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Abstract—Smartwatches can collect heart rate data unob-
trusively and continuously, making them a promising tool for
conducting long term studies, monitoring chronic conditions, and
providing timely intervention. Healthcare applications, however,
require us to understand the reliability of collected readings, both
in terms of quality and quantity. The accuracy of optical heart
rate (HR) measurements has been studied extensively in recent
years, identifying several common causes of errors. For example,
previous research has demonstrated that inaccurate HR readings
occur more frequently in dark skin as compared to light skin
due to melanin absorption. Smartwatches therefore implement a
confidence mechanism to estimate reliability of HR readings.

We study the effect of skin tone on the reliability of confidence
estimation of seven consumer-grade WearOS smartwatches. We
find that some watches systematically underestimate the reliabil-
ity of HR readings taken from dark skin, despite no substantial
difference in actual error. This results in significantly fewer
data points for people with darker skin tones, which can bias
downstream applications. We also report a wide variation in how
watches implement the same WearOS API for HR collection, with
implications for researchers that intend to use them for studies.

Index Terms—Health care, Pervasive computing, Sensors

I. INTRODUCTION

Wearable health monitoring technologies have attracted
considerable consumer interest over the past few years [1],
[2], as they can potentially transform healthcare delivery
and research. Accessible, continuous, pervasive, and low-cost
health monitoring, these technologies can enable longitudinal
health studies, monitoring chronically ill patients, and better
healthcare in communities with traditionally poor access to
services [3]. In particular, heart rate (HR) monitoring provides
important vital signal. For example, HR monitoring is a crucial
component of Cardiac Rehabilitation (CR) which improves
long-term survival after cardiac events [4].

The adoption of wearable devices for health monitoring
creates an urgent need to ensure that their performance is
robust for a diverse population [5], [6]. In this paper, we
explore the effect of skin tone on the reliability of HR
measurements reported by popular smartwatches.

Smartwatches are a promising avenue for continuous HR
monitoring: they are programmable, powerful, and unobtrusive
sensor platforms that are increasingly popular [7]. In particu-
lar, WearOS [8] smartwatches (previously known as Android
Wear) are a promising avenue for clinical studies since they
are inexpensive, widely available, relatively open, and support
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third-party applications [9]. Moreover, many WearOS watches
integrate HR sensors and provide developers with a standard,
portable API for HR sensing.

To measure heart rate, smartwatches use reflective pho-
toplethysmography (PPG): an inexpensive non-invasive op-
tical technique that estimates HR by reflecting light off the
skin [10], [11]. The accuracy of wrist-worn PPG HR mea-
surement has been explored extensively in recent years [12]—
[15], since clinical monitoring using wearable devices requires
confidence in the quality of data. In particular, though early
research has shown skin tone can reduce accuracy of PPG
HR measurements PPG [11], [16]—[20], recent research shows
that the effect is much smaller in modern devices [21], [22],
possibly due to better data filtering. Other factors behind
erroneous PPG reading include motion [23], [24], change in
blood volume [25], and temperature [26]. The WearOS API
therefore provides a confidence metric: an integer between
0 and 3 that indicates the estimated reliability of individual
HR reading; the procedure used to compute this confidence,
however, is vendor-defined and often undocumented.

While many works have explored the accuracy of PPG
technology for HR sensing, little attention has been devoted
to the reliability of the confidence metric, and its interaction
with skin tone. Crucially, while the WearOS API is common
to all vendors, hardware and software implementations vary
greatly. To our knowledge, no prior work has systematically
investigated whether confidence reflects actual error across
different WearOS watches, and how it is affected by skin tone.

Our contribution: We use seven commercial WearOS smart-
watches to collect heart rate readings from 18 participants with
a large range of skin tones, and study the quality and quantity
of HR measurements and reported confidences.

Our study has two parts: quantitative and qualitative. In
the first part, our analysis shows that even when the watch-
reported heart rate is in agreement with a gold standard
ECG-based device, for dark skin tones many smartwatches
report substantially fewer high-confidence data points than for
lighter skin tones. This can bias research that relies on data
collected by smartwatches since such groups would be under-
represented in the dataset and since missing data points can
make computing important HR metrics difficult. We further
observe that even though the reported confidence of the
watches is affected by skin color, across all skin tones, the



TABLE I
SMARTWATCHES IN OUR STUDY.

