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ABSTRACT
Approaches for evaluating functions over distributed data streams

are increasingly important as data sources become more geograph-

ically distributed. However, existing methodologies are limited to

small classes of functions, requiring non-trivial effort and substan-

tial mathematical sophistication to tailor them to new functions.

In this work we present AutoMon, the first general solution to

this problem. AutoMon enables automatic, communication-efficient

distributed monitoring of arbitrary functions. Given source code

that computes a function from centralized data, the AutoMon algo-

rithm approximates the function over the aggregate of distributed

data streams, without centralizing data updates.

Our evaluation shows that AutoMon sends the same number

or fewer messages as state-of-the-art techniques when monitoring

specific functions for which a distributed, hand-crafted solution is

known. AutoMon, however, is a lot more powerful. It automatically

generates a communication-efficient distributed monitoring solu-

tion for arbitrary functions, e.g., monitoring deep neural networks

inference tasks for which no non-trivial solution is known.

CCS CONCEPTS
• Theory of computation→ Distributed algorithms; Stream-
ing, sublinear and near linear time algorithms; Streaming models; •
Information systems→ Data streams; Stream management.
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1 INTRODUCTION
Consider the problem of determining whether a network is cur-

rently under attack using the aggregate of local statistics from mul-

tiple routers [18]. State-of-the-art approaches use machine learning

models trained to detect attacks or find outliers given network met-

rics [24, 68]. For example, we might detect attacks by continuously

evaluating the output of a trained neural network:

𝑓𝑛𝑛 (𝑥) =𝑊3 · tanh (𝑊2 · tanh (𝑊1 · 𝑥 + 𝑏1) + 𝑏2) + 𝑏3 ,

where the input vector 𝑥 = 1

𝑘

∑𝑘
𝑖=1

𝑥𝑖 is the average of 𝑘 dynamic
router metric vectors 𝑥𝑖 ∈ R𝑑 that change over time, the matrices

𝑊𝑖 and vectors 𝑏𝑖 are the weights of the neural network, and tanh

is applied element-wise. In a centralized setting, computing 𝑓𝑛𝑛 is

a straightforward task for the average software developer:

from numpy import tanh
def f_nn(x, W1, b1, W2, b2, W3, b3):

return W3 @ tanh(W2 @ tanh(W1 @ x + b1) + b2) + b3

When the vectors 𝑥𝑖 change, we can simply recompute 𝑓𝑛𝑛 (𝑥) as
needed, assuming sufficient computational power.

However, the problem becomes much more difficult once the vec-

tors 𝑥𝑖 are distributed, even if we assume sufficient computational

power and allow an approximation of 𝑓𝑛𝑛 rather than computing

the exact value. The root problem is that 𝑓𝑛𝑛 is highly non-linear,

making it difficult to understand how it will be affected by a change

in 𝑥𝑖 . Although, in theory, we could centralize all data updates, this

can be infeasible or undesirable in a geographically-distributed en-

vironment since communication incurs power and bandwidth costs

at the origin nodes of 𝑥𝑖 [5, 34, 61]. Returning to our previous exam-

ple, continuously sending statistics from the routers may use up too

much network bandwidth [16, 22, 27, 44]. Yet, only sending periodic

updates risks missing or delaying the detection of an attack [8, 22].

Resource-limited data sources in mobile computing and Internet-

of-Things have further heightened the need for communication-

efficient distributed data stream monitoring [53, 58, 59], since the

wide geographical distribution of data sources coupled with re-

source limitation prohibits centralizing all data updates [25]. Other

scenarios where complex decisions must be made based on global

data include battery-powered wireless sensor networks and edge

computing. Distributed monitoring in these settings is hotly studied

since centralizing data is impractical due to battery limitations and

limited links [5, 35, 48].

The task of continuously evaluating a multivariate function from

an aggregate of several data vectors that change over time is a vari-

ant of distributed functional monitoring in the continuous distributed
monitoring model [14, 15, 65]. Any general approach for this task

https://doi.org/10.1145/3514221.3517866
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faces two main challenges. First, given a function 𝑓 , how can we

maintain an estimate of 𝑓 (𝑥) while avoiding the need to send all

data updates of 𝑥𝑖? Second, how do we make it accessible to an

average software developer, who may not have the mathematical

skills required to tailor the approach to a specific problem?

Most existing work on general distributed functional monitoring

focuses on a single aspect of the problem. For example, while Geo-

metric Monitoring [40, 57] and Convex Bound [41] have been used

to compute a wide variety of functions such as variance [23], spec-

tral gap [67], skylines [51], and least-squares regression [21], apply-

ing these approaches for each new function requires in-depth math-

ematical analysis. Conversely, Universal Sketching techniques [12]

provide multiplicative approximation that are easy to use, but are

limited to a subset of monotone functions of item counts (i.e.,

𝑥 must be a frequency vector). Distributed data analysis frame-

works [13, 29, 45, 48, 66] require no math to use, but can only

optimize a limited set of primitives.
1
Neither approach is suitable

for low-communication monitoring of more complex functions

such as neural networks (i.e., 𝑓𝑛𝑛), which can be more accurate in

detecting outliers, failures, and network attacks [24, 33].

Our Contributions: We describe AutoMon, short for Automatic

Monitoring, an algorithmic building block that enables automatic

distributed functional monitoring for difficult functions for which

no hand-crafted solution is known while addressing both of the

above challenges. Given a source code snippet for any function

𝑓 of the aggregate vector 𝑥 and the desired approximation error,

AutoMon automatically implements a communication-efficient ap-

proximation for 𝑓 over multiple nodes, each with its own dynamic

data vector. In particular, we make the following contributions:

• A novel communication-efficient scheme for monitoring arbi-

trary functions of the global aggregated vector. Given a function’s

source code, we leverage automatic differentiation [7], numerical

optimization, and the Geometric Monitoring protocol [3, 40] to

derive local constraints that the nodes can check locally, avoid-

ing communication when changes to local data are too small to

violate the approximation bounds.

• An extensive evaluation on synthetic and real-world datasets,

and on a range of different functions, including KL-divergence,

inner product, and neural networks (DNN). AutoMon provides a

superior error-communication tradeoff to existing methods. For

example, on a DNN approximation task – for which no efficient

distributed approximation is known – AutoMon reduces num-

ber of messages and bandwidth usage by up to two orders of

magnitude, compared to centralization.

• A prototype open source implementation of AutoMon. Our pro-

totype library provides an unobtrusive API designed to facilitate

development of stand-alone distributed applications (e.g., neural

networks over data streams) and components of data analysis

frameworks (e.g., efficient implementation of custom operators

in stream processing engines [19]).

To the best of our knowledge, AutoMon is the first truly au-

tomatic distributed functional-monitoring scheme that supports

1
For example, SQL-based approaches are limited to grouping, ordering, count, sum,

average, and so on [64], while stream processing frameworks are similarly limited to

built-in aggregates, windowing, and maps [13]. Such approaches only express a small

part of the space of possible computations [46].

a wide range of functions defined on arbitrary data, and works

directly from the source code of the function to compute without

manual mathematical analysis.

AutoMon is available as an open source project on GitHub:

https://github.com/hsivan/automon.

2 BACKGROUND
Consider a distributed system with a single coordinator node and

𝑛 nodes, where each node 𝑖 holds a dynamic local data vector 𝑥𝑖

computed from its local data stream;𝑥𝑖 changes arbitrarily over time

and nodes only communicate with the coordinator
2
[14]. When

clear from context, we omit 𝑖 and use 𝑥 to denote a local vector.

Let 𝑓 be an arbitrary real multivariate function 𝑓 : R𝑑 → R of

the average vector of local data 𝑥 = 1

𝑛

∑𝑛
𝑖=1

𝑥𝑖 . Given 𝑓 expressed as

code in a high-level language (e.g., Python or C++) and an approxi-

mation error bound 𝜖 , we wish to maintain an 𝜖-approximation of

𝑓 (𝑥), and do so with minimal communication. This is a variation

of the distributed functional monitoring task [65].
3
The difference is

that we aim to support arbitrary functions expressed as programs.

Note that we can use threshold monitoring to obtain such an

approximation: given a reference point 𝑥0, which is the value of 𝑥

at some point in time, we can provide an additive approximation

by setting two thresholds, 𝐿 and𝑈 , to be 𝑓 (𝑥0) ± 𝜖 and require that
𝐿 ≤ 𝑓 (𝑥) ≤ 𝑈 ; to obtain a multiplicative approximation of 𝑓 (𝑥) we
set 𝐿 and𝑈 to (1 ± 𝜖) 𝑓 (𝑥0). As long as 𝐿 ≤ 𝑓 (𝑥) ≤ 𝑈 , 𝑓 (𝑥0) is an
𝜖-approximation of 𝑓 (𝑥); if not, we update 𝑥0,𝑈 , and 𝐿.

Our strategy is to automatically compute local constraints on the

local data of each node. These constraints should be: (1) correct – as

long as all local constraints hold, the global condition 𝐿 ≤ 𝑓 (𝑥) ≤ 𝑈

is guaranteed to hold; (2) efficient – the number of times the local

constraints are violated is minimal, resulting in less communication;

and (3) automatic – can be computed using the source code of 𝑓 ,

without requiring mathematical insight or developer effort.

Finding local constraints that are correct, efficient, and automatic

is a challenging task, and even more so for an arbitrary function.

We now briefly review the necessary background. We describe our

method in §3 and its implementation details in §3.8.

