandwidth reduction.

D. Dimension d

To evaluate how the dimension of the local and global
vectors affects bandwidth ratio, we repeat each experiment
with a different number of dimensions d. For the entropy
sketch we directly set the size of the sketch in order to control
d. Similarly, for the AMS sketch we vary the width and the
height of the sketch table: we set the width to d

√
d + 1e

and the height to b
√
d− 1c. For inner product, we divide the

city to smaller zones to increase the number of entries in the
vectors. Figure 5 shows the resulting bandwidth ratio when
approximating inner product, F2 moment, and entropy.

The effect of local vector size d on bandwidth ratio is
similar for the different schemes, and depends more on the
monitored function. For both inner product and the entropy
sketch, increasing d results in increasing bandwidth consump-
tion for the Distance scheme, Value Scheme, FGM and Vector
Scheme. In contrast, for AMS F2, changing d does not affect
the bandwidth ratio in any of the the monitoring scheme.
Interestingly, for the entropy sketch, the Value Scheme and
FGM are more sensitive to larger vectors: increasing d causes
a steeper increase of the bandwidth consumption ratio than in
the Vector Scheme and Distance Scheme. This results in the
FGM and the Value Scheme performing worse for the entropy
sketch when d ≥ 300, as it did for k ≥ 20 in Fig. 4(c).

As before, we observe that the Distance Scheme consistently
outperforms the other schemes, especially in higher dimen-
sions. Its bandwidth ratio is similar or superior to RLV across
all tested functions.

Finally, the Value Scheme performs similarly to FGM, with
a slight advantage for low d, shown in Fig. 5(b) and Fig. 5(c).
This is due to FGM sending more messages than the Value
Scheme. While both the Value Scheme and FGM both have
the same number of full (eager) synchronizations, FGM sends
more messages than the Value Scheme, as we later show
in Sec. V-H. In higher dimensions the cost of these extra
messages is dominated by the cost of eager syncs, which
send the full vector of size d. The relation between the Value
Scheme and FGM is further discussed in Sec. VI.

E. Bandwidth and Latency Simulations

Our previous simulation uses an idealized network. Here
we simulate transfer volume and latency when using standard
network protocols. Since performance depends on the network
stack, we include results for two stacks. For the high-end
stack (WiFi) we assume UDP/IPv4 over a reliable4 IEEE
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Fig. 6. Total transfer volume over WiFi for (a) inner product, (b) AMS F2,
and (c) entropy sketch, using default parameters (Sec. V-B). The gray bar
“Centralize” shows the bandwidth incurred by centralizing data updates.
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Fig. 7. Average time to resolve violations for inner product over WiFi (a) and
Zigbee (b), and entropy sketch over WiFi (c). Error bars show std. deviation.

802.11g WiFi link at 54Mbit/sec with an additional 12 bytes
per payload for sequencing and control, resulting in messages
of size up to 2304 bytes, headers of size 40, and payload of up
to 283 double precision scalars per message. For the low-end
stack (Zigbee) we assume an IEEE 802.15.4 with 250Kbps
bandwidth in a star topology, yielding headers of size 36, up
to 128 bytes per message, and a payload of up to 11 scalars

4Message reliability is a complex subject outside the scope of this work;
we assume it is handled by the lower level transport (with potential increase
in bandwidth for all schemes).

per message. For both settings we assume 4ms latency.
Figure 6 shows total WiFi transfer volume (bandwidth used)