Watch name Year OS Processor

Moto 360 2014  Android Wear TI OMAP 3

LG Urbane 2016  Android Wear  Snapdragon 400

Polar 600M 2016  WearOS 2.1 MediaTek MT2601
Huawei Watch 2 2017  WearOS 2.1 Snapdragon Wear 2100
Ticwatch Pro 2018  WearOS 2.1 Snapdragon Wear 2100
Fossil Carlyle HR 2019  WearOS 2.1 Snapdragon Wear 3100
Misfit Vapor X 2019  WearOS 2.1 Snapdragon Wear 3100

highest confidence level represents the data with the lowest
actual error (compared to the gold standard) — suggesting that
watch-reported confidence can be used to filter out incorrect
readings.

In the second part, we find that despite implementing
the same data collection API, WearOS smartwatches exhibit
widely different and non-obvious behaviors that can affect
data quality, and have non-trivial implications for future re-
searchers.

II. STUDY DESIGN

To investigate the effect of skin tone on the reliability of
confidence, we used 7 WearOS smartwatches to collect HR
data from healthy participants under controlled conditions. The
study was approved by the University Health Research Ethics
Board (REB No. 38657).

A. Study Equipment

Table I lists watches used in this study. We study seven
WearOS-based smartwatches released between 2014 and 2019.

All watches use PPG to generate HR readings and report the
heart rate (HR) along with an integer confidence value that can
range from 0 to 3. Rather than allowing applications to read
HR data on-demand, WearOS calls an application-defined call-
back function with the reported HR reading and confidence.
As we show later, the actual behaviour varies between vendors.
For example, some watches report a confidence value of —1 to
indicate that the watch is not touching the skin properly. Since
we always ensure proper skin contact during data collection,
we should expect not to get any data with confidence —1.
We explore this further in Section III-D. We use an in-house
Android application to collect and transfer recorded data from
the smartwatches to a secure server. We collect HR (measured
in beats per minute) as well as the watch-reported confidence,
augmented with a timestamp with millisecond precision. This
data is transferred from the watch to a paired smartphone, and
from there transferred to a secure server. At the beginning of
each study session, we synchronize clocks by connecting the
watches to the smartphone.

The gold standard device used in this study to measure the
heart rate is the Zephyr BioHarness 3.0 by Zephyr Technology
Corporation [27]. It consists of a strap worn around the
chest and an attached module collect heart ECG signals using
conductive pads. Heart rate is calculated from ECG data and
is reported with confidence values ranging from 0 to 100;

we follow a conservative approach and only use readings
with confidence of at least 95. The validity of the Zephyr
BioHarness in obtaining accurate heart rate data has been con-
firmed in previous studies [28]. By comparing smartwatch HR
readings compared with the HR measured by BioHarness we
can correlate watch-reported confidence with actual error. This
also helps us monitor our own data collection by discovering
outliers (e.g., due to poorly secured watches).

We use a standard quiz based on the Fitzpatrick scale [29]—
[31] to group participant skin tones to six groups. As the quiz
is somewhat subjective and participants may not be able to
provide an exact answer to all questions, we also ask every
participant to select a shade card from Pantone skin tone
guide [32] that matches their wrist skin color. In cases we
could not determine the skin tone group using the incomplete
questionnaire, we grouped participants based on the color code
chosen from the shade cards.

B. Data Collection procedure

After obtaining informed consent, we collect age, gender,
and skin tone using answers to the quiz and the shade card.
We then help the participant in wearing he BioHarness band
correctly to avoid getting incorrect data due to improper
wearing of the chest band. For each participant, data collection
is done in two rounds:

1) The participant places both hands on the table. We secure
one smartwatch to each wrist, tight enough to ensure proper
skin contact while still maintaining comfort.

2) Collect 5 minutes of continuous HR data using both
watches. Participants are asked to avoid movement as much
as much possible during this time.

3) Remove smartwatches and let participants rest and stretch
for 2-3 minutes, before moving to the next pair of watches.