DC Decomposition: We use a DC decomposition [2] of 𝑓 to de-

rive local constraints that provide correctness. DC decomposition

is a representation of a function as the difference of two convex

or concave functions. We use the term convex difference for the
representation of a function as a difference of two convex func-

tions, and the term concave difference for the representation of a

function as a difference of two concave functions. Hence, if 𝑔(𝑥)
and

ˇℎ(𝑥) are convex functions such that 𝑓 (𝑥) = 𝑔(𝑥) − ˇℎ(𝑥), we
can rewrite the global condition 𝐿 ≤ 𝑓 (𝑥) ≤ 𝑈 as 𝑔(𝑥) ≤ ˇℎ(𝑥) +𝑈
and

ˇℎ(𝑥) ≤ 𝑔(𝑥) − 𝐿. Similarly, if 𝑔(𝑥) and ˆℎ(𝑥) are concave func-
tions such that 𝑓 (𝑥) = 𝑔(𝑥) − ˆℎ(𝑥), then we can rewrite the global

condition as
ˆℎ(𝑥) ≥ 𝑔(𝑥) −𝑈 and 𝑔(𝑥) ≥ ˆℎ(𝑥) + 𝐿.

2
These assumptions are for clarity and are not central to our design. First, commu-

nication need not be direct – we assume an underlying message passing protocol or

distributed control plane. Similarly, the coordinator holds little state and need not

be unique. AutoMon can be implemented using converge-casting [9], hierarchical

violation resolution [37], or consensus protocols [32, 49].

3
Though not immediately obvious, a huge variety of computations can be expressed

as 𝑓 (𝑥 ) by augmenting the local vectors 𝑥𝑖 [21, 22, 25, 37, 40, 41, 51].

https://github.com/hsivan/automon


Automatic Differentiation: We use automatic differentiation (AD)
to find a DC decomposition of a function. AD is a general method

for taking a function specified by a computer program and auto-

matically constructing a procedure to compute the derivatives of

that function [7]. Unlike symbolic differentiation, which outputs

a closed-form symbolic formula for the derivative, AD outputs a

computational graph that can be evaluated efficiently at runtime

for specific inputs. This means AD can be applied to standard nu-

meric program code, making it suitable for our purposes. Upon

initialization, AD explicitly constructs the computational graph of

the function, and repeatedly applies the chain rule to this graph to

compute the function’s derivatives of arbitrary order. This results

in a procedure for computing derivatives.

GeometricMonitoring Protocol: AutoMon adopts the geometric

monitoring (GM) protocol for continuous threshold monitoring in

a distributed system, which has been widely adopted by distributed

monitoring methods [21–23]. §3 provides a detailed description

of the AutoMon protocol; what follows is a brief summary of the

generic GM protocol.

The GM protocol comprises two basic parts: the coordinator

algorithm and the node algorithm. Each node receives local data

and updates its dynamic local vector 𝑥 . A node is responsible for

monitoring the local constraints, reporting violation of these con-

straints to the coordinator, and receiving updated constraints from

the coordinator. The correctness of local constraints guarantees

that if all nodes have no reported violation, the global condition is

maintained. The coordinator is responsible for resolving violations

of the local constraints by distributing updated local constraints

to nodes or approximation bounds 𝐿,𝑈 , as needed. When the co-

ordinator is notified of local violations, it collects the local vectors

from the nodes and, if needed, also updates the reference point 𝑥0

to the average vector 𝑥 at the time. After the data centralization,

the coordinator computes new local constraints that resolve the

violations and synchronizes the nodes with the new constraints.

Let D denote the domain where 𝑓 (𝑥) is defined. GM defines

an admissible region A as the subset of D, where 𝐿 ≤ 𝑓 (𝑥) ≤ 𝑈 .

Given a local constraint, GM also defines a safe zone: the subset
of D in which the local constraints of a node are satisfied. If the

safe zone is convex and is a subset of the admissible region, the

GM protocol guarantees that the approximation bound defined

by the thresholds (i.e., the global condition 𝐿 ≤ 𝑓 (𝑥) ≤ 𝑈 ) is

maintained [22, 40]. When the resulting safe zone is not convex, this

gives rise to the possibility of missed violations. This occurs when
the global condition is not maintained (𝑥 is outside the admissible

region), yet there is no violation in any of the local constraints.

Automatically Deriving Local Constraints: The GM protocol

itself is conceptually simple, since much of the “heavy lifting” is

done by the local constraint required by the protocol. Indeed, the

convexity of the safe zone is a key non-trivial requirement on the

local constraint. Previous work relied on manual analysis and re-

searcher expertise to find local constraint for specific functions [21–

23, 51, 67]. However, we are faced with the greater challenge of

doing so automatically for arbitrary functions expressed as code,

without requiring in-depth mathematical analysis of each function.

In the next section, we describe how we overcome this challenge

using automatic differentiation and numerical optimization.

3 AUTOMATIC DISTRIBUTED MONITORING
We aim to provide an automatic method for distributed monitoring

of arbitrary functions of the global aggregate 𝑥 . Given a function

specified by a computer program, we automatically generate a

communication-efficient scheme to monitor this function.

We first describe ADCD (for Automatic DC Decomposition), the
automatic local constraint technique that lies at the heart of Au-

toMon. ADCD uses automatic differentiation and numerical op-

timization to derive local constraints for arbitrary functions. We

describe two variants of ADCD, one for general functions (§3.1)

and the other for functions with constant Hessian (§3.2). ADCD

detects the type of the function and uses the best ADCD variant

accordingly to provide a DC decomposition, which it then converts

to a GM-style local constraint (§3.3) that can be plugged-in to the

GM protocol. We also explore how the type of DC decomposition

(convex or concave) affects the quality of the derived constraints,

and propose a heuristic for choosing between convex difference

and concave difference (§3.4).

We then describe how AutoMon combines ADCD with the GM

protocol to do functional monitoring (§3.5). Additionally, we con-

sider a novel aspect of the problem: the impact of limiting the

monitoring to a small part of the domain in a neighborhood around

the reference point, using local constraints that are customized to

this neighborhood (§3.6). Finally, we discuss correctness guarantees

(§3.7) and implementation considerations (§3.8).

3.1 ADCD by Extreme Eigenvalue (ADCD-X)
The following lemma shows how to obtain a DC decomposition of a

twice differential function 𝑓 (𝑥). Recall a function 𝑓 is convex if and

only if its Hessian 𝐻 is positive semidefinite (denoted 𝐻 ⪰ 0), i.e.,

its smallest eigenvalue is non-negative. Conversely, 𝑓 is concave if

its largest eigenvalue is non-positive, 𝐻 ⪯ 0. The idea behind the

lemma is that 𝑓 can be “made convex” by adding another function

such that the Hessian is positive semidefinite (PSD). The added

function must be convex and the difference between the altered

function and the added function is the required DC decomposition.

The added function construction is based on the extreme eigenval-

ues of the Hessian of the function. Note, the lemma is defined over

some set S, which can be the full domain D or a subset of it.

Lemma 1. Let 𝑓 (𝑥) be a twice differentiable function with domain
D, and letS ⊆ D be a subset of the domain. Let 𝜆min and 𝜆max be the
smallest and largest eigenvalues of the Hessian 𝐻 (𝑥) of 𝑓 (𝑥) where
𝑥 ∈ S, and define 𝜆−

min
B min{0, 𝜆min} and 𝜆+max

B max{0, 𝜆max}.
Then (1) is a convex difference of 𝑓 (𝑥) over S:

𝑓 (𝑥) = 𝑓 (𝑥) + 1

2

��𝜆−
min

��∥𝑥 − 𝑥0∥2︸                          ︷︷                          ︸
convex 𝑔 (𝑥)

− 1

2

��𝜆−
min

��∥𝑥 − 𝑥0∥2︸                ︷︷                ︸
convex ˇℎ (𝑥)

(1)

and (2) is a concave difference of 𝑓 (𝑥) over S:

𝑓 (𝑥) = 𝑓 (𝑥) − 1

2

𝜆+
max
∥𝑥 − 𝑥0∥2︸                         ︷︷                         ︸

concave 𝑔 (𝑥)

− −1

2

𝜆+
max
∥𝑥 − 𝑥0∥2︸                 ︷︷                 ︸

concave ˆℎ (𝑥)

. (2)

The proof of Lemma 1 uses the fact that 𝜆−
min
≤ 𝜆min to show that

Hessians of 𝑔 and
ˇℎ are PSD, which implies 𝑔 and

ˇℎ are convex, and



similarly show that 𝑔 and
ˆℎ are concave. The full proof is omitted

due to space limitation.

Lemma 1 shows how to construct a DC decomposition if we are

given the extreme eigenvalues.
4
Alas, finding the extreme eigenval-

ues of a general function, with an 𝑥-dependent Hessian matrix, is a

difficult task [50]. The Hessian𝐻 (𝑥) is a function of 𝑥 , and therefore
its eigenvalues are a function of 𝑥 . Finding the 𝑥 in S that obtains

the minimal or maximal eigenvalue is not trivial. Therefore, instead

of finding the extreme eigenvalues analytically, we use numerical

techniques to solve this problem.

Using Automatic Differentiation: Using Lemma 1 requires ob-

taining 𝐻 (𝑥) and finding 𝑥 ′, 𝑥 ′′ ∈ S that obtain 𝜆min and 𝜆max.

Our key insight here is that we do not need an analytic solution

for 𝜆min and 𝜆max, nor a symbolic expression of 𝐻 (𝑥), but rather
a way to evaluate 𝐻 for specific points in S. Since we are given
an arbitrary 𝑓 (𝑥) in the form of a short program, AD enables this

automatic evaluation of 𝐻 in any 𝑥 ∈ S. By evaluating 𝐻 using AD

at multiple points in S, and computing the extreme eigenvalues of

each such Hessian, we can find the global minimum and maximum

𝜆min and 𝜆max. Instead of evaluating 𝐻 at random points, we define

and solve an optimization problem, which is a more robust and

efficient method to find these extreme values.

