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Respiratory rate is a vital physiological signal thatmay be useful for amultitude of clinical applications, especially if measured
in the wild rather than controlled settings. In-the-wild respiratory rate monitoring is currently done using dedicated chest
band sensors, but these devices are specialized, expensive and cumbersome to wear day after day. While recent works have
proposed using smartwatch based accelerometer and gyroscope data for respiratory rate monitoring, current methods are
unreliable and inaccurate in the presence of motion and have therefore only been applied in controlled or low-motion settings.
Thus, measuring respiratory rate in the wild remains a challenge.

We observe that for many applications, having fewer accurate readings is better than having more, less accurate readings.
Based on this, we develop WearBreathing, a novel system for respiratory rate monitoring. WearBreathing consists of a
machine learning based filter that detects and rejects sensor data that are not suitable for respiratory rate extraction and a
convolutional neural network model for extracting respiratory rate from accelerometer and gyroscope data. Using a diverse,
out-of-the-lab dataset that we collected, we show that WearBreathing has a 2.5 to 5.8 times lower mean absolute error
(MAE) than existing approaches. We show that WearBreathing is tunable and by changing a single threshold value, it can,
for example, deliver a reading every 50 seconds with aMAE of 2.05 breaths/min or a reading every 5minutes with anMAE of
1.09 breaths/min. Finally, we evaluate power consumption and find that with some power saving measures, WearBreathing
can run on a smartwatch while providing a full day’s worth of battery life.
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1 INTRODUCTION
Continuous monitoring of physiological signals has the potential to revolutionize personalized health care. Res-
piratory rate is one signal that may be useful for a multitude of clinical applications. Higher respiratory rates
are a strong predictor of cardiac arrest [10] and have been linked to negative outcomes in hospital wards and
emergency rooms [5]. For example, Fieselmann et al. [10] reported that a respiratory rate over 27 breaths/minute
was a significant predictor of cardiac arrest. In developing an early warning measure for cardiac arrest, Goldhill
et. al [11] scored respiratory rates between 9 and 30 in increments of 5 (e.g. 9− 14 or 15− 20), and reported that
21% of ward patients with a respiratory rate between 25 and 29 died in hospital. Cretikos et al. [5] recommend
that patients with a respiratory rate greater than 24 breaths/minute should be monitored closely and those with
respiratory rate greater than 27 should receive immediate medical review.

While these studies highlight the clinical importance of respiratory rate, the implications of continuous res-
piratory rate monitoring in uncontrolled settings have not been studied because there are no existing devices
to facilitate such studies. Though devices such as chest bands that can be worn around the torso to measure
respiratory rate have been available for quite a while, they are burdensome to use day after day and the effort
of having to use an extra device will dissuade all but the most determined users. Monitoring respiratory rate
outside labs and hospitals, on larger populations and over longer periods of time could lead to the development
of new detection, monitoring and prediction systems for various conditions. These include not only respiratory
conditions such as asthma and chronic obstructive pulmonary disease (COPD), but also non-respiratory condi-
tions such as cardiac arrest, heart failure, panic attacks and anxiety disorders – all of which have shortness of
breath as a potential symptom1. However, any research in the development of such systems must first devise a
way to reliably detect respiratory rate in real world environments.

Our aim is to make respiratory rate monitoring as effortless as possible. This means we need inexpensive
devices that are readily available, easy to use and contain sensors, as well as algorithms that can reliably mea-
sure the respiratory rate signal. Recent works [14, 16, 32] have identified smartwatches as a strong candidate
for respiratory rate monitoring. Smartwatches are relatively inexpensive off-the-shelf devices that contain an
assortment of sensors. They serve multiple purposes, making them more appealing for users to wear day after
day. Respiratory rate monitoring will likely not even be the primary purpose of using such a smartwatch for
most users, just an additional benefit. Furthermore, smartwatches are programmable, commercially-supported
software platforms which means that turning a smartwatch into a respiratory rate monitor could be as simple
as installing an application.

Existing works that use smartwatches for respiratory rate monitoring [14, 16, 32] make use of the accelerom-
eter and/or gyroscope sensors. Breathing produces subtle, periodic motions that can be measured by the Inertial
Measurement Unit (IMU) in the smartwatch. The gist of these approaches is to use the periodic nature of breath-
ing to detect a signal that falls within some frequency that corresponds to the expected breathing rate (e.g. 9-30
breaths/min). However, the biggest challenge to these approaches is that they are highly susceptible to motion
artifacts. Existing systems acknowledge this as a limitation and conduct their experiments in controlled or low-
motion settings. Our goal is to make respiratory rate monitoring possible in everyday environments and during
daily tasks.

Our key insight is that many applications benefit more from a small amount of accurate data rather than
a large amount of inaccurate data. For example, an application that monitors the progression of a respiratory
disease over time does not necessarily need to know the exact respiratory rate at any given second, but rather
needs to keep track of trends over weeks or months. For such applications, sensors need only be accurate some
of the time. The challenge then is identifying which sensor readings are accurate.

1https://www.mayoclinic.org/symptoms/shortness-of-breath/basics/causes/sym-20050890
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Based on this insight, we developWearBreathing, a two-step system for respiratory ratemonitoring. In the first
step, a random forest (RF) model acts as a filter and rejects data that will result in an inaccurate respiratory rate
reading. Sensor readings that pass the filter are then fed into the second step which uses a Convolutional Neural
Network (CNN) model to extract respiratory rate from accelerometer and gyroscope data. Though previous
works have also used filters to reject some data [14, 16, 32], our random forest filter is fundamentally different.
Previous filters are inflexible: they assume that excessive motion is the sole cause for inaccurate respiratory rate
readings, and reject readings if the level of motion surpasses some threshold. Our approach does not make any
assumptions about what causes unreliable readings and instead learns what causes the extractor in the second
step to be inaccurate.

This idea of a learned filter is the key difference between our work and previous works. In a more abstract
sense, previous works only filter the source signal based on the amount of noise present. Our approach takes
into account both the original signal and its interaction with the extraction algorithm. Our proposed approach,
which includes a method for training the filter to learn the interaction between an extractor and the source
signal, could be applied to other sensing tasks and potentially entirely different domains.