4) Repeat until the participant wore all the watches once on
either hand. The order of the watches is random.

After the first round, participants are given a 10 minute break
when they can walk around and then rest. We then repeat
the procedure for a second round, except smartwatches are
now worn on the opposite hand from the first round. This
helps reduce confounders such as partipants’ dominant hand
and differences in circulation between wrists. We then pooled
together the data points from both wrists.!

Since we aim to study the effect of skin tone on the
confidence reported by smartwatches, our study is designed
to control other variables known to affect accuracy of wrist-
worn PPG-based HR measurements such as light, motion, and
elevated heart rate (see Section IV). We collected data at rest
and in an upright sitting position. Data collection sessions were
carried out in the same room, physical set-up, and artificial
lighting. We ensure good skin contact by securing the watches
on the participants’ wrists using adjustable bands. Finally, we
give participants several minutes for their heart rate to settle
down before we begin data collection.

I'We found no significant differences in data from the two wrists.



III. RESULTS

Dependable health monitoring requires a steady stream of
reliable data over time. We investigate smartwatch behavior
both quantitatively and qualitatively. Our quantitative analysis
asks the following research questions:

1) Does watch confidence correlate with the actual error in
reported HR reading? Does the highest watch confidence
3 give more accurate data?

2) Can we obtain comparable number of data points across
various reported confidence levels and skin tones?

3) Is the correlation between confidence and actual error the
same across all skin tones?

Our two main metrics are (a) the average number of HR

readings reported by the watch in a fixed time window, and

(b) the mean absolute error (MAE) between watch-reported

HR and the HR reported by the BioHarness band, measured

in beats per minute (BPM). As reported in Section II-A, we

discard readings whose BioHarness confidence is below 95.

For qualitative analysis, we investigate the variation between
different implementations of the same WearOS APIs.

A. Resulting Dataset

We collected data from 18 healthy participants aged between
18 to 50 years (average age 26.5, 6 male, 12 female); see
Section II for collection methodology. Originally we designed
the study to include 30 people, 5 people from each of the 6
skin tone groups. Unfortunately, we had to stop data collection
midway due to the COVID-19 pandemic. Counting down from
the darkest skin tone, we have: two participants with skin tone
VI; four with skin tone V; four with skin tone IV; five with
skin tone III; two with skin tone II; and one with skin tone
I, the lightest skin tone. Data from each participant includes
approximately 10 minutes of timestamped HR and confidence
values from every smartwatches as well as the BioHarness.

While validating watch data against the data collected from
the BioHarness band, we have found that for one participant
from skin group IV, the BioHarness band did not collect
the heart rate correctly during the entire data collection (its
confidence level was below 95 for all data readings). We
therefore discard all data from this participant. For skin tone
group VI, the TicWatch Pro failed to collect any data from
one participant, and for another person from the same group,
we lost data for Misfit Vapor X due to watch malfunction.

B. Watch Confidence and Actual Error

We first investigate how well watch-reported confidence
correlates with the actual error in HR readings compared to
the BioHarness band.

Figure 1(a) shows the mean absolute error (MAE) of heart
rate measurement across all the watches and participants for
every WearOS confidence level (confidence —1 is not shown,
since it means the watch is not touching the skin). Numbers
on bars show the number of such data points, and error bars
show standard deviations. We observe that confidence 3 gives
the most accurate data, and that most of the data points are
reported with confidence 3. Ideally, we expect this behavior as

98 4964 11789 38391

0 1 2 3
Confidence level

(a) All Watches.

MAE (BPM)
= o= N
o v o

w

o

N
o

-
w

Confidence
Il
2
s 3

MAE (BPM)
=
o

w

o

\& < A PEN
W <o
¢

w® W

o «©
<0 o2
W

(b) By watch.