Another advantage of using AD is that it allows us to apply

Lemma 1 to functions that are not strictly twice-differentiable. As

demonstrated by the DNN with ReLU activation in §4, AD allows

us to surpass this limitation as long as the function is continuous.

Finding the Eigenvalues: After having 𝐻 (𝑥) computed by AD,

and the ability to evaluate it at every 𝑥 ∈ S, we can now use it to

find the extreme eigenvalues. For this 𝐻 (𝑥), we define two func-

tions, 𝜆min (𝐻 (𝑥)) and 𝜆max (𝐻 (𝑥)), which yield the minimal and

maximal eigenvalues of the Hessian, respectively, at a given point 𝑥 .

We then use numerical box-constrained optimization methods (e.g.,

SLSQP and L-BFGS-B) to solve two optimization problems over S:
ˆ𝜆min = min

𝑥 ∈S
𝜆min (𝐻 (𝑥)) , ˆ𝜆max = max

𝑥 ∈S
𝜆max (𝐻 (𝑥)) . (3)

These optimization problems are not convex, and their complexity

is determined by the function 𝑓 (𝑥) and its Hessian. Therefore, there
is no guarantee that the solution found by the optimization process

is the global solution over S. The numerical optimization algorithm

could converge to a local minimum/maximum, a saddle point, or

even not fully converge, as the number of iterations of the algorithm

is limited and the problem could be ill-conditioned and require more

iterations. Hence,
ˆ𝜆min and

ˆ𝜆max may be different from the true

𝜆min and 𝜆max. We discuss the impact on correctness in §3.7.

3.2 ADCD by Eigendecomposition (ADCD-E)
DC decomposition, the representation of a function 𝑓 (𝑥) as a dif-
ference of two convex/concave functions, is not unique. Lemma 1

in the previous section presented a specific DC decomposition of

a function, in which the two functions are constructed using the

eigenvalues of 𝑓 (𝑥). In this section, we present ADCD-E, another

DC decomposition for functions with constant Hessian. We show

that this DC decomposition is superior to ADCD-X for this type

of function. The decision whether to use ADCD-E or ADCD-X is

4
An informal version of (1) appears in [41], where it is used for manual analysis of

specific functions rather than automatically for general function.

done automatically by our algorithms, as it able to automatically

identify the type of the function.

The main idea behind ADCD-E is to use eigendecomposition to

split the Hessian of 𝑓 (𝑥) into two matrices: a positive semidefinite

(PSD) matrix 𝐻+ and a negative semidefinite (NSD) matrix 𝐻−.
This can be done because 𝐻 is a constant matrix. We obtain a

convex difference of 𝑓 (𝑥) using 𝐻− instead of 𝜆−
min

, and a concave

difference using 𝐻+ instead of 𝜆+
max

. As before, we use automatic

differentiation tools to obtain 𝐻 , 𝐻−, and 𝐻+ .

Lemma 2. Let 𝑓 (𝑥) be a twice differentiable function with Hessian
𝐻 that is not a function of 𝑥 (i.e., it is a constant). Let 𝜆1 ≤ 𝜆2 ≤ ... ≤
𝜆𝑑 be the eigenvalues of 𝐻 , and 𝑣1, 𝑣2, ..., 𝑣𝑑 the corresponding eigen-
vectors. The Hessian matrix 𝐻 is a real symmetric matrix, and can
therefore be decomposed as 𝐻 = 𝑄Λ𝑄𝑇 , where 𝑄 is an orthonormal
matrix whose columns are the eigenvectors of 𝐻 , and Λ is a diagonal
matrix whose entries are the eigenvalues of 𝐻 .

Let Λ− be a diagonal matrix whose diagonal is [𝜆1, ..., 𝜆𝑘 , 0, ..., 0],
and Λ+ a diagonal matrix with diagonal [0, ..., 0, 𝜆𝑘 +1, ..., 𝜆𝑑 ], where
𝜆1, ..., 𝜆𝑘 are the negative eigenvalues and 𝜆𝑘+1, ..., 𝜆𝑑 are the non-
negative eigenvalues.

Let 𝐻− B 𝑄Λ−𝑄𝑇 be the NSD part of 𝐻 , and 𝐻+ B 𝑄Λ+𝑄𝑇 be
the PSD part. Then a convex difference of 𝑓 (𝑥) is:

𝑓 (𝑥) = 𝑓 (𝑥) − 1

2

(𝑥 − 𝑥0)𝑇𝐻− (𝑥 − 𝑥0)︸                                  ︷︷                                  ︸
convex 𝑔 (𝑥)

− −1

2

(𝑥 − 𝑥0)𝑇𝐻− (𝑥 − 𝑥0)︸                          ︷︷                          ︸
convex ˇℎ (𝑥)

,

and a concave difference of 𝑓 (𝑥) is:

𝑓 (𝑥) = 𝑓 (𝑥) − 1

2

(𝑥 − 𝑥0)𝑇𝐻+ (𝑥 − 𝑥0)︸                                  ︷︷                                  ︸
concave 𝑔 (𝑥)

− −1

2

(𝑥 − 𝑥0)𝑇𝐻+ (𝑥 − 𝑥0)︸                          ︷︷                          ︸
concave ˆℎ (𝑥)

.

Proof. Because Λ = Λ− + Λ+, hence 𝐻 = 𝑄Λ𝑄𝑇 = 𝐻− + 𝐻+.
The Hessian of 𝑔(𝑥) is 𝐻 − 𝐻−, which equals 𝐻+. The matrix

𝐻+ = 𝑄Λ+𝑄𝑇 is PSD by construction since its eigenvalues are

all non-negative from the definition of Λ+. The Hessian of
ˇℎ(𝑥) is

−𝐻−, which is PSD. Hence, 𝑔(𝑥) and ˇℎ(𝑥) are convex. The proof of
concavity for 𝑔(𝑥) and ˆℎ(𝑥) is similar. □

ADCD-E can only be applied to functions that have a constant

Hessian, such as inner products or quadratic forms. For such func-

tions, ADCD-E is superior to ADCD-X since the former results in

a larger safe zone and therefore fewer local constraint violations.

Intuitively,𝑔1 is “more convex” than𝑔2, where𝑔1 is𝑔 from Lemma 1

and 𝑔2 is 𝑔 from Lemma 2.

More formally, for a function with constant 𝐻 , 𝐻𝑔1
⪰ 𝐻𝑔2

. The

proof follows from 𝐻− +
��𝜆−

min

��𝐼 ⪰ 0, and therefore:

𝐻𝑔1
= 𝐻 +

��𝜆−
min

��𝐼 = 𝐻+ + 𝐻− +
��𝜆−

min

��𝐼 ⪰ 𝐻+ = 𝐻𝑔2
,

Further, note that 𝑔1 (𝑥0) = 𝑔2 (𝑥0). This implies 𝑔1 ≥ 𝑔2 for every

𝑥 ∈ D (and similarly for
ˇℎ), which means the ADCD-X safe zone is

a subset of the ADCD-E safe zone.

In summary, a safe zone violation with ADCD-E implies violation

with ADCD-X but a violation with ADCD-X does not necessarily

imply one with ADCD-E. We can automatically detect functions

with a constant Hessian by looking at the computational graph for

𝐻 (𝑥) that is derived from the automatic differentiation step.
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Figure 1: ADCD local constraints for sin(𝑥) at 𝑥0 = 𝜋
2
. Left: approximation bounds 𝐿 and𝑈 and the resulting admissible region

(gray span). Middle: 𝑔, ˇℎ of the convex difference from Lemma 1. The green area shows the convex set from the upper threshold
condition, and the orange area shows the convex set of the lower threshold condition. The safe zone resulting from their
intersection is the area between the vertical dotted lines. Right: same as middle but for 𝑔 and ˆℎ from the concave difference.

3.3 From DC Decomposition to Constraints
After obtaining a DC decomposition of a function, the next step is

to derive the ADCD local constraints. We now show this derivation,

and provide a proof that the resulting safe zone is convex, and

hence guarantee correctness.

Given a convex difference 𝑓 (𝑥) = 𝑔(𝑥) − ˇℎ(𝑥), we adopt the

method of Lazerson et al. [41] to derive the ADCD local constraints

for 𝑓 (𝑥) using the tangent plane to 𝑔(𝑥) or ˇℎ(𝑥) at 𝑥0:

𝑔(𝑥) ≤ ˇℎ(𝑥0) + ∇ ˇℎ(𝑥0)𝑇 (𝑥 − 𝑥0) +𝑈 , (4a)

ˇℎ(𝑥) ≤ 𝑔(𝑥0) + ∇𝑔(𝑥0)𝑇 (𝑥 − 𝑥0) − 𝐿. (4b)

We extend this formulation for the concave difference 𝑓 (𝑥) = 𝑔(𝑥)−
ˆℎ(𝑥), and obtain the ADCD local constraints for this difference:

ˆℎ(𝑥) ≥ 𝑔(𝑥0) + ∇𝑔(𝑥0)𝑇 (𝑥 − 𝑥0) −𝑈 , (5a)

𝑔(𝑥) ≥ ˆℎ(𝑥0) + ∇ ˆℎ(𝑥0)𝑇 (𝑥 − 𝑥0) + 𝐿. (5b)

These constraints are convex: by opening brackets and rearranging

the inequality, each inequality can be written as𝜓 (𝑥) ≤ 𝐶 , where

𝜓 is a convex function and 𝐶 is a constant, and the sets that satisfy

such inequalities (sublevel sets) are convex [10].

For the specific convex difference, in Lemma 1 and in Lemma 2,

the ADCD local constraints (4) can be simplified to:

𝑔(𝑥) ≤ 𝑈 , ˇℎ(𝑥) ≤ 𝑓 (𝑥0) + ∇𝑓 (𝑥0)𝑇 (𝑥 − 𝑥0) − 𝐿.