We collected data in a one hour long semi-controlled and a three hour long uncontrolled setting, from two
groups of participants. By using data from two different groups of participants we highlight the generalizability
of our approach. The first group consists of younger, healthy participants and the second of older participants
suffering from a lung disease (chronic obstructive pulmonary disease, or COPD). We evaluate WearBreathing on
our collected dataset and show that it is able to achieve a mean absolute error (MAE) of 2.05 breaths/min while
delivering a respiratory rate reading every 50 seconds, which is a 3.6 times lower MAE than previous work [16,
32]. Moreover, unlike existing approaches, WearBreathing is highly tunable and can be easily configured to
trade off reading frequency for accuracy. For example, WearBreathing can deliver a reading on average every
15 seconds with a MAE of 2.73, every minute with MAE 2.17 or every 5 minutes with MAE 1.09. This level of
flexibility makes WearBreathing a good match for a wide range of applications. Some applications may require
more readings and are willing to accept a lower accuracy while others may be willing to accept less frequent
readings, but demand a higher accuracy. This tunability is possible because our random forest filter learns to
directly control for accuracy. In previous work, the relationship between what the filter controls and accuracy
is not intuitive, making this level of tunability difficult or impossible.

Using a combination of data traces and simulation, we also explore the energy consumption ofWearBreathing
when deployed on a real smartwatch. We find that under ideal conditions, a duty cycling scheme can provide
between 24-42 hours of battery life. Alternatively, applications that do not wish to use duty cycling can opt to
use the smartwatch as a continuous recording device and process the data offline, which will provide over 18
hours of battery life.

Our contributions are as follows:

• A demonstration that in wild settings, identifying when data is accurate is an important problem and that
existing filters are not well suited to this task.

• A two-step filter/extractor system in which the filter learns the interaction between the extractor and
input data.

• A highly tunable random forest filter that allows flexible trade-off between frequency and accuracy by
changing a single, easy-to-understand threshold value.

• A novel method of respiratory rate extraction using a CNN that is more accurate than existing approaches.
• The combination of our random forest filter and CNN extractor which, for the first time, enables out-of-the

lab respiratory rate monitoring using a smartwatch.
• An evaluation of out-of-the-lab respiratory rate monitoring on two different populations.
• An evaluation of WearBreathing showing that it can be run on a smartwatch with reasonable battery life.
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Fig. 1. High level system diagram of WearBreathing.

The rest of this paper is organized as follows. In Section 2 we describe our system for filtering data and
extracting respiratory rate. In Section 3, we describe our dataset, existing methods and research questions. Next,
in Section 4, we evaluate the performance of WearBreathing and existing methods. This is followed by a review
of related works in Section 5 and a discussion of real-world deployment issues, avenues for future research and
interesting overlaps with other research fields in Section 6.

2 SYSTEM DESIGN
As mentioned previously, not all data from the accelerometer and gyroscope will result in a reliable respiratory
rate reading. The problem we solve is identifying when the respiratory rate reading is reliable. We do this by
creating a system consisting of an extractor and a filter. The extractor takes sensor data as input and produces
an estimated respiratory rate. The filter takes the same sensor data as input, but instead of predicting respiratory
rate, it predicts the error the extractor will have on this input. To determine if a respiratory rate is produced,
the predicted error from the filter is compared to a user defined threshold. If the predicted error is below the
threshold, the sensor data is passed to the extractor which produces the estimated respiratory rate. This process
is illustrated in Figure 1.

Although in our final system the filter is applied before the extractor, during development and training we
need to build the extractor first. Therefore, in this section, we first describe our extractor and then the filter.
Because of this dependency between the extractor and filter, there are some subtleties in how we train our
model, which we describe at the end of this section.

2.1 Extractor
We develop a novel method for extracting respiratory rate from accelerometer and gyroscope signals using a
CNN. We employ a CNN model to extract respiratory rate because CNNs excel at detecting patterns in spatial
or temporal sequences of multi-channel data and have been used extensively for time series data [15, 17, 34, 35].
While typically, recurrent networks such as LSTMs have been used for time series data, some work has shown
that in some cases, simple CNNs can outperform LSTMs. Additionally, CNNs tend to be less computationally
expensive than recurrent networks2, which is critical for a model designed to run on a resource constrained
device such as a smartwatch.

In our case, we want the network to identify the breathing signal, which has a distinct pattern, in time series
IMU data where the axes of the accelerometer and gyroscope are represented as channels.

2https://github.com/baidu-research/DeepBench
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Fig. 2. CNN extractor architecture showing how input data is transformed to produce the estimated respiratory rate.

The architecture for our CNN is shown in Figure 2. The CNN operates on 30 second windows of 6 axes of raw
accelerometer and gyroscope data. We use 30 second windows because it is a commonly used window length
in existing respiratory rate monitoring work [28, 32]. We also experimented with using the Fourier transform
and derivative of each axis as input to the CNN; however, we found that using raw data performed better. We
use a shallow CNN composed of a single convolutional layer with a rectified linear unit activation, 16 hidden
units, a kernel size of 5 and stride size of 1. Following the convolutional layer is a max pooling layer with a
pool-size of 10 and stride of 1. The output of the pooling layer is connected to a dense layer with 128 hidden
units that feeds into another dense layer with 64 hidden units. Both dense layers use a rectified linear activation
and a 0.2 dropout after each. The second dense layer connects to a single predictive node, again with a rectified
linear activation. The network is optimized using adaptive moment estimation [22] (Adam), with mean absolute
error as the loss function. The network is implemented using the Keras framework [3] and for any unspecified
hyper-parameters the Keras default values were used. Treating this as a regression task, our network is trained
to predict respiratory rate values. The respiratory rate labels used to train this CNN are obtained from a chest
band. Our procedure for collecting labeled data is explained in more detail in Section 3.1.