for all schemes and functions in default configuration (see
Sec. V-B). For inner product and AMS F2, our previous
observations generally hold: the Distance and Value schemes
reduces transfer volume substantially over the original Vector
Scheme, with the Distance Scheme as good or better than the
unrealistic RLV. For WiFi the default entropy sketch vectors
easily fit within a message, meaning that the Distance Scheme
is only a little better than the Vector Scheme, while the
Value Scheme and FGM are slightly worse. This is not unex-
pected, since the Distance and Value schemes were designed
to address bandwidth in high-dimensional data. The picture
changes for the Zigbee protocol: its smaller payload means
all schemes generally incur additional bandwidth due to the
need to split messages (figure omitted for lack of space). The
Vector Scheme in particular suffers from increased overhead,
requiring 10.7MB for entropy sketch, while the Distance
Scheme requires only 7.4MB; both however are much better
than centralization (91MB). Interestingly, for entropy sketch
FGM uses more bandwidth than even the Vector Scheme for
both WiFi and Zigbee (12MB). As we discuss in Sec. V-H,
FGM sends many more messages than the other schemes due
to the counting protocol, which results in extra bandwidth.

Figure 7 shows the average time needed to resolve a vio-
lation. Lazy sync can increase this time since the coordinator
contacts nodes one by one, adding round-trips. Conversely,
FGM does not suffer from higher latency since some violations
are resolved via a quantum message that requires no response,
while full sync messages are equivalent to eager sync and
done for all nodes in parallel. Oracle time is constant in our
simulation since it only exchanges fixed-size vectors.

Surprisingly, for inner product on WiFi the Vector Scheme
has the highest violation resolution latency (376ms) due to the
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of norm, when changing the number of nodes (left) and the dimension (right).

large size of the vector (∼160KB), while the Distance Scheme
only requires around 125ms. For Zigbee, the difference is
even more dramatic: network bandwidth and message payload
are so small that the benefits of the Distance Scheme are
magnified. This is another benefit of the Distance and Value
schemes: for low-bandwidth or high-dimensional settings, the
time it takes to transmit a full vector ( 160KB×8

54Mbps = 23ms on
WiFi) is large enough that the benefit of bandwidth reduction
can outweigh the extra time needed for lazy sync. Even if we
used eager sync for the Vector Scheme, the time it would take
to resolve a violation would still be around 100ms. For the
entropy sketch, d is lower, meaning that the Vector Scheme
takes on average 22ms to resolve violations, while the Distance
and Value schemes take 38ms and 44ms respectively. AMS
F2 results are similar to entropy, but the Distance and Value
schemes slightly faster (32ms and 35ms, respectively).

We conclude that for high dimensional data or low-
bandwidth networks, the Distance and Value schemes dramat-
ically reduce the time it takes to resolve violations over the
Vector Scheme. For low-dimensional data, they introduce a
mild overhead but are still are fast enough to monitor data
that changes multiple times every second.

F. Approximation Tightness ε

As with any distributed approximation algorithm, the com-
munication cost of GM methods varies with the tightness of
the approximation. We explored the effect of varying ε on
the bandwidth ratio (figures ommitted for lack of space). As
expected, tighter approximations result in more communica-
tion across all schemes. The approximation factor affects all
schemes similarly: the relative order and advantage of the
different schemes remains roughly the same across a wide
range of ε values across all three functions (with the possible
exception of very tight approximations where centralization is
preferred anyway since the bandwidth ratio is close to or above
1.0). This suggests that our prior conclusions hold across a
range of ε values.

G. Choice of Norm

As discussed in Sec. IV-B3, some functions, such as AMS
F2, have a structure that we can exploit to provide a norm
tailored to that function. We now demonstrate that such a
tailored norm can have a substantial effect on the bandwidth
ratio. Fig. 8 shows that the bandwidth ratio of monitoring AMS
F2 using the Distance Scheme with the tailored L∼ norm (5)
is ×1.4–2.4 times lower than with the L2 norm. This confirms
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Fig. 9. Entropy sketch: ratio between the number of messages sent by different
schemes to the number of messages sent by the centralized approach

our conjecture in Sec. IV-B3 that for the convex safe zone of
the AMS F2, the L2 norm tends to be “heavier” from outside
of the safe zone, and thus have more false alarms. Since the
Distance Scheme can accommodate any norm, engineering
such well-suited norms presents an opportunity for further
optimization. We leave such discussion for future work.