For the concave difference the ADCD local constraints (5) are:

ˆℎ(𝑥) ≥ 𝑓 (𝑥0) + ∇𝑓 (𝑥0)𝑇 (𝑥 − 𝑥0) −𝑈 , 𝑔(𝑥) ≥ 𝐿.

To get the simplified form of (4), we simply note that for 𝑔, ˇℎ in

both Lemmas,
ˇℎ(𝑥0) = 0 and ∇ ˇℎ(𝑥0) = 0 and, 𝑔(𝑥0) = ˇ𝑓 (𝑥0) and

∇𝑔(𝑥0) = ∇ ˇ𝑓 (𝑥0). Similarly, we can get the simplified form of (5).

Figure 1 shows an example of the ADCD local constraints de-

rived for sin(𝑥) at point 𝑥0 = 𝜋/2 according to Lemma 1. Figure 1(a)

shows the admissible region, while 1(b) and 1(c) show the ADCD lo-

cal constraints and the resulting safe zones when using convex and

concave difference representations, respectively. While both safe

zones are a subset of the admissible region, they are not equivalent;

We explore this in the next subsection.

3.4 Convex vs. Concave Difference
Both ADCD-X and ADCD-E provide two possible representations

for a function: as a convex or as a concave difference. In some cases,

a convex difference is more efficient and results in fewer safe zone

violations, while in other cases the concave difference is preferable.

Consider again the example in Figure 1 showing sin(𝑥) with
the reference point 𝑥0 = 𝜋/2. The convex difference representa-

tion in Figure 1(b) results in a wider safe zone than the concave

representation in Figure 1(c). Since 𝑓 near 𝑥0 is already concave,

using the concave difference results in a 𝑔(𝑥) that is even more

concave around 𝑥0 than the original function 𝑓 (𝑥). However, using
the convex difference obtains a convex function 𝑔(𝑥) that is "wider"
than the concave function 𝑔(𝑥), and "wider" functions tend to ob-

tain larger safe zones. Hence, in this case, the convex difference

representation is preferable.

The curvature of 𝑔, ˇℎ, 𝑔, and ˆℎ is determined by the eigenval-

ues of the Hessians of these functions, and this curvature impacts

the performance of the algorithm. Therefore, we propose the DC
Heuristic for choosing between the convex difference and concave

difference, based on these eigenvalues: if

𝜆min

(
𝐻𝑔 (𝑥0)

)
+𝜆min

(
𝐻 ˇℎ
(𝑥0)

)
≤
���𝜆max

(
𝐻

ˆℎ
(𝑥0)

)
+ 𝜆max

(
𝐻𝑔 (𝑥0)

)���
use the convex difference, otherwise use the concave difference.

The intuition behind this heuristic is to choose the representation

whose two functions are less convex/concave near the reference

point 𝑥0. For functions with a constant Hessian, when using ADCD-

E, the heuristic condition is equivalent to |𝜆min | ≤ 𝜆max.

In our preliminary experiments, this heuristic reduced safe zone

violations by up to 30% when compared to using either simply the

convex difference or simply the concave difference when monitor-

ing functions such as sin(𝑥).

3.5 The Distributed Protocol
We can now describe the protocol for AutoMon coordinator and

nodes, which is based on the GM protocol; the protocol is summa-

rized in Algorithm 1. The coordinator first collects local vectors,

sets 𝑥0 = 𝑥 , and updates the thresholds𝑈 and 𝐿 based on 𝑓 (𝑥0) and
the desired approximation. Next, the coordinator uses ADCD to

derive correct convex local constraints in a neighborhood B around

𝑥0. Finally, it distributes these local constraints to all nodes.

LetB be the neighborhood of size 𝑟 around the reference point 𝑥0:

B = {𝑥 : 𝑥 ∈ [𝑥0−𝑟, 𝑥0+𝑟 ]}.5 When the neighborhood is restricted,

we have two types of violations. The first type is safe zone violation,

5
In practice, we also restrict the neighborhood B to be contained in the domain D.



Algorithm 1 AutoMon protocol for coordinator and node.

1: procedure CoordinatorFullSync
2: Pull all nodes 𝑥𝑖 and update 𝑥0: 𝑥0 ← 1

𝑛

∑𝑛
𝑖=1

𝑥𝑖

3: Use 𝑓 (𝑥0) to update the thresholds 𝐿 and𝑈

4: Update the neighborhood B from 𝑥0

5: Compute DC decomposition of 𝑓

6: Choose between convex difference and concave difference

7: Derive safe zone based on the chosen DC

8: Sync all nodes with the safe zone and neighborhood B
9: procedure NodeDataUpdate(sample from local stream)

10: Update the local vector 𝑥 using the new sample

11: if 𝑥 ∉ B then Report neighborhood violation and return
12: if 𝑥 ∉ safe zone then Report safe zone violation and return
13: procedure NodeUpdateConstraint(safe zone, B)
14: Update safe zone and the neighborhood B

which is caused when the node’s local vector is outside the safe

zone. The second type is neighborhood violation, which is caused

when the node’s local vector is outside the neighborhood of 𝑥0. The

coordinator uses either type of ADCD to derive the ADCD local

constraints. For ADCD-X, it applies Lemma 1 with S = B. In this

case, the ADCD local constraints are based on eigenvalues that

are evaluated inside a specific neighborhood. Hence, these local

constraints are applicable only to this neighborhood: they maintain

correctness as long as all the local vectors are inside B. Nodes must

therefore first determine that the local vector is inside B before

checking for a safe zone violation. Note that when using ADCD-E,

the coordinator uses Lemma 2; in this case, the neighborhood is

the entire 𝑓 ’s domain D since the Hessian is constant.

At initialization, the coordinator first determines whether to use

ADCD-X or ADCD-E, depending on the function to approximate

𝑓 (§3.1 and §3.2). If ADCD-E is used, the coordinator evaluates

𝐻− and 𝐻+. If ADCD-X is used, the coordinator uses the designed

approximation error bound 𝜖 to evaluate the optimal neighborhood

size 𝑟 using the tuning algorithm presented in the next section.

The node algorithm is simple: whenever there is an update to the

local vector, the node will check if the data remains in the neighbor-

hood B and whether the ADCD local constraints still hold. If not,

the node will report a violation to the coordinator. Otherwise, the

node does nothing. Whenever an updated local constraint arrives

from the coordinator, it will use the new constraint.

Lazy Sync and Slack: We incorporate two commonly-used en-

hancements to the above protocol, which help reduce the number of

local violations and allow the coordinator to resolve them without

pulling local vectors from all the nodes. As they are not the focus

of this work, we only include necessary detail, and refer the reader

to prior work [22, Sec. 4.2 and 4.6] for description and analysis.

With slack, nodes add a slack vector 𝑠𝑖 to the local vector 𝑥𝑖 when
checking the local constraints (Alg. 1, lines 11 and 12); 𝑠𝑖 is set by

the coordinator to 𝑥0−𝑥𝑖 whenever we update 𝑥0 (line 2). Lazy sync
is an incremental approach to resolving safe zone violations. When

a violation is reported to the coordinator, it starts adding nodes one

by one to a balancing set S until either the violation is resolved

(in which case it rebalances 𝑠𝑖 for the nodes in S and monitoring

resumes without changing 𝑥0), or until |S| > 𝑛
2
(in which case it

𝑥0

B

safe zone

A

(a) Smaller neighborhood.

𝑥0

B

safe zone

A

(b) Larger neighborhood.

Figure 2: Tradeoff between neighborhood size (dashed rectan-
gle) and the resulting safe zone size (solid circle). The local
constraint is their intersection (shaded area).

falls back to the full sync in line 1). We use a least-recently used

(LRU) strategy to select nodes to add to S. We explore the impact

of slack and lazy sync in §4.6.

3.6 Setting the Neighborhood Size
ADCD-X requires finding the extreme eigenvalues in a neighbor-

hood B of size 𝑟 around 𝑥0. The choice of neighborhood size 𝑟 is

important since it affects the eventual efficiency of the ADCD local

constraints. An increase in 𝑟 leads to increase in the search domain

for 𝜆min and 𝜆max, which can results in more extreme eigenvalues

than a smaller 𝑟 produces, resulting in different DC decomposition.

Interestingly, while priorwork observed that different constraints

are optimal in different regions of the data space [41], the question

of neighborhood size did not come up. Prior work focused on find-

ing analytically-derived constraints designed to be globally correct:
correct everywhere in 𝑓 ’s domain D. In contrast, ADCD provides

a neighborhood around the reference point, which in turn means

the ADCD local constraints need only be correct for data inside the

neighborhood B. Hence, ADCD constraints are locally correct.
This presents us with a new opportunity: since ADCD con-

straints need only be locally correct, they can be more permissive,

resulting in fewer safe zone violations. The challenge lies in balanc-

ing the tradeoff between neighborhood and safe zone violations.

If the neighborhood B is very small (small 𝑟 ), the resulting safe

zone can be large, but local data easily moves outside the neighbor-

hood, which means more neighborhood violations (i.e., 𝑥 ∉ B). If B
is very large (large 𝑟 ) there will be few neighborhood violations,

but the resulting safe zone might be needlessly restrictive due to

more extreme eigenvalues, resulting in many safe zone violations.

Figure 2 illustrates this tradeoff. In Figure 2(a) the neighborhood B
is very small, resulting in a large safe zone but potentially many

neighborhood violations. In Figure 2(b) B is very large and in fact

B is a super-set of the admissible region A and hence there can be

no neighborhood violations. However, this also results in a much

smaller safe zone which could lead to many safe zone violations.