2.2 Filter
The goal of the filter is to predict the error in the extractor. Previous works operated on the idea that respiratory
rate extraction would be inaccurate in the presence of motion. Therefore, they employed simple filters that
assumed the amount of motion is directly related to the error. An example of such a filter is one that looks at the
average vector magnitude of the x , y and z axes of the previous n accelerometer readings (Equation 1). For our
experiments, we use a window size of 30 seconds and sampling rate of 20Hz, which means that n = 600. So for
a given window of 600 samples, if the value resulting from Equation 1 exceeds some predetermined threshold
t , then this window will not be passed on to the extractor. As we show later, simple filters such as these do not
perform well and are not intuitive.

accept(window) =
∑n

i=1

√
x2i + y2i + z2i
n

< t (1)

Our random forest regression-based filter is a novel approach to building these kinds of filters. Instead of
assuming that motion is the only source of error and estimating the amount of motion using a formula, we
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Fig. 3. Training scheme illustrating how we use leave-one-out cross validation and separate CNN and RF training data to
improve generalizability.

train a classifier to learn what causes errors; that is, our filter learns the interaction between the input data and
extractor. This filter has the same interface as the simple filter in that it takes 600 readings as input from each
axis of the 6-axis accelerometer/gyroscope data and outputs a single value that is then compared to a threshold.
However, unlike the simple filter, which estimates the amount of motion in a window, our filter predicts the
error we can expect if we were to apply our CNN extractor on a given window. As we show later, this results
in a filter that is easier to tune since the threshold directly controls error in respiratory rates, which users care
about and understand, rather than the motion within a window, which is harder to reason about.

Our random forest takes as input a summary of the accelerometer and gyroscope data. This summary is ob-
tained by first computing 16 aggregate measures for each axis. These measures are the mean, median, minimum,
maximum, kurtosis, skew and 10th , 20th , ..., 90th percentiles. This reduces the dimension of each window from
6 vectors of length 600 to 6 vectors of length 16. The resulting 6 vectors are then concatenated into a single
vector of length 96. Principal component analysis (PCA) is used to further reduce the vector’s dimension to
an empirically determined length of 20. The output of PCA is then used as input to a random forest regression
model. The PCA projection matrix is computed using the training data only. Our general idea still works without
PCA; however, we found that using PCA slightly improved our results.

For labels, we use the error of our CNN-based extractor. That is, for each input, we extract respiratory rate
using our trained CNN and take the absolute difference between the predicted respiratory rate and the ground
truth respiratory rate as the error. Our random forest model’s task is to predict this error.

2.3 Training Scheme
Our random forest and CNN models both require training and testing. To prevent over-fitting and ensure that
our results are generalizable, we use a leave-one-out cross validation scheme. That is, for each participant x , we

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 2, Article 56. Publication date: June 2019.



WearBreathing: Real World Respiratory Rate Monitoring Using Smartwatches • 56:7

Fig. 4. Zephyr BioHarness 3.0 used as a ground truth respiratory rate monitor.

train a model using data from all participants except x . This means that when we evaluate a trained model on a
participant, the model has never seen data from that participant during training. It also means that all the results
we present are averages across participants.

We also have to be cautious about training the random forest regressor because its labels are dependent on
output of the CNN, which could potentially bias the random forest. For example, if a window that’s used to
train the random forest was previously used to train the CNN, we would expect that the CNN is more accurate
in extracting respiratory rate from this window. Therefore, the error that the random forest is attempting to
predict would not be a true representation of the error we would expect if the CNN was predicting on unseen
data. To avoid this, we hold out a small amount of data (10%) from each participant in the CNN’s training set.
These data are not used to train the CNN. Once the CNN has been trained, the hold out data is passed through
the CNN model and a respiratory rate is predicted. We compute the absolute error for these predictions and use
these errors as labels to train the random forest filter. This scheme is illustrated in Figure 3.

3 EXPERIMENTAL SETUP
In this section, we first describe our dataset and how it was collected. Next, we summarize two existing works
against which we compare WearBreathing. Finally, we present the research questions we explore in our evalua-
tion of WearBreathing.

3.1 Data Collection
To test and evaluate respiratory rate monitoring in the wild, we collect and make use of a dataset that con-
tains data from a smartwatch and a ground truth device. Collection of this dataset was approved by both the
Institutional Review Board of the hospital where we collected data as well as our academic institution.

Our dataset contains data from 14 participants, 7 of which were healthy and 7 had chronic lung disease (3
female and 4male in both groups, healthy group mean age: 28.4 years, chronic lung disease group mean age: 69.3
years).There is a significant age difference in these groups because COPD occurs most commonly in older adults.
All participants were asked to wear an LG Urbane smartwatch on their non-dominant hand. The watch was
running Android Wear and a data collection application we developed to collect accelerometer and gyroscope
data. Data from both the accelerometer and gyroscope are recorded at 20Hz because, as shown by BioWatch [16],
this is a sufficient sampling frequency to capture the respiratory rate signal which has a frequency between
0.13Hz and 0.66Hz. This data is transmitted over Bluetooth to a smartphone. The smartphone simply acts as a
relay and uploads the data to a remote server. All analysis andmodel training is done offline on the remote server.
Although our system can support real-time analysis on a mobile device, the purpose of this data collection was
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Table 1. Summary of our dataset showing duration of activities along with the mean and range (1st and 99th percentile)
of respiratory rate (breaths/min) for each activity according to the ground truth BioHarness.

Activity Duration Healthy COPD
Mean (SD) Range Mean (SD) Range

6MWT 6 min 20.9 (4.0) 14 - 29 24.9 (4.5) 13 - 34
Sitting 4 min 20.6 (5.2) 10 - 29 17.7 (3.0) 10 - 24
Walking 4 min 19.7 (4.6) 13 - 30 25.4 (5.4) 16 - 37
Lying 4 min 17.6 (2.5) 14 - 26 15.5 (5.7) 6 - 23
Standing 4 min 15.2 (5.0) 4 - 22 18.1 (4.0) 12 - 23
Eating 3 min 14.9 (2.7) 9 - 20 17.7 (3.7) 12 - 24
Brushing 2 min 16.0 (3.7) 9 - 25 18.5 (4.4) 11 - 24
Uncontrolled 3 hours 17.4 (4.2) 6 - 28 19.9 (4.9) 10 - 29

to collect data that can be used to train our RF filter and CNN extractor. Later, in Section 4.3, we deploy our
trained models on real devices to estimate WearBreathing’s impact on battery life.