Fig. 1. The MAE for every confidence level. Numbers indicate number of
data points. Thin lines shows MAE plus standard deviation.

our data collection procedure (Section II-B) is designed to re-
duce interference from movement, elevated heart rate, ambient
light, and improper skin contact. Since confidence level O has
very few data points (less than 0.2% of the whole dataset),
we exclude it from the rest of our analysis. For confidence
levels 1 — 3 MAEs are consistent with the MAE reported
at rest by Bent et al. [21] (our MAE is slightly lower since
our study protocol includes plenty of rest before measurement
resulting in lower HR). Hence the WearOS smartwatches used
in our study provide comparable performance to popular non-
WearOS smartwatches. Figure 1(b) shows the MAE of each
watch individually. We again observe that for every watch, data
reported with confidence 3 has the lowest error. We conclude
that watch-reported confidence correlates with the actual
error, and that HR reported with confidence 3 is the most
accurate across all watches.

C. Effect of Skin Tone on Confidence, Quality, and Quantity

Figure 2(a) shows the average number of data points (read-
ings) reported by each watch in every 30-second window for
different skin tones. Superficially, skin tone seems to have little
effect on the number of data points reported by each watch.

Most researchers and applications, however, require reliable,
high-confidence data. Having observed that confidence level
3 gives the most accurate data for all the watches, we look
into the number of such data points reported in a fixed time
window for these watches. The number of data points reported
with confidence 3 (Figure 2(b)) is substantially smaller for skin
tone VI than for the lighter skin tones. For the Moto, Ticwatch,
Fossil, and Misfit watches the number of reliable (confidence
3) HR readings is smaller by almost 50% or more for skin
tone VI than for lighter skin tones. The LG watch exhibits
a less substantial drop, while the number of high-confidence
data points for Polar and Huwawei watches is unaffected by
skin tone. We see the opposite trend rise for low confidence



w
o

2 Skin tone
s 20 !
o 1l
©
® 10 Ll
[a L\
0 |_IAY
Moto LG Polar Huawei TicWatch Misfit Fossil L__IY|
Watch
(a) All confidences.
) 30 Skin tone
.g |
g 20 I
©
® 10 i
[a) L\
0 |__IaY)
Moto LG Polar Huawei TicWatch Misfit Fossil LI
Watch
(b) Only confidence 3.
) 30 Skin tone
8
% 20 |
o 1}
©
® 10 —
e i I I -
0 Loy —f—“ Ll | . | -V
Moto LG Polar Huawei TicWatch Misfit Fossil L__IAY|
Watch
(c) Only confidence 2.
) 30 Skin tone
820 1
©
= L |
8 10
L\
o L . [ | Y
Moto LG Polar Huawei TicWatch Misfit Fossil Y|

Watch

(d) Only confidence 1.

Fig. 2. Average number of data points reported every 30 seconds by every watch with all confidence levels (a), with confidence 3 only (b), confidence 2

only (c), and confidence 1 only (d). Error bars show standard deviation.

levels, where that darker skin tones have more readings per 30
second window (Figures 2(c) and 2(d)). In conclusion, four
out of the seven watches report significantly fewer HR data
with confidence 3 for darker skin tones, even though skin
tone has little impact on the total number of reported data
by the watches.

Given that confidence 3 is associated with the most accurate
data, these findings raise the possibility that the drop in the
number of high confidence data points may be caused by
less accurate HR readings from darker skin tones. Figure 3
shows the MAE of HR measurements across all watches for
all confidence levels for different skin tones (top), and for
high confidence data only (bottom). As expected, using only
readings with confidence 3 have lowered the actual error for
all watches. However, this improvement in accuracy is equally
spread across all skin tones for every watch. Hence, the issue
is not the lack of high-quality data, but that the confidence
estimation in some watches is poor for dark skin tones.

To further support this conclusion, we explore the distri-
bution of confidences for accurate data points, those with low

MAE. Since Figure 1(a) shows that mean absolute error across
all skin tones and watches is approximately 4 BPM, and so
we conservatively consider as accurate only HR readings with
absolute error below 2 BPM compared to the BioHarness (3%
of nominal HR of 70 BPM). Ideally, most accurate data points
would be reported with confidence level 3. Unfortunately, we
observe for darker skin tones, this is not the case. Figure 4
shows the percentage of accurate data points for each confi-
dence in every skin tone group. It includes data from the four
watches with substantial drops (above 1 standard deviation)
in the number of data points for darker skin: Moto, Ticwatch,
Fossil, and Misfit. While most readings have confidence 3 for
skin tones I to V, for skin tone VI the majority of data has
confidence 2, despite only including accurate readings. We
conclude that confidence is miss-calibrated for dark skin
tones: most WearOS watches are too conservatively. This
results in fewer high-confidence readings from darker skin
tones, despite no difference in true accuracy.