Effect ofNeighborhood Size 𝑟 : To explore the impact of the neigh-

borhood size on the number of violations, we used AutoMon to

monitor the Rozenbrock function 𝑓 (𝑥) = (1−𝑥1)2 + 100

(
𝑥2 − 𝑥2

1

)
2

,

where 𝑥1, 𝑥2 are sampled from the normal distribution N(0, 0.22).
We used additive approximation with approximation error bound

𝜖: 𝐿 = 𝑓 (𝑥0) − 𝜖,𝑈 = 𝑓 (𝑥0) + 𝜖 . For a given approximation error

bound 𝜖 we monitor the function with different values of 𝑟 , and

count the total number of neighborhood and safe-zone violations.
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Figure 3: The effect of neighborhood size 𝑟 on the number of
violations while monitoring Rozenbrock function with four
different approximation error bounds.

Algorithm 2 Neighborhood Size Tuning

𝑏 ← 1

while NoNeighborhoodViol(monitor with 𝑟 = 𝑏) do 𝑏 ← 𝑏/2
𝑙𝑜 ← 𝑏, ℎ𝑖 ← 𝑏

while AnySafezoneViol(monitor with 𝑟 = 𝑙𝑜) do 𝑙𝑜 ← 𝑙𝑜/2
whileAnyNeighborhoodViol(monitor with 𝑟 = ℎ𝑖) doℎ𝑖 ← 2 ·ℎ𝑖
𝑅 ← 10 equally spaced 𝑟 values in the range [𝑙𝑜, ℎ𝑖]
return argmin𝑟 ′∈𝑅 NumTotalViolations(monitor with 𝑟 = 𝑟 ′)

Figure 3 shows the number of violations as a function of neigh-

borhood size for four different approximation error bounds 𝜖 ∈
{0.05, 0.25, 0.95}. For a specific 𝜖 , we observe the tradeoff between

neighborhood violations and safe zone violations. Additionally, we

see that permissive approximation error bounds (larger 𝜖) imply

larger safe zones, resulting in fewer safe zone violations. Increas-

ing 𝜖 results in slightly more neighborhood violations, which we

discuss below. Lastly, we observe that neighborhood violations

decrease when the neighborhood size increases, as expected.

Safe zone and neighborhood violation can hide each other. Since

the nodes check for neighborhood violation before checking the

ADCD local constraint, some of the safe zone violations are con-

cealed by neighborhood violations. However, the opposite also

happens. When 𝜖 is small, the resulting small safe zone leads to

many safe zone violations. When these are resolved, the coordi-

nator updates 𝑥0 and the neighborhood B, meaning that a future

neighborhood violations are less likely. Therefore smaller 𝜖 results

in fewer neighborhood violations.

Tuning Procedure: The optimal neighborhood size 𝑟∗, shown in

Figure 3 as a dot, is the neighborhood size that obtains the smallest

number of violations in total. The optimal size 𝑟∗ depends on the

function, the data, and the allowed approximation error 𝜖 .

To avoid the user needing to specify the neighborhood size 𝑟 ,

AutoMon automatically tunes for the approximated optimal size 𝑟 .

This is done by running AutoMon on a small subset of the initial

data and counting violations. Algorithm 2 is the tuning algorithm

to find the approximated optimal neighborhood size 𝑟 . It finds a

low neighborhood size 𝑟 for which there are no safe zone violation

and a high 𝑟 with no neighborhood violations, and then returns

a neighborhood size in between with fewest total violations. We

evaluate the effectiveness of this tuning procedure in §4.5.

Since tuning is done on a small subset of the data, later changes

in data distribution can mean 𝑟 found by the tuning process be-

comes too small, causing unnecessary neighborhood violations. In

our experience this is rare, mostly when the error bound is very

large. We mitigate this using a simple heuristic: whenever the co-

ordinator observes 5𝑛 consecutive neighborhood violations with

no intervening safe zone violations, it multiplies 𝑟 by 2. We leave

adaptive tuning of 𝑟 to future work.

3.7 Assumptions and Correctness Guarantees
AutoMon’s correctness guarantees are given under three core as-

sumptions. First, we make the mild assumption that automatic

differentiating obtains accurate Hessians. Second, we assume nodes

and coordinator communicate using an underlying messaging fab-

ric which guarantees delivery. Third, we assume that the rate in

which each node receives local data is lower than the maximum

time to resolve violations, which depends on the network latency

and the time it takes the coordinator to compute local constraints.

Under these assumptions, AutoMon provides a deterministic

correctness guarantee if the representation used to derive theADCD

local constraints is a true DC decomposition inB, i.e.𝑔, ˇℎ are convex

or𝑔, ˆℎ are concave inB. In this case, the local constraints are convex
(§3.3). This convexity implies that if all local vectors 𝑥𝑖 are within

AutoMon’s safe zone, then any convex combination of 𝑥𝑖 , including

𝑥 = 1

𝑛

∑
𝑥𝑖 , is inside the safe zone, thus 𝐿 ≤ 𝑓 (𝑥) ≤ 𝑈 .

Therefore, ADCD provides strong correctness guarantee when

approximating functions with constant Hessian, as ADCD-E obtains

true DC decomposition. In addition, ADCD-X provides correctness

guarantee when approximating convex and concave functions. For

any convex function theminimal eigenvalue of𝐻 (𝑥) at every𝑥 ∈ D
is non-negative. Hence

ˆ𝜆 found by the optimization process is non-

negative and 𝜆−
min

= 0. Since 0 ≤ 𝜆+
max

, the DC Heuristic chooses

the convex difference, which is a true DC decomposition as 𝜆−
min

is

a lower bound for 𝜆min.

ADCD-X does not necessarily guarantee correctness for other ar-

bitrary functions since the optimization problem (3) may converge

on a local solution; inaccurate 𝜆−
min

and 𝜆+
max

values can result in

representation that is not a DC decomposition. We mitigate this

using a simple sanity check. Recall that by construction, AutoMon’s

safe zone defined by the local constraints is included in the admis-

sible region. Thus, whenever the local vector 𝑥 is inside the safe

zone, nodes also verify that 𝐿 ≤ 𝑓 (𝑥) ≤ 𝑈 (i.e., 𝑥 ∈ A). In the rare

case where this verification fails, the node notifies the coordinator

about a violation and indicates that the local constraints are faulty;

the coordinator then initiates a full sync. Our evaluation shows Au-

toMon provides a good approximation for even highly non-convex

functions with discontinuous derivatives such as neural networks

with ReLU activations (§4).

3.8 Library API
AutoMon is not a complete distributed data processing system.

Like sketches (§5), AutoMon is an algorithmic building block for

building such systems (potentially using existing software frame-

works [13]). We therefore design AutoMon as an agnostic library

that focuses strictly on the monitoring algorithm. Application de-

tails and system-level support for reading data, messaging, deploy-

ment, and so on are outside the scope of this library, and are the

responsibility of the user. In particular, the developer must mediate



between AutoMon and a messaging fabric of their choice: the devel-

oper uses the library API to produce or consume message contents,

which the messaging fabric transfers over the network.
6

Given a function presented as a numeric program in a high-level

language, AutoMon provides the basic API required to perform

distributed monitoring of the function. The user first initializes an

AutoMon node, node = AutoMonNode(f, epsilon) , passing the

function to monitor and the required approximation. Retrieving

the current approximated value of the function is simply a mat-

ter of calling the node.current_value() method which returns

𝑓 (𝑥0). The user must notify AutoMon when the local vector 𝑥 has

changed by calling node.update_data(x) , and send any resulting
message (e.g., safe zone violation) to the coordinator; AutoMon will

provide and process the contents of such messages. Similarly, when

a message has been received from the coordinator the user must

call node.message_received(msg) , then send back any reply.

4 EVALUATION
We empirically explore AutoMon’s performance on several func-

tions of increasing complexity, using both real-world and synthetic

data. In particular, we investigate:

(1) The tradeoff between communication and approximation error.

(2) Scalability in vector length, runtime, and the number of nodes.

(3) The effectiveness of our neighborhood-size tuning procedure.

(4) The impact of AutoMon’s features on the communication cost

and accuracy: ADCD local constraints, slack, and lazy sync.

(5) Communication and bandwidth on a real-world WAN.

Our main performance metrics are communication and error. For

communication, we focus on the number of messages sent during

an experiment.
7
Since AutoMon is designed to keep 𝑓 (𝑥) between

𝐿 and𝑈 , we also measure the maximum error |𝑓 (𝑥0) − 𝑓 (𝑥) |.
We implemented the prototype in Python. It uses JAX [11] 0.2.1

for automatic differentiation (AD) to compute the Hessian and an L-

BFGS-B solver from SciPy [63] 1.6.2 to find the extreme eigenvalues.

4.1 Experimental Setup
The input for each experiment is the source code for a function 𝑓

and a dataset comprised of 𝑛 data streams, one for each node in the

system. The nodes maintain a sliding window over the data stream,

and the local vector is defined as the average of the last𝑊 samples

in the window. We emphasize that nothing in AutoMon requires a

sliding window; it is concerned only with the local vector 𝑥 .

We use discrete event simulation to simulate the distributed

network on a single machine. Most experiments simulate a network

of fixed-rate sensors: in each simulation round, every node reads a

data update from its local stream, updates its local vector, and runs

6
We provide an example of a ZeroMQ [6] mediation layer in AutoMon’s code repo.

7
Though we include bandwidth measurements in §4.7, we focus on message count

for several reasons. First, we are comparing algorithms, not systems. The number

of messages is a common metric for comparing distributed algorithms because it is

independent of any particular network setup and the underlying messaging stack,

and because different functions and datasets have different dimensions [3]. The size

of our payload is fixed and small; given the details above, inferring bandwidth is

straightforward. Second, AutoMon is fully compatible with sketching techniques for

reducing message size (see §5). Moreover, there is existing work on reducing the

bandwidth of GM-based methods [3, 55]; we leave their implementation for future

work. Lastly, in some settings, the number of messages can be more important than

the bandwidth due to the power consumed by turning on the wireless radio [5, 61].
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Figure 4: The functions and datasets used in evaluation. Lines
show function value for the default dimension over time;
shaded area shows approximation bounds ±𝜖.

the AutoMon node code. For DNN intrusion detection experiments,

only one node reads new data in each round of simulation, using

the timestamps encoded in the dataset. During the experiment, we

collect statistics about the messages that are sent between the nodes

and the coordinator, the approximation error, missed violations, and

so on. In all the experiments, we use AutoMon with Algorithm 2 for

neighborhood-size tuning, lazy sync with LRU, and slack. Unless

stated otherwise, we use 10 nodes for the synthetic datasets.