To obtain ground truth data, participants also wore a Zephyr BioHarness 3.03, shown in Figure 4, which
uses a capacitive pressure sensor to measure expansion and contraction of the chest. The BioHarness has been
validated in several studies [13, 20, 21] to be accurate under the conditions we set in our data collection study. It
has also been validated for participants with COPD [30]. For each respiratory rate reading from the BioHarness,
we consider the preceding 30 seconds of accelerometer and gyroscope data as a window.

The first portion of the study took place in a lab. Participants were asked to complete specific activities in
the lab while wearing both the smartwatch and BioHarness. We call this portion semi-controlled because while
participants were asked to perform specific activities, there were no restrictions on how to perform the activities.
For example, participants were not told how to place or move their arms. They had the freedom to move their
arms however they wanted during the study.

The activities performed during the semi-controlled portion, listed in Table 1, are selected because we expect
that they are the most frequently occurring activities in daily living. The six-minute walk test (6MWT) was
included because it represents the fastest participants are likely to walk in their daily lives and because it is a
commonly used test for respiratory conditions [9]. Participants were allowed to take breaks between activities,
so the total duration of the semi-controlled portion ranged from 40 to 75 minutes.

The second portion of the experiment was completely uncontrolled. Participants still wore the smartwatch
and BioHarness, but were free to go about their day outside the lab. After three hours, the participants could
take off the smartwatch and BioHarness.

During our data collection study, we collected over 53 hours of data from our 14 participants resulting in over
144, 800 individual respiratory rate measurements from the BioHarness. The mean respiratory rate according to
the BioHarness across our entire dataset is 18.31 breaths/min with a standard deviation of 4.72 and a range of
7-29 breaths/min. The range shows the 1st and 99th percentile of observed values. In Table 1, we break down
the mean, standard deviation and range of the respiratory rate by group and activity.

3.2 Existing Approaches
To compare WearBreathing, we implement the respiratory rate extraction methods explained in BioWatch [16]
and SleepMonitor [32].
3https://www.zephyranywhere.com
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BioWatch [16] describes an extractor that first performs noise removal on gyroscope data by applying an
averaging filter and then a band-pass Butterworth filter of order two with cut-off frequencies of 4 and 11Hz.
Using this noise-removed data, the BioWatch extractor obtains three respiratory rate predictions by computing
an FFT on each of the three axes and selecting the frequency with the highest amplitude between 0.13 Hz and
0.66Hz (i.e., between 7.8 to 40 breaths/min). To determine which of the three respiratory rate predictions to use,
it again look at the FFT amplitude and select the one from the axis with the greatest amplitude. The BioWatch
filter takes the vector magnitude of the derivative of the accelerometer data.

To validate our implementation of the BioWatch algorithm, we collected a small sample of data from two of the
authors using the same method described in the BioWatch paper (i.e., sitting very still) and were able to achieve
similar results (MAE < 1). Like BioWatch, our study includes sitting, standing and lying down. However, we give
very little instruction to participants on how to perform these activities. Therefore, even as participants were
sitting or lying down, they were doing so naturally and were not trying to be still. This is evidenced by the fact
that in the BioWatch paper, the filter preserved 85.87% of windows when using a threshold of 0.15 [16], which
was the maximum value the BioWatch authors observed from their filter during their in-lab study. However,
when we apply that same derivative magnitude filter on our dataset, we see an average value of 3.56; if we were
to discard windows from our data where the filter value is greater than the original 0.15 threshold, we would
have accepted only 5.14% of windows. This highlights the drastic difference in the amount of motion between
data collected out-of-the lab, as in our study, compared to data collected in controlled lab settings, as in previous
studies.

We also replicated the algorithm described in SleepMonitor [32]. The SleepMonitor extractor uses a total
variational filter (TV filter) [1, 18] to remove both high and low-frequency noise. After noise removal, respiratory
rate estimation is performed on each accelerometer axis using an FFT in a manner similar to BioWatch. However,
unlike BioWatch which selects respiratory rate from a single axis, SleepMonior merges the respiratory rate from
all three axes using a Kalman filter. The filter to reject widows described in SleepMonitor [32] looks at the
proportion of accelerometer readings in a window with a vector magnitude greater than 10m/s2. The threshold
used in SleepMonitor is 5, so that any window where more than 5% of samples have a vector magnitude greater
than 10m/s2 is rejected.

3.3 ResearchQuestions
The two metrics we consider in our analysis are accuracy (measured as MAE) and frequency (average time
between readings). Using these metrics, we ask the following questions to evaluate WearBreathing:

• How does WearBreathing perform and compare to existing methods?
• How does activity affect performance?
• Does WearBreathing work on both the healthy group and the chronic lung disease group?
• Is there agreement between WearBreathing and the chest band ground truth?
• How tunable is WearBreathing?
• Is it feasible to run WearBreathing on a smartwatch?
• What is the battery impact of running WearBreathing on a smartwatch?

4 EVALUATION
In this section, we present an evaluation of WearBreathing on a diverse dataset that includes data from younger,
healthy individuals and thosewith COPDwhile performing awide range of activities. Having this diverse dataset
allows us to analyze how the participant’s activity and group affects WearBreathing’s performance. Throughout
the entire study, participants wore a smartwatch and a chest band for ground truth data.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 2, Article 56. Publication date: June 2019.



56:10 • D. Liaqat et al.

15s 30s 1 min 5 min
0

5

10

15

Average time between readings

M
ea

n
A
bs

ol
ut
e
Er

ro
r

SleepMonitor
SleepMonitor w/o KF
BioWatch
WearBreathing
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In addition to accuracy, we explore the feasibility of running WearBreathing in real-time on a smartwatch.
Using a combination of data traces and simulation, we show that with duty cycling, WearBreathing can be run
in real-time on a modern smartwatch while providing enough battery life to last a full day.