Note that allowing low confidence readings for people with
darker skin tones may not be a practical solution for data
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TABLE 11
DIFFERENCES IN API IMPLEMENTATION ACROSS WEAROS WATCHES.

Moto LG Polar Huawei TicWatch Misfit Fossil

reported 0-3
confidence 0-3 (rarely -1) ) 0-3 0-3 03
phantom Yes Yes Yes No No No No
data
confidence

. Yes Yes No No Some  Some Some
fluctuation
data reporting y p odable 05Hz  1Hz  1Hz  1Hz 1Hz
frequency
suspends data No No No Yes Yes  Yes

collection app

collection. We conducted our study in a controlled environ-
ment that minimizes all other potential sources of error such
as movement and ambient light. In real-world settings, low
confidence readings are likely to be inaccurate even for the
darker skin tones. We intend to explore this in future work.

D. Inconsistent API Implementation

Beyond the quantitative effect of skin tone on the watch
confidence, another factor that can make the utilization of
watch reported heart rate challenging are qualitative differ-
ences in API implementation across watches. Developing
smartwatch applications for health monitoring or HR data
collection means following the documentation of WearOS
APIs. However, it turns out that different watches implement

may require researcher or developer attention are highlighted
in yellow. Developers of WearOS smartwatch applications
that use or collect heart rate data should keep these in mind.

Reported Confidence and Phantom Data: While WearOS
specifies a confidence scale, it does not provide a clear
criteria for each confidence level, and every vendor uses a
different method to decide what each level means and how
to determine it. WearOS API also allows —1 confidence,
intended to report loss of contact with skin. Though this
potentially allows applications to determine whether the watch
is worn, in practice not all watches implement it. We tested
how the seven watches behave in absence of skin contact.
The Ticwatch, Fossil, and Misfit watches never report —1
confidence explicitly, but instead, they do not report any HR
data if the watch is lacking skin contact This suggests that
these watches can identify whether a watch is worn or not,
but do not report it to the application. On the other hand,
we found the Huawei watch to consistently report confidence
level —1 in the absence of skin contact. While the Polar watch
occasionally does report —1 confidence, we have found that
this watch can report phantom HR data with confidence 3
for up to ten seconds even when no one is wearing it. The
Moto and LG watches never report —1 confidence and appear
to be unable to detect if the watch is worn. As with the
Polar watch, we have observed that the Moto watch reporting
phantom HR data with watch confidence 3 for several seconds
even when no one is wearing the watch. The LG watch also
occasionally reports the highest confidence while it lacks skin
contact. Hence, despite the API documentation, researchers
should not assume that watches can reliably identify and
notify when the watch is being worn. Moreover, for some
watches occasionally report phantom HR readings with
high confidence. Depending on the use-case, researchers
may need to develop their own mechanisms to identify
whether the watch is worn and data is reliable.



Confidence Fluctuation: Given our data was collected in
a controlled environment, we expected the confidence of
continuous HR readings to stabilize after a short period. But in
practice, only the Polar and Huawei watches provided stable
confidence of 3 over time. The confidence from Moto and
LG watches fluctuated regularly between 2 and 3. On Fossil,
Misfit, and TicWatch confidence dropped from 3 to either 2 or
1 a few times every minute and typically took 8—10 seconds to
return to 3. We have also observed that at the beginning of each
data collection session, some watches report a few data points
with confidence 0. Among them, only Polar and Moto watch
report HR as 0 along with confidence 0 for 3 — 5 seconds.
Researchers should not assume confidence fluctuations
indicate changes in the environment, movement, or activity.