We compare AutoMon with several baseline approaches:

• Centralization: Every node sends its local vector after every

update. For many distributed functional monitoring tasks, includ-

ing those that can use sketches, centralization is state-of-the-art

since local changes require sending updated sketches [3].

• Periodic: Every node sends its local vector once every 𝑃 simula-

tion rounds (or 𝑃 time units), where 𝑃 is a period parameter. This

approach is easy to reason about, but is not adaptive. It therefore

suffers from many missed violations when the period is out of

sync with the changes in the data.

• CB: Convex Bound [41] is a state-of-the-art GM-based approach.

For functions with a CB local constraint [41], we include CB in

our experiments. We run it with lazy sync and slack.

4.2 Functions and Datasets
We monitor different functions and use different datasets: synthetic

for exploring the impact of different parameters on AutoMon and

real-world, to evaluate AutoMon’s performance over real data. For

synthetic datasets, we used 200 rounds for neighborhood-size tun-

ing data and run the experiment for 1000 rounds. For real data,

the number of rounds is determined by the size of the dataset and

we used ∼ 1.5% of the data for tuning. We now describe the func-

tions that we use and the dataset for each function. Figure 4 shows

the value of each function during a run, as well as the additive

error bound. For synthetic datasets, we use the default dimensions,

number of nodes, and error bound.

• MLP-𝒅: a neural network with an input layer of dimension 𝑑 ,

three fully-connected hidden layers with tanh activation function,

and a single output neuron with no special activation (identity

function). The function is therefore:

𝑓 (𝑥) =𝑊4 · 𝜑 (𝑊3 · 𝜑 (𝑊2 · 𝜑 (𝑊1 · 𝑥 + 𝑏1) + 𝑏2) + 𝑏3) + 𝑏4 ,
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where𝑊𝑖 and 𝑏𝑖 are the respective weights and biases of the

hidden layers, and 𝜑 is the tanh activation function, applied

element-wise. We trained these weights to evaluate the function

𝑥1 exp

(
− 1

𝑑−1

∑𝑑
𝑖=1

𝑥2

𝑖

)
, and monitor the output of the trained

network 𝑓 (𝑥). We use a synthetic dataset with 𝑥1 sampled from

the normal distributionN(𝜇, 0.12) with the mean 𝜇 starting at −2

and increasing gradually over time. 𝑥2, ..., 𝑥𝑑 are sampled from

N(2, 0.12) for half the nodes, and we use N(−2, 0.12) for the
remaining nodes. The data contains some outlier samples: the

mean value of 𝑥1 changes to 0 for 20 rounds starting from round

720, and then again from round 760. The default dimension 𝑑 in

our experiments is 40.

• DNN for Intrusion Detection: a deep neural network for in-

trusion detection, based on the KDDCup-99 dataset [1]. Each

sample in the dataset represents a single network connection.

The samples consist of 41 features and are labeled as either nor-

mal or an attack. For this classification task, we used a DNN with

5 fully-connected hidden layers comprising 512, 64, 32, 16, and

8 neurons in each layer, respectively, all using the ReLU activa-

tion function. The output layer contains a single neuron with

sigmoid activation. After using the “10% KDD” dataset to train

the network, the trained network achieved 0.933 accuracy, 0.98

precision, and 0.93 recall on the “Corrected KDD” test set [36].

We use the “Corrected KDD” test set as the data stream, resulting

in a stream of 311029 samples. We divided the data into 9 local

streams according to the application-type feature of the data.

For applications that had many samples, we used a round-robin

approach for load balancing and divided the samples between

multiple nodes: “ECR_i” was divided between 5 nodes and “Pri-

vate” was divided between 2 nodes. Another single node was

responsible for all “Http” samples, and the last node was respon-

sible for the other 62 applications.

• KLD:The Kullback–Leibler divergence function for discrete prob-
ability distributions 𝑃 and 𝑄 , defined on the same probability

space Ω: 𝐷𝐾𝐿 (𝑃 ∥𝑄) =
∑
𝜔 ∈Ω 𝑃 (𝜔) log (𝑃 (𝜔)/𝑄 (𝜔)) .

We use a real-world air pollutant dataset [72] collected hourly

from 𝑛 = 12 air-quality monitoring sites in Beijing over 4 years

(34,536 data records per site). For each node (i.e., site), we used the

PM10 attribute as 𝑃 and the PM2.5 attribute as 𝑄 . Both attribute

values are between 0 and 500, and we divided this range into 𝑑/2
bins, resulting in a local vector 𝑥 = [𝑝, 𝑞], where 𝑝, 𝑞 ∈ R𝑑/2 are

the local probability vectors for PM10 and PM2.5, respectively;

we use a sliding window of size𝑊 = 200; in each round we

update 𝑝 and 𝑞 with the new measurements.

Since KLD is undefined when 𝑄 contains zero entries, we use a

common variant which adds a small constant value 𝜏 to the en-

tries of 𝑝 and 𝑞 before computing the function 𝑓 (𝑥) = 𝑓 ( [𝑝, 𝑞]) =∑𝑑/2
𝑖=1

𝑝𝑖 log (𝑝𝑖/𝑞𝑖 ). We use 𝜏 = 1/(𝑛𝑊 ), the minimal possible

value of the probability vectors in this setting. Since 𝑓 is convex,

AutoMon’s approximation error is guaranteed.

We control the dimension of the function by changing the number

of bins 𝑑/2. By default, 𝑑 = 20.

• Inner Product: 𝑓 (𝑥) = 𝑓 ( [𝑢, 𝑣]) = ⟨𝑢, 𝑣⟩, with a synthetic

dataset that contains quiet phases as well as rapid changes in the

data. We generated the vectors 𝑢, 𝑣 ∈ R𝑑/2 such that 𝑓 ( [𝑢, 𝑣]) is
a combination of a monotonic increasing function, a sine wave

with low and high frequency, and a monotonic constant func-

tion. We control the dimension of the function by changing the

dimension of 𝑢 and 𝑣 . By default, 𝑑 = 40.

• Quadratic Form: 𝑓 (𝑥) = 𝑥𝑇𝑄𝑥 , where 𝑄 ∈ R𝑑𝑥𝑑 is a random

matrix with entries drawn from a standard normal distribution.

AutoMon uses ADCD-E for this function since its Hessian is con-

stant. We use synthetic data with each entry of 𝑥 ∈ R𝑑 sampled

from the normal distribution N(0, 0.12). A single “outlier” node

gets an alternating pattern: 40 samples drawn from N(0, 0.12)
followed by 40 samples drawn fromN(−10, 0.12). We use 𝑑 = 40.

For KLD, the node receives the frequency vector of the samples

in the sliding window and the sliding window size is 200 samples.

For the other functions, the node receives the average vector of the

samples in the sliding window and the sliding window size is 20

samples. We start updating the nodes with data only after all the

sliding windows of all the nodes are full.

4.3 Error-Communication Tradeoff
There is an inherent tradeoff between the approximation error and

the resulting communication. A communication-efficient algorithm

should use minimal communication and produce a low error.

We compare AutoMon with the baselines for four functions,

two with synthetic and two with real-world datasets. In each run,

we monitor the functions using a different approximation error

bounds (or period values for Periodic), count the total number

of messages and the maximum approximation error, and plot the

resulting tradeoff curve. The best algorithm is the one that achieves
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the lowest error and communication. Figure 5 shows the tradeoff

curves of AutoMon and the different baselines.

AutoMon exhibits the best tradeoff overall. It produces a low

error at a fraction of the number of messages needed by Central-

ization. It also uses fewer or a similar amount of messages to those

required by the non-adaptive Periodic algorithm.

Inner Product: AutoMon automatically achieves identical perfor-

mance to the carefully tailored CB-based approach of Lazerson et

al. [41]. The CB-based algorithm uses the following identity to rep-

resent the inner product as a difference between two convex func-

tions: ⟨𝑥,𝑦⟩ = 1

4
∥𝑥 + 𝑦∥2 − 1

4
∥𝑥 − 𝑦∥2. This form is equivalent to

ADCD-E (due to space limitation, the proof is omitted). While [41]

provides a CD representation for a specific functions, AutoMon

automatically finds such a representation for any function.

Quadratic Form: This function’s value can change rapidly, as

shown in Figure 4. The only way to obtain a small approximation

error with Periodic is to have a period of 1 (i.e., Centralization); any

larger period will result in high approximation errors. In contrast,

AutoMon is adaptive and can provide a smooth, superior, tradeoff

between communication and efficiency.

KLD: AutoMon yields a tradeoff that is similar to the Periodic

algorithm, but with a smoother, better-controlled tradeoff curve.

Recall however, that the Periodic algorithm is non-adaptive, and

the curves in Figure 5 are derived post-hoc. Conversely, AutoMon is

adaptive and can handle changes in the data distribution. Moreover,

as described above, AutoMon provides a deterministic guarantee

for KLD, unlike the Periodic algorithm.