The rest of this section is organized as follows. First, in Section 4.1, we select a few fixed threshold values and
compare the performance of WearBreathing against the two existing methods. In Section 4.2, we analyze tun-
ability and characterize howWearBreathing and existing methods perform across their entire threshold domain.
Finally, in Section 4.3 we deploy WearBreathing on a smartwatch and analyze runtime and battery life impact.

4.1 System Performance
Theperformance characteristics ofWearBreathing are heavily dependent on the threshold applied to the random
forest filter. By using a lower threshold, we are able to increase the accuracy of readings but we receive data less
frequently. We highlight this in Figure 5 by setting threshold values to produce readings on average every 15s ,
30s , 1 min and 5 mins and showing the mean absolute error at these different frequencies for WearBreathing,
BioWatch and SleepMonitor.

We observe that SleepMonitor has a very high error. We suspect this is because of how the Kalman filter
described in SleepMonitor relies on exploiting historical readings to boost predictive accuracy. By basing the
predicted respiratory rate (rrt |t in the SleepMonitor paper [32]) as a limited change from the posterior/prior
respiratory rate in the previous time step (rrt |t−1), the Kalman filter is able to reduce the random noise caused by
sudden movements. This, however, is predicated upon the assumption that readings are coming in at consistent
time intervals. This assumption does not hold in the wild when a filter is used to discard windows because
windows are no longer occurring at consistent time intervals. To validate this, we modified the SleepMonitor
algorithm to combine the respiratory rate prediction from each axis by taking a simple average instead of using a
Kalman filter (SleepMonitor w/o KF in Figure 5) and see that the modified algorithm does indeed perform better
on noisy data.
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For SleepMonitor, we also observe that there was no threshold we could set that would result in a reading
on average every 30 seconds, 1 min or 5 mins. For BioWatch, although we could tune the frequency at which
we receive data, we did not see any improvement in the MAE as we decreased the frequency of readings. Wear-
Breathing, on the other hand, in addition to having a dramatically lower MAE, also allows trading frequency for
accuracy.

WearBreathing has a significantly lower MAE for all frequencies. When no filter is used, WearBreathing has a
MAE of 2.86 compared to BioWatch’s 7.01 and SleepMonitor’s 9.86, which is a 2.5 and 3.4 times improvement,
respectively. When providing a reading every 15s , we see a 2.6 and 3.5 times improvement (2.73 MAE for
WearBreathing, 7.24 for BioWatch and 9.58 for SleepMonitor). At a reading every 5 minutes, WearBreathing
has a 5.8 times lower MAE than BioWatch (1.09 vs. 6.30)

This highlights two points. First, the CNN extractor in WearBreathing by itself has a lower MAE than any
existing system. Second, despite the CNN already having a lower MAE, by applying our random forest filter, we
can further lower the MAE if we decrease reading frequency. Having this trade-off available makes WearBreath-
ing more applicable to a wider range of applications because now applications can decide whether or not the
trade-off is worthwhile based on their requirements.
Conclusion:WearBreathing performs significantly better than existing methods. Using thresholds that result

in similar times between readings, WearBreathing’s MAE is between 2.5 and 5.8 times lower.

4.1.1 Performance by Activity. As we have shown, the threshold used with our random forest filter greatly
affects performance. For fair comparisons, we want to control the frequency at which the three systems provide
readings and compare their accuracy. BioWatch’s default threshold value of 0.15, provides a reading on average
every 50 seconds with a MAE of 7.49. If we set a threshold of 1.05withWearBreathing, we can achieve the same
frequency and aMAE of 2.05 (3.7 times lower). Because SleepMonitor cannot provide a reading on average every
50 seconds, we do not include it in the remaining analysis in Section 4.1. Later on, in Section 4.2, we perform a
sensitivity analysis to characterize how all three systems perform across their entire threshold domain.

Using these thresholds, we analyze the MAE and frequency (% of windows accepted) for both WearBreathing
and BioWatch during the various activities in our data collection.The results are presented in Table 2. Regardless
of activity, WearBreathing has a lower MAE than BioWatch. In some cases, BioWatch does accept more windows
than WearBreathing. For example, while standing, BioWatch accepts on average 17.2% of windows compared
to WearBreathing, which accepts 7.7% windows. However this increased frequency comes with a much higher
MAE (8.2 compared to 1.6). There are also multiple examples of BioWatch not producing any readings during
an activity (ex. COPD patients during 6MWT) or only producing readings for one participant (indicated by a
missing standard error), but WearBreathing is able to produce readings for multiple participants for all activities.

There can be many reasons why performance is affected by activity. First, as previous works have found, mo-
tion makes it harder to isolate the respiratory rate signal [16, 32]. An intuitive example of this can be experienced
by trying to measure your pulse while sitting in a moving car or train. However, in our results, we note that
high motion activities do not necessarily result in higher error. The 6MWT, for example, likely had the most
motion but one of the lowest errors. We think this may be because while the amount of motion is high while
walking, the participants wrist is moving in a fairly consistent pattern. So we believe random motion is more
detrimental to accuracy than regular, periodic motion. Secondly, while the respiratory signal is generated by the
diaphragm and other muscles in the chest and abdomen, we detect this signal at the wrist. Hence it is likely that
the participant’s posture and body position affects how well the signal propagates from the abdomen/chest to
the wrist. For example, if the participant is lying down, having their watch hand on their chest will produce a
much stronger signal than if their hand is by their side. Similarly, we expect the signal quality to be affected by
whether the participant is sitting, standing or lying down. These factors would have to be carefully considered
with traditional, non-machine learning methods. A system that tries to deal with these factors without machine
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Table 2. Mean absolute error (SE in brackets) and frequency (% of windows accepted) for BioWatch and WearBreathing
broken down by activity and group.