Data Reporting Frequency: Figure 2 shows most watches
report one reading every second (1 Hz). The Polar watch
reports data once every two seconds, while LG shows high
jitter in HR reporting frequency — the times between successive
reports fluctuate widely, with an average of one reading every
two seconds. Such behavior can introduce bias to analysis
where a decision made from the data is also dependent on the
amount of data along with the quality. Researchers should
be prepared to accept measurements taken at different
frequencies that can require aligning the data before doing
any analysis. Moreover, they should be prepared to deal
with or at least detect irregularly reported data from
watches like the LG, for example by leveraging timestamp
reported by theWearOS API.

Data collection App suspension: We found that continuous
HR logging in a third party application can be challenging
in some watches due to aggressive power management. The
TicWatch and Fossil watches consistently shut down our data
collection app (Section II-A) 2 minutes into the run even
when the watches are not on any energy-saving mode. The
Misfit watch also shows this behavior infrequently. We had
to manually keep the watch screen alive to prevent this.
Researchers should take measures to detect and, if possible,
prevent such issues. Careful testing requires a veriety of
devices, since suspend behavior of one watch does not
necessarily match that of other watches.

IV. RELATED WORK

Fallow et al. [16] investigate the interaction between light
wavelength and skin tone at rest and during exercise, and
demonstrate that devices are better at detecting pulses using
green light at rest, and green or blue light during exercises.
In later work, Spierer et al. [17] present a validation study
of the Omron HR500U and Mio Alpha wrist-worn dedicated
heart rate monitors across a range of physical tasks. Along
with physical movement, the authors also considered the effect
of photosensitivity of skin on the correctness of HR readings
and had reported that error rate increased linearly with less
photosensitive (darker) skin for the Mio Alpha, but not for
HR500U. However, this study did not include people from
all skin tone groups. Recently, Bent et al. [21] extensively
explored the effect of skin type on the error in heart rate

measurement, both at rest and in motion, in consumer-grade
wrist-worn devices such such as the Apple Watch 4, Fitbit
Charge 2, and the Garmin Vivosmart 3. Focusing on exercises,
they found that motion has a higher effect on HR measurement
error than skin tone. Our mean absolute errors are consistent
with their findings at rest. Horton et al. [22] validated the
WearOS-based Polar M600 watch against conventional ECG
for different activities such as at rest, during various physical
activities, and during recovery. They observed a tendency
to underestimate HR during intense activity overestimation
it when intensity decreases, but no statistically significant
interaction with gender, body mass index, skin type, or wrist
size. As with Spierer et al. [17] this study did not have
participants from all the skin tone groups. Other works [24],
[33], [34] similarly explore the accuracy of smartwatch HR
readings compared to a gold standard device.

Unlike prior works, which focus on HR measurement error,
we focus on the WearOS reliability reporting mechanism
(i.e., confidence). We systematically study the effect of skin
tones under carefully controlled conditions, and point out
how mechanisms that increase accuracy can cause other data
quality issues. Moreover, we specifically focus on WearOS, the
most popular smartwatch OS among vendors, and investigate
variation in API implementation across watches. To our best
knowledge, our work is the first to investigate those questions.

V. CONCLUSION

Smartwatches are a promising technology for pervasive,
low-cost heart rate (HR) monitoring. While their measurement
accuracy has been extensively studied, other data quality issues
such as data quantity and reliability remain under-explored.
We systematically study the reliability of watch-reported
confidence values of seven WearOS smartwatches from 18
participants with six different skin tones groups. We find that
for several watchers, confidence is poorly calibrated for dark
skin tones and does not reflect the true accuracy of reported
HR readings. This can result in under-representing people with
darker skins in data collected by such smartwatches, which
in turn can bias downstream research (e.g., machine learning
models). Finally, we find substantial variation in WearOS API
implementations, which can invisibly impact data quality.

The ongoing COVID-19 pandemic has forced us to stop
the study early. It should therefore be considered exploratory
and our results preliminary. We purposefully avoid statistical
tests given its low population. Nevertheless, we believe our
early findings are valuable to researches and developers that
aim use smartwatches for pervasive HR monitoring. We intend
to expand our study to cover more people, as well as sys-
tematically explore other factors that affect watch confidence
such as movement, light, and temperature. Future work could
also focus on using machine learning to replace or augment
watch confidence using other sensors such as IMU and light
sensors [35], [36].
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