DNN: AutoMon sends fewer messages than Periodic across all

𝜖 values. Unlike the other datasets where local data for all nodes

updates every round, the DNN dataset only updates a single node at

a time. This means the function changes gradually, which AutoMon

exploits, while the non-adaptive Periodic sends updates from all

nodes once per period even when changes are small. Moreover,

since the period parameter now represents a time interval (number

of rounds) rather than the number of data samples, Centralization

uses fewer messages than Periodic with a period of 1.

Error Relative to Bound: Figure 6 shows AutoMon’s relative

error with respect to the error bound 𝜖 for KLD, where AutoMon

guarantees the approximation accuracy (§3.7), and for DNN, where

there is no such guarantee. Despite the lack of guarantee, DNN’s

error profile is similar to KLD: In practice AutoMon’s error is below

the approximation bound 99% of the time for both functions. Even

in the rare cases for DNN when the maximum error is above the

bound, it is still very close.

10 50 100 150 200
dimension

0

5K

10K

#m
es

sa
ge

s Centralization

KLD MLP-d Inner Product

(a) Impact of dimension 𝑑 .

101 102 103

#nodes

1K

10K

100K

#m
es

sa
ge

s Centralization

MLP-40 Inner Product (d=40)

(b) Impact of number of nodes 𝑛.
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AutoMon’s communication.

4.4 Scalability: Dimensions, Nodes, Runtime
We use the KLD, Inner Product, and MLP-𝑑 functions to study

how data dimensionality affects the communication and runtime of

AutoMon, as well as its ability to scale with the number of nodes. For

every function, we carry out multiple runs with input dimension

𝑑 ∈ [10, 200]. As shown below, at high dimensions the bottleneck

becomes the numerical optimization in full sync. To compare the

different functions and datasets, we set the number of nodes to

𝑛 = 12 and stop each run exactly 1000 rounds after the first sliding

window is full, resulting in a centralized cost of 1000 messages per

node. Runtimes are measured on an Intel i9-7900X at 3.3GHz with

64GB RAM, running Ubuntu 18.04 with MKL 2019 Update 3.

Dimensionality: Prior work has shown that the size of the local

vector 𝑥 can increase the number of messages needed to monitor a

function [21]. However, for AutoMon, the function itself is also a

parameter, and we explore how their combination impacts commu-

nication. Figure 7(a) shows the total number of messages in each

run for different functions and input dimensions. We observe that

AutoMon’s scalability is highly dependent on which function is be-

ing monitored. While communication increases with dimension for

all functions, this increase is minimal for Inner Product, moderate

for MLP-𝑑 , and more drastic for KLD. Nevertheless, even for KLD,

we observe that AutoMon remains better than centralization for up

to 200 dimensions.

Number of Nodes: More nodes means more communication, but

this growth is contingent upon the distribution of the data between

different nodes. Figure 7(b) illustrates how the number of mes-

sages grows with the number of AutoMon nodes for Inner Product

(𝑑 = 40) and MLP-40. While the number of messages does increase

with the number of nodes in the system, we observe that the same

happens for Centralization, and that the ratio between Centraliza-

tion and AutoMon is fixed. In these synthetic datasets, the data of

new nodes is similar to the data of existing nodes. Therefore, the

probability for violation of a single node does not change with the

number of nodes, neither does the probability of resolving viola-

tions using lazy sync, which explains the fixed ratio. We therefore

conclude that the AutoMon technique does not limit the scalability

of the system. This limitation may emerge from the data itself.

Node Runtime: AutoMon’s node runtime should be low since

it is targeting environments where the computational power of

local data sources is low. We measured the time a node takes to

check a single data update, as well as the time it takes the node to

complete different tasks during the data update process (figures



omitted for lack of space). The impact of the dimension on the

average runtime is negligible, on average 1 millisecond or less for

all functions and dimensionality. The time to verify that the local

vector is inside the safe zone is close to the time it takes to simply

evaluate the original function on the local vector, ranging from

0.01 to 1 millisecond. We therefore conclude that AutoMon node is

suitable even for computationally limited edge devices.

Coordinator Runtime: While AutoMon’s coordinator may not

be a resource-constrained edge device, the coordinator’s runtime

limits the data rate supported by AutoMon because nodes must wait

for the coordinator to resolve violations. This runtime is dominated

by the full sync with ADCD-X, which requires solving a numerical

optimization problem to find the extreme eigenvalues. The lazy sync

time is orders of magnitude smaller, as it only requires evaluating

the local constraints. For KLD and MLP-𝑑 , which use ADCD-X, the

average time for the full sync increases with the dimension, ranging

from 0.2 seconds (𝑑 = 10) to 12 seconds (𝑑 = 200). For Inner Product,

the coordinator uses ADCD-E, where eigendecomposition is done

only once at initialization; full sync time is below 10 milliseconds

for all dimensions. (Figure omitted for lack of space.)

4.5 Impact of Neighborhood Size Tuning
To demonstrate the effectiveness of Algorithm 2, we show that

(1) the 𝑟 found by the algorithm is close to the true optimal neigh-

borhood size 𝑟∗; (2) 𝑟 can have a large impact on AutoMon’s commu-

nication; (3) no single fixed 𝑟 is optimal across different approxima-

tion error bounds 𝜖 ; and (4) the tuning procedure yields comparable

performance to using the optimal 𝑟∗.
To evaluate Algorithm 2 we used AutoMon with a range of

approximation error bounds 𝜖 and neighborhood sizes 𝑟 to monitor

the MLP-2 function, as well as the Rozenbrock function, defined as

𝑓 (𝑥) = (1−𝑥1)2 +100

(
𝑥2 − 𝑥2

1

)
2

. We chose this function because it

is especially challenging for gradient-based numerical approaches

(e.g., AutoMon or gradient descent), and because its Hessian is non-

constant. To generate data, we draw entries 𝑥1, 𝑥2 from the normal

distribution N(0, 0.22). For each approximation error bound 𝜖 , we

find the optimal neighborhood size 𝑟∗ that obtains the smallest

number of violations, as well as the recommended neighborhood

size 𝑟 found by the tuning procedure. We repeated each experiment

5 times, sampling a new dataset every run.

On average, the true optimal neighborhood size 𝑟∗ is close to the
neighborhood size found by the tuning procedure 𝑟 (figure omitted

due to lack of space), especially given the significant effect of the

randomness in the data. The mean relative error of the tuning algo-

rithm with respect to the optimal value is 8% for Rozenbrock and

20% for MLP-2. On average, we find that 𝑟 found by Algorithm 2 is

within 1.03 standard deviations of the optimal 𝑟∗ for both functions.

Rozenbrock is highly sensitive to small input changes by design.

Hence, the standard deviation for 𝑟 is large while 𝑟∗ has a small

range (as Figure 8 shows). Conversely, MLP-2 is less sensitive. It

has a wider range of optimal 𝑟∗, while the tuning procedure tends

to converge to same 𝑟 .

To evaluate the impact of 𝑟 on communication, we run AutoMon

over the sampled datasets, each with its optimal 𝑟∗ and the tuned 𝑟 ,

as well as three fixed neighborhood sizes 𝑟 ∈ {0.05, 0.5, 2.5}. Figure 8
shows AutoMon’s average communication for each approximation
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Figure 8: Mean number of messages for different approxima-
tion error bounds 𝜖, while using optimal neighborhood size
𝑟∗, tuned size 𝑟 , and fixed 𝑟 during monitoring. The standard
deviation is small and barely visible (shaded area).

error bound 𝜖 . We make three observations. First, using the wrong

𝑟 can substantially increase communication. Second, no single 𝑟 is

best across all 𝜖 and functions. For example, for Rozenbrock the

average increase in the number of messages when using 𝑟 instead

of 𝑟∗ is 33%, while for the fixed 𝑟 it grows by more than 100%. For

MLP-2, the difference between 𝑟∗ and 𝑟 is 3.5%; however, for the best

other fixed 𝑟 it is more than 7%. The results for MLP-2 also suggest

there is a range of neighborhood sizes that work well; however, this

range is not known a-priori. Third, and most crucial, we observe

that using the 𝑟 found by the tuning process results in a similar

number of messages as using the optimal neighborhood 𝑟∗.

4.6 Impact of ADCD, Slack, and Lazy Sync
We perform an ablation study to evaluate the contribution of dif-

ferent components of AutoMon. Could we replace the ADCD local

constraints with simply checking the global condition on local data

𝐿 ≤ 𝑓 (𝑥) ≤ 𝑈 , relying on the GM protocol to reduce communi-

cation? As shown below, even for simple functions with only few

nodes, this is not the case.

We demonstrate this using the function 𝑓 (𝑥) = −𝑥2

1
+ 𝑥2

2
with

four nodes. We simulate 1000 rounds with the local data for the

four nodes initially the same, starting at (𝑥1, 𝑥2) = (0, 0). As the
experiment progresses, local node data slowly drifts in different

directions, which is common in distributed setting. Specifically, the

local vectors move towards (1, 0), (−1, 0), (1, 1) and (1,−1)). For
two nodes, we also add outliers between rounds 650 and 700.

Figure 9(a) shows the approximation error (top) and cumulative

messages (bottom) of each algorithm over time. AutoMonmaintains

the desired approximation error using minimal communication,

since the ADCD local constraints for 𝑓 are both correct and effi-

cient. Without ADCD, however, the monitoring suffers frommissed

violations: locally for every node 𝑖 , 𝐿 ≤ 𝑓 (𝑥𝑖 ) ≤ 𝑈 , yet globally

𝐿 > 𝑓 (𝑥) or 𝑓 (𝑥) > 𝑈 . This happens because lazy sync manages to

balance the slack of different nodes, preventing the global sync from

recomputing the reference point 𝑥0. The end result is unbounded

and ever-increasing error, albeit with little communication. We

further removed slack and lazy sync, which gave us a basic GM

protocol: similar to Algorithm 1 but without ADCD. This results

in a low approximation error due to many full sync operations,

but at the cost of more communication than would be used by a

centralization approach (which would result in no error).
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ADCD and slack are both needed to achieve low error and
low communication.