Activity BioWatch WearBreathing
Healthy COPD Healthy COPD

MAE Freq (%) MAE Freq (%) MAE Freq (%) MAE Freq (%)
6MWT 7.3 (-) 4.5 - (-) - 0.8 (0.3) 10.0 0.6 (0.3) 11.3
Sitting 5.3 (1.3) 6.8 8.9 (-) 13.8 1.9 (1.5) 16.5 1.2 (0.4) 10.0
Walking 7.5 (-) 27.5 - (-) - 1.6 (0.8) 20.0 0.7 (0.2) 16.0
Lying 6.8 (0.8) 26.7 12.4 (2.2) 30.3 1.3 (0.6) 7.0 1.3 (0.7) 14.8
Standing 8.2 (3.3) 17.2 7.6 (2.5) 63.5 1.6 (0.7) 7.7 1.3 (0.8) 12.8
Eating 3.2 (1.4) 22.8 7.7 (-) 26.3 1.4 (0.5) 9.2 0.6 (0.2) 17.2
Brushing 5.7 (4.9) 8.5 - (-) - 2.1 (1.0) 5.2 1.6 (0.6) 18.3
Uncontrolled 6.4 (0.9) 6.3 7.7 (1.2) 15.7 1.5 (0.5) 4.0 2.9 (0.8) 3.0

learning would likely have to implement a posture detection system and then use different signal cleaning and
extraction strategies based on body position. Conversely, with our machine learning approach, we are able to
provide our system with examples of sensor data and respiratory rates obtained from different body positions
and the system learns to extract the signal automatically. The downside is that we lose some interpretability and
understanding of why exactly performance is better or worse in some cases.
Conclusion: WearBreathing is able to produce accurate readings across all activities while previous works

tend to not generate readings during activities involving more motion.

4.1.2 Performance by Group. Table 2 also shows that BioWatch’s performance on the COPD group is lower than
on healthy participants. This highlights an important point that is generally well known but worth emphasizing:
that systems developed on one populationmay not generalize to other populations. BioWatchwas developed and
tested on younger participants without any respiratory conditions, and we see that it works better on healthy
participants than on those with COPD. In a real deployment, it may be tempting to read the results of a paper,
download or replicate the algorithm and assume you will see the same results on your population. However,
as we show, this can result in higher than expected errors. Additionally, without validating on our specific
population, we would be wrongly assuming the accuracy of our collected data. Therefore, it is crucial to validate
algorithms on the target study population and in the target setting.

One interesting result we see in Table 2 is that using the BioWatch method, respiratory rate is particularly
inaccurate (MAE 12.4) for participants with chronic lung disease when they are lying down.This may be because
people with COPD have increased airway obstruction and reduced lung volume while lying down [7]. However,
because the filter used by BioWatch summarizes the amount of motion in a window, it accepts quite a few
windows while patients are lying down, which leads to large errors. Our system on the other hand, is trained
on participants with chronic lung disease and is better able to learn and recognize their breathing patterns.
Conclusion: Because WearBreathing is trained using data from healthy participants and participants with

COPD, it performs well on both these groups. However, in a real deployment, the performance ofWearBreathing
(or any system) should be evaluated on the specific population being tested because there can be performance
differences between populations.
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Fig. 6. Bland Altman plot showing agreement between the BioHarness and WearBreathing for both healthy participants
and participants with chronic lung disease. For clarity, only a random sample of data points is shown.

4.1.3 Agreement with Ground Truth. To measure agreement between WearBreathing and the ground truth Bio-
Harness, we use a Bland-Altman plot [2]. A Bland-Altman plot helps analyze agreement between two measure-
ment methods. For each pair of measurements, it shows the mean of the two against the difference of the two.
This is a useful tool to visualize fixed bias (i.e., a non-zero mean difference), proportional bias (i.e., non-zero slope
for the line of best fit) and limits of agreement (i.e., between which two y-values do 95% of data points lie).

The Bland-Altman plot for both the healthy group and the COPD group is shown in Figure 6. For clarity, these
graphs only plot a small random sample of data points, however the mean error, limits of agreement and best fit
line were computed using all data points.

For the healthy group, we see a fixed bias of 0.19 breaths per minute, proportional bias of 0.02 and limits
of agreement between −3.21 and 3.60. This is a fairly low although significant (one sample t-test p ≈ 0) fixed
bias and negligible proportional bias. If desired, the fixed bias can be removed by subtracting 0.19 from all our
predicted values. The negligible proportional bias suggests that the error in our prediction is not correlated
with the magnitude of the predicted value. Finally, the limits of agreement suggest that 95% of our predicted
respiratory rates will be within −3.21 and 3.60 of the BioHarness readings.

For the chronic lung disease group, we see a slightly higher fixed and proportional bias of 0.51 and 0.11,
respectively, and limits of agreement between −3.22 and 4.27. While there is slightly less agreement in the
chronic lung disease group than the healthy group, both do still show strong agreement.
Conclusion: There is strong agreement between WearBreathing and our ground-truth BioHarness data.

4.2 Tunability
In earlier sections, we selected a few threshold values and presented results for those threshold values. In this
section, we explore how the selected threshold affects performance and expand on the black box aspect of our
random forest filter. While our random forest filter performs excellently in conjunction with our CNN, because
it treats the extractor as a black box, it can also be used with existing respiratory rate extraction methods. By
training the random forest to predict the error of BioWatch and SleepMonitor we are able to use our random

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 2, Article 56. Publication date: June 2019.



56:14 • D. Liaqat et al.

0 10 20
0

20

40

60

80

100

Threshold

W
in
do

w
sD

isc
ar
de

d
(%

)

BioWatch Filter

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Threshold

SleepMonitor Filter

0 10 20 30
0

20

40

60

80

100

Threshold

RF Filters

RF+BioWatch
RF+SleepMon
WearBreathing

Fig. 7. Proportion of windows discarded by various filters as a function of threshold. RF filter shows three curves depending
on which extractor the RF was trained on.

forest filter to improve the performance of these existing methods. In showing that our random forest can be
used with existing methods, we highlight that our idea of trading off frequency for accuracy by learning when
error will be high is not limited to just our CNN but can be used with other extractors and potentially tasks other
than respiratory rate monitoring.