H. Number of Messages

As we discuss in Sec. III, most prior GM research focused
on the number of messages sent by the schemes, rather than
bandwidth. The number of messages can be an important
metric in some settings, for example when simply turning on
the wireless device incurs significant power consumption com-
pared to sending one bit [10], [11]. We follow previous work
and compare the different schemes based on their messages
ratio: the number of messages transmitted by a scheme divided
by to the number of messages needed for centralization. Fig. 9
shows the messages ratio for entropy sketch as we increase the
number of nodes k and dimension d.

The Vector Scheme sends much fewer messages than the
other schemes even as we increase the number of nodes and
dimensions. The next best scheme is the Distance Scheme, fol-
lowed by the Value Scheme. Notably, FGM sends substantially
more messages than all other schemes. Even though FGM and
the Value Scheme achieve the same bandwidth ratio, FGM
sends about twice as many messages as the Value Scheme.
We attribute this to the counting protocol at the heart of FGM,
which is designed to reduce bandwidth but not necessarily the
number of messages: nodes must report every local quantum
crossing [9]. We observed similar behavior for inner product
and AMS F2 (figures omitted due to lack of space).

VI. RELATED WORK

The most closely related work is functional geometric mon-
itoring (FGM) [9], which follows the spirit of GM principles
but replaces the GM monitoring protocol with a distributed
monotonic counting protocol. FGM is similar to the Value
Scheme, since both decide whether initiate a violation reso-
lution phase based on the value of a convex bound for the
monitored function. Therefore, it suffers from the inherent
bias towards false alarms (Section III-D), and is generally
outperformed by the proposed Distance Scheme.

FGM’s use of counting protocol is a key difference between
FGM and the Distance and Value schemes (and existing



GM approaches). Using a counting protocol greatly reduces
monitoring bandwidth, and allows reasoning about and even
bounding the communication cost of FGM, which is difficult
to do for GM.

However, unlike the Distance and Value schemes, which are
designed to work with any existing GM technique, replacing
the standard GM monitoring protocol means that FGM is
no longer compatible with a rich set of GM optimization
techniques that rely on this shared geometric protocol. For
example, dynamically predicting changes in v and the safe
zone Z over time can substantially reduce the amount of
local violations and hence communication [12], [13]. While
replacing the local constraint pi ∈ Z with the predicted version
of Z is straightforward in GM protocol, the equivalent is
difficult to achieve in FGM since that would require updating
the state of the counter and the quantum θ. Similarly, the use of
safe zones in the GM protocol allows simultaneous monitoring
multiple functions without incurring the communication costs
of monitoring each individual function [3], as well as com-
bining safe zones to monitoring complex functions built from
simpler ones [14]. Examples of other such techniques include
probabilistic geometric monitoring [29] and applications of
GM, such as [16].

Moreover, if monitoring the same function using the same
convex bound c() (Value Scheme) and its equivalent safe
function φ (FGM), the Value Scheme will require an eager
sync if and only if FGM would have an equivalent full
synchronization. This is because the condition for perform-
ing an eager (or full) synchronization is the same in both
methods: 1

k

∑
c(pi) > T for the Value Scheme if and only

if 1
k

∑
φ(pi) > 0 for FGM (note the threshold T is already

incorporated in φ). Therefore, when monitoring functions
with high cardinality, eager syncs dominate the bandwidth
consumption, so both methods consume similar bandwidth.

VII. CONCLUSIONS

The Distance Scheme is a novel bandwidth-efficient adap-
tation for the Geometric Monitoring (GM) family of dis-
tributed monitoring techniques. By communicating scalars to
resolve local violations, it substantially reduces bandwidth
while remaining compatible with and benefiting from previous
work on GM. We evaluate its performance on three non-
trivial functions using real-world datasets, and show that the
Distance Scheme substantially reduces both bandwidth and
number of messages compared to the current SotA. For cases
in which the Distance Scheme is difficult to apply, we describe
the simpler Value Scheme, which matches SotA bandwidth
performance and reduces the number of messages, while
retaining compatibility with prior work.
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