We repeated the experiment with the more complex MLP-2 func-

tion and present the results in Figure 9(b). Without ADCD, the ap-

proximation error grows to over twice the size of the bound. Unlike

before, removing the slack and lazy sync mechanism does not help

since for MLP-2 it is even more likely that locally 𝐿 ≤ 𝑓 (𝑥𝑖 ) ≤ 𝑈

while globally 𝐿 > 𝑓 (𝑥) or 𝑓 (𝑥) > 𝑈 . In contrast, AutoMon main-

tains the desired approximation with low communication by syn-

chronizing as needed.

4.7 Validation on Real-World Deployment
Simulations let us compare algorithms while controlling important

variables (such as 𝑛, 𝑑) in isolation from confounders (e.g., choice of

network stack).We now verify our simulation in Section 4.3 through

a series of geo-distributed experiments. We conducted each run in

our experiments on two Amazon ECS clusters [4]: one is located in

us-west-2 region and is comprised of a single coordinator using 16

vCPUs and 32GB of memory on an Intel Xeon CPU at 3.4–3.9 GHz;

the other is located in us-east-2 and includes all nodes, each with 1

vCPU and 4GB of memory on an Intel Xeon CPU at 2.2–2.5GHz;

the average RTT was 56ms. For messaging, we used ZeroMQ [6].

We set the time between data updates to 5 seconds for DNN and

to 1 second for the other datasets. We count the total bytes in the

payload of AutoMon’s messages, and use Nethogs [17] to monitor

the traffic volume of the coordinator process, which includes both

payload and overheads such as ZeroMQ and packet headers.

Number of Messages: Real-world communication matches our

simulation, with a median difference of 0% for the DNN function,

less than 5.3% for inner product and KLD, and 16.6% for Quadratic

(figure omitted). Slight timing differences when nodes update their

local data result in a small number of additional messages, as the

coordinator requests the local vectors for nodes after they had

already reported a local violation.

Error-Bandwidth Tradeoff: The top of Figure 10 shows the error
as a function of total payload size. The error-bandwidth tradeoff

generally agrees with the error-communication tradeoff in Figure 5.

The relative ranking of methods is also the same: AutoMon’s total
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payload size is lower than that of Periodic whenever AutoMon uses

less messages than Periodic.

Network Traffic Consumed: The bottom of Figure 10 shows Au-

toMon’s total payload size (blue) and actual network usage (orange)

for a range of 𝜖 values. The dotted line is Centralization’s payload

size and the dashed line is its network traffic. In most cases, except

in the extreme cases for a very small 𝜖 value, AutoMon’s usage is

less than Centralization’s payload. It reduces data transfer volumes

by up to 98%, depending on the requested error bound 𝜖 , and by

65% on average across all tested functions and error bounds.

5 RELATEDWORK
We divide related work on distributed monitoring into five areas.

Sketches: Sketches are comprised of a sketching procedure to

reduce the data size, and an appropriate query function that esti-

mates a statistic using the sketch [54]. They substantially reduce

the size of messages required to monitor a function, while offer-

ing (usually probabilistic) approximation guarantees. Unlike Au-

toMon, sketches are generally tailored for specific functions and

queries; (e.g., PCA [31]); creating a sketch for a new function is

non-trivial, requiring manual effort and significant mathematical

sophistication [45, 46, 70]. Notably, AutoMon is compatible with

most sketches in the turnstile model, since they are linear or can be

made linear [43]. AutoMon can monitor a linear sketch by defining

𝑓 as the query function and 𝑥 as the sketched data structure, since

𝑥 = 1/𝑛∑𝑥𝑖 .

Generic Sketches: Universal Sketches [12] provide a distributed

approximation for any function from the Stream-PolyLog family

using a single universal sketch data structure, while requiring no

more sophistication than being able to compute the desired function.

Specifically, if 𝑥 is a vector of counts (frequencies), and 𝑓 (𝑥) =∑
𝑔(𝑥𝑖 ) where 𝑥𝑖 are frequency counts and 𝑔 is monotonic and



bounded from above by 𝑂 (𝑥2

𝑖
), then given an implementation of 𝑔

universal sketches provide a multiplicative approximation for 𝑓 (𝑥)
with probabilistic guarantees.

Universal sketches are heavily used in the UnivMon framework

for network flow monitoring [45]. Similarly, the AutoMon library is

an application-agnostic building block for distributed applications

and frameworks. Though similar in spirit, universal sketches and

AutoMon have different constraints, guarantees, and performance

metrics. First, they are limited to Stream-PolyLog functions defined

over frequency vector in the turnstyle stream model. Conversely,

AutoMon supports a much wider class of functions and the data vec-

tor 𝑥 can be defined arbitrarily. Second, universal sketches focuses

on providing strong probabilistic guarantees on accuracy. While

AutoMon does provide strong deterministic accuracy guarantee

for functions with constant Hessian and for convex and concave

functions, we also show empirically that it is accurate even when

no such guarantee is provided. Finally, sketches can reduce the

size of each message (by reducing the size of the sketch), while

AutoMon focuses on reducing the number of messages exchanged.

Nitrosketch [44] is a general framework for accelerating the

computation time of existing sketches such as universal sketches;

it does not address designing those sketches automatically.

General Algorithms for Distributed Monitoring: While many

works propose distributed algorithms for monitoring specific func-

tions, they tend to use bespoke protocols; applying such methods

(e.g., distributed counting) to new functions (e.g., entropy) often

requires non-trivial effort and development of new techniques [14].

Some works focus on providing general approaches for dis-

tributed function monitoring. Geometric Monitoring (GM) [40, 57]

is a family of communication-efficient approaches to distributed

monitoring that share the same underlying protocol of using con-

vex local constraints to monitor a global threshold condition. These

have been used to approximate diverse functions including vari-

ance [23], mutual information [27], AMS sketches [25], linear re-

gression [21], and more [20, 28, 38, 42, 56]. Convex Bound [41]

leverages ideas from GM as well as DC decompositions [2] to mon-

itor several non-convex functions; however, again this approach

requires mathematical sophistication and cannot be applied au-

tomatically. Samoladas and Garofalakis [55] introduce Functional

Geometric Monitoring, which replaces the GM protocol with a dis-

tributed counting protocol, greatly reducing the size of messages.

As with other methods, it requires finding local constraints (safe
functions) for each new monitored function. More recently, Alfassi

et al. [3] proposed a “drop-in” replacement of the GM protocol to

reduce its bandwidth, while relying on the existing local constraints.

Though general, none of these are automatic; they require in-

depth mathematical analysis to develop local constraints for new

functions. Gabel et al. [22] show how to apply GM automatically

but their approach is limited to convex or concave functions. Con-

versely, AutoMon derives its local constraints automatically for

arbitrary functions of the global vector, directly from source code.

Distributed Dataflow and Query Planning: Stream processing

engines [13, 71] execute distributed computation as a data-flow

graph of built-in primitive operators. Other approaches optimize

the aggregation network that runs a given query over distributed

data [29, 48, 66]. Such techniques require expressing the computa-

tion using only a limited set of built-in primitives [69]. For complex

numerical functions such as 𝑓𝑛𝑛 in §1 or the DNN in §4 they are

equivalent to centralization or periodic updates. AutoMon can com-

plement these approaches by optimizing user-defined operators.

Geo-Distributed Data Analytics: Systems proposed for analyzing

geo-distributed data generally fall into one of the above general

approaches [39, 48, 62, 64], or are designed for specific tasks using

bespoke techniques that do not readily generalize [30, 34, 52].

6 DISCUSSION
AutoMon is an easy-to-use algorithmic building block for auto-

matically approximating arbitrary real multivariate functions over

distributed data streams. Given a source code snippet of an arbitrary

function of the global aggregate, AutoMon automatically provides

communication-efficient distributed monitoring of the function ap-

proximation, without requiring any manual analysis by the user.

Our evaluation on synthetic and real-world datasets shows that Au-

toMon’s error-communication tradeoff is comparable to previous

hand-crafted algorithms, while using up to 50 times fewer messages

on functions for which such efficient algorithms are not known.

Future work will concentrate on addressing AutoMon’s limita-

tions, and on improving its accuracy and performance.

First, AutoMon requires that 𝑓 be a function of the average

vector 𝑥 , and does not capture functions such as

∑
𝑖

∑
𝑗 𝑥
𝑖𝑥 𝑗 used

in support vector machines [60]. Though many functions can be

rewritten in terms of 𝑥 [21, 22, 25, 40, 41, 51], this is currently done

manually. We plan to explore automatic function rewriting, as well

as support for more aggregations (e.g., max, sum of inner products).

Second, for functions not covered by the guarantees in §3.7 the

numerical optimization could yield inaccurate extreme eigenval-

ues and, therefore, violation of the error bounds. Bounding the

Hessian eigenvalues [47, 50] can alleviate this issue. We also in-

tend to study what factors impact AutoMon’s performance. The

error-communication tradeoff is determined by both the function

as well as the data and window size. For example, when the extreme

eigenvalues are exceptionally large/small, the derived safe zone

can be very small leading to many safe zone violations. Inferring

this a priori is hard for complex, hard-to-analyze functions – if

we could easily understand their behavior analytically, we would

not need AutoMon in the first place. However, we can use such

observations to improve performance by switching on the fly to

other monitoring approaches (e.g. Periodic).

Lastly, approximation error can be high if numerical optimization

in the coordinator takes too long, which limits incoming data rate

(§3.7, §4.4). To scale AutoMon to higher dimensions and data rates,

we plan to explore Hessian spectrum approximations [26], as well

as pre-computing future constraints when the coordinator is idle.
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