There is a trade-off in selecting a filter threshold. A lower threshold may result in a lower MAE, but at the cost
of the number of readings. In Figure 7, we show how the proportion of windows discarded by the filters change
as a function of threshold. We observe that with the SleepMonitor filter, even with a threshold of 0, it does not
discard 100% of thewindows.This is because in eachwindow in our data there are always accelerometer readings
where there are no forces acting on the smartwatch besides gravity and therefore the vector magnitude is close
to 9.8m/s2. This highlights a useful feature that filters should have, which is that they should allow selecting as
much or as little data as desired.

Next, we evaluate how the threshold affects the respiratory rate extraction error in an all-vs-all comparison
where we apply each filter to each extractor. We vary the threshold for each filter and monitor how that affects
the number of windows discarded and the mean absolute error when passing the accepted windows to the
extractor. The results for this analysis are shown in Figure 8. We see that simple filters are not smooth functions,
which is not a desirable characteristic for tunability since they make it hard to predict how small changes affect
accuracy. Our hypothesis for the spikes seen in these filters’ curves is that the value these filters are computing
is not well-distributed across the threshold domain and there is no direct link between the threshold and filter
value. This makes it so that a small change in the filter threshold does not necessarily result in a small change
to the number of windows accepted by the filter. Combining our two observations so far, we argue that a good
filter should be a smooth function that is capable of discarding anywhere from 0% to 100% of the windows.

Our random forest filter meets both these requirements. When used in conjunction with our CNN, it is much
better behaved in that a small increase to the threshold results in a slight increase in number of windows ac-
cepted and MAE. This linear property makes the filter a good “turn dial” solution that can be tweaked to the
requirements of individual applications. For example, if one wanted to detect respiratory rate with a MAE of
2, they could set the threshold to 1, which would result in a reading roughly every 50 seconds. If one wanted
higher accuracy, they could set the threshold to 0.5which will give an MAE of 1.09 and a reading roughly every
5 minutes. Although the RF predicts error, the threshold value used with the RF filter is simply a value that can
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be adjusted and not a guarantee of accuracy. This is because the RF filter itself is a learned model with its own
prediction error. Our RF filter had a 1.20 MAE in predicting the absolute error in our CNN extractor. We also
see that while the random forest filter also works for the BioWatch and SleepMonitor extractors, performance is
not as strong as with the CNN. The random forest filter has a MAE of 3.48 for the BioWatch extractor and 4.57
for the SleepMonitor extractor.

We also introduce the idea of an oracle filter. If the filter’s goal is to predict the error in an extractor, the oracle
is able to do so with 100% accuracy. Additionally, the oracle knows the extractor’s error on all past, present and
future windows of data. Therefore, if we use a threshold of 20 with the oracle filter, it only accepts a window if
the extractors error on this window is among the lowest 20% of all errors. As we can see in Figure 8, none of
the filters perform close to the oracle when applied to the BioWatch or SleepMonitor extractors. This is because
both the extraction and filter have some error which compounds to make a poorly performing system. However,
for our CNN which has a relatively low error, the random forest filter is much closer to the oracle filter. This
again suggests that our RF filter is learning what makes the CNN perform well on a window.
Conclusion:WearBreathing is highly tunable because its threshold value is intuitive and its filter is a smooth

function that is capable of rejecting any given proportion of windows.

4.3 Battery Life
Battery life is a critical consideration for any mobile system. After collecting data from participants and training
our models, we explore the implication on battery life of running WearBreathing on an actual smartwatch. To
do so, we use a combination of experiments and simulation. Our simulation makes use of the IMU data collected
from our 14 participants as traces to simulate real-world battery life.

In addition to the IMU traces, we need battery consumptionmeasurements under different modes of operation.
These modes are idle, recording IMU, running RF and running CNN. When the watch is idle, its CPU is in a sleep
state so no monitoring or processing is occurring. During the RF mode, a wake lock is held and IMU data is
collected. The RF mode collects IMU data and runs our random forest filter. Finally, the CNN mode collects
sensor data, runs the RF filter but does not use the RF output to determine whether or not the CNN is run.
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Instead, both the RF and CNN are run on all windows. For the RF and CNN states, we also need measurements
on how long the RF and CNN take to execute on a window of data.

4.3.1 Battery Data Collection. To run our CNN and RF on the smartwatch, we first convert our trained CNN
model to TensorFlow Lite4 (version 1.10.0). The converted model can be loaded on a smartwatch and used by
a TensorFlowLite interpreter that we call from our Java app. To run the RF model, we transpile it directly into
Java code using sklearn-porter5. While the CNN operates on raw sensor data, the RF model requires features
extracted from the data. This feature extraction is also done in Java code.

We configure our app to run these models according to the different modes of operation and intermittently
record battery levels. We charge six LG Urbane watches, the same ones we used with our participants, to over
90% battery and run our application with the screen off until the battery completely drains. We run each mode
of operation on all six watches, and using the initial and final battery level, we calculate the mean and standard
deviation of change in battery level per hour. The results for this are shown in Table 3.

Table 3. Battery % change per hour during different modes of operation.

Mode Battery ∆ (%/hour)
Mean SD

Idle -1.67 2.71
Continuous IMU -5.42 0.26
Continuous IMU + RF -22.52 1.47
Continuous IMU + RF + CNN -22.84 1.42

Tomeasure execution time, we use one watch and run our application for 10minutes. During these 10minutes,
we time how long it takes to run the RF on 100 windows and divide the result by 100. This helps minimize the
overhead of our timing functions. The same procedure is repeated for the CNN. We find that the RF takes on
average 26.54ms (± 1.69ms) per window and the CNN takes 32.47ms (± 0.68ms) per window. With a sampling
rate of 20Hz we obtain a reading every 50ms, meaning our processing should run in under 50ms to run in real-
time.While running both the RF and CNN on all windowswould not meet the 50ms requirement,WearBreathing
requires running only the RF on all windows. The CNN is run on windows where the RF output is below the
threshold. With a threshold of 1.05, less than 20% of windows are accepted by the filter. Therefore, the CNN is
run infrequently enough that WearBreathing is able to run in real-time.

4.3.2 Simulation Setup. We use the IMU traces described in Section 3.1, energy consumption measurements
and runtime measurements to simulate battery life of WearBreathing. Our simulator, which is written in Python,
implements the state machine shown in Figure 9. It starts at time = 0 seconds with battery level at 100% and
in the record state. While in the record state, the simulator steps through the IMU traces for 30 seconds, until
the data window fills up. Once the window is full, it enters the record-and-rf state. In this state, the RF is run
and if the RF output value is below a specified threshold, the CNN is also executed (cnn state).

The time spent in each state depends on the simulation conditions (i.e. RF threshold and duty cycling scheme)
and measured values such as the RF and CNN execution times. In our simulation, we randomly sample the
execution time for each RF and CNN run from a normal distribution parameterized on our measured mean
and standard deviation. Using the time spent in each state (durations ), we update the battery level according
4https://www.tensorflow.org/lite/
5https://github.com/nok/sklearn-porter
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Fig. 9. Battery life simulation state machine.

to Equation 2 where battery_consumptions is also drawn from a normal distribution based on the mean and
standard deviation of the corresponding mode from 3. The simulator steps through the state machine until the
battery level drops to 0% at which point, the time is recorded and the current simulation run ends.

battery_levelnew = battery_levelprev + durations ∗ battery_consumptions (2)

We also simulate the effect of duty cycling. With duty cycling, data is recorded and processed for some period
of time and then the watch is allowed to sleep for some period of time. While this reduces the amount of data
collected, it can be a useful way to save energy. We simulate two types of duty cycling; fixed duty cycle and
adaptive duty cycle. In both cases, our simulator cycles between idle, record and record-and-rf; the difference
lies in when these transitions occur. In fixed duty cycling, transitions occur periodically. For example, with an
8min/2min duty cycle, the simulator spends 8 minutes in the idle state and then transitions to record. The
record and record-and-rf states then collectively run for 2 minutes. In adaptive duty cycling, the idle state
runs for a fixed period of time, however the record-and-rf state only runs untilnwindowswhere the RF output
is below the threshold have occurred.

From previous work [24], we found that transitions between sleep and wake states consume additional power.
The sleep to wake transition, which lasts 1 second, consumes 19% more power than the awake state and the
wake to sleep transition, also lasting 1 second, consumes 5% more power. In our simulation, we pessimistically
assume that each transition takes two seconds and consumes twice as much power as the continuous IMUmode.

Table 4 shows the simulated battery life of the smartwatch under various recording conditions. To validate our
simulator, we configure it to perform the modes of operation listed in Table 3, for which we have experimental
data. Simulating a continuous IMU recording (simulator always in the record state) yields an expected 18.5
hours of battery life. This is slightly higher than our experimental observation (approximately 17 hours). The
small difference in these battery lives is because in our experiments, we charged the devices to anywhere from
90% to 100%, whereas our simulator always begins with 100% battery life. The other two modes produce similar
results.

4.3.3 WearBreathing Battery Life. Simulating WearBreathing with data traces from our 14 participants, we esti-
mate that runningWearBreathing continuouslywould result in just over 5 hours of battery life, which is expected
because running the RF continuously results in roughly 5.5 hours of battery life and WearBreathing is equiva-
lent to always running the RF and occasionally running the CNN. While five hours of battery life would not be
acceptable in a real deployment, using a fixed duty cycle (2 minutes record, then 8 minutes idle), our simulation
estimates a battery life of over 21 hours. Using an adaptive duty cycle, where the device sleeps for 8 minutes,
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Table 4. Battery life of a smartwatch under various conditions. First three conditions were both experimentally run and
simulated and used to test the accuracy of the simulation. Bottom three conditions show WearBreathing under different
recording conditions.

Condition Actual Simulated
Mean SD Mean SD

Continuous IMU 16h 54min 1h 35min 18h 30min 11min
Continuous IMU + run RF 4h 17min 12min 5h 28min 2min
Continuous IMU + run RF and CNN 3h 50min 26min 3h 57min 2min
WearBreathing Continuous 5h 18min 3min
WearBreathing DC (2min/8min) 21h 30min 25min
WearBreathing Adaptive DC (n = 3) 1 day 20h 19min 56min

and then wakes up until it obtains three reliable respiratory rate readings, we obtain an estimated battery life of
over 42 hours.

While duty cycling allows a full day’s worth of battery life, it comes at the cost of missing data while the watch
is in a sleep state. Depending on the application, this may or may not be an acceptable trade-off. For applications
that need continuous recording of data, there is the option of collecting sensor data continuously, but delaying
processing the data. The watch could record data while being worn by a user but wait until being charged to
process the data or upload it to a server for processing.This would allow continuous recording, but the measured
respiratory rate would not be available immediately. The energy consumption of this offline processing scheme
is the same as the Continuous IMU condition shown in Table 4 (17 actual, 18.5 hours simulated), and is also
enough to last a full day.

One limitation to our battery life analysis is that the batterymeasurements used in our simulatorwere obtained
while the smartwatch was still and the screen off. Under normal usage, when the “always-on screen” is disabled,
a wrist gesture or screen press can be used to turn on the display temporarily. However in our experiments, the
screen was almost never turned on. According to Liu et al. [26], the screen is the most power hungry component
of a smartwatch. Therefore, we expect that our simulated battery life is overestimated. However, even if actual
battery life is half our predicted values, using either a fixed or adaptive duty cycle should be enough to last a
full day’s worth of recording.
Conclusion: Full day battery life is possible with WearBreathing using either duty cycling or offline analysis.

5 RELATED WORK
The key difference between WearBreathing and existing works is that both our filter and respiratory rate ex-
traction are automatically learned from data. This is beneficial to our filter because we remove any assumptions
about what makes data unreliable. So for example, we do not assume that motion makes data unreliable and
therefore try to estimate motion. As we have shown, this results in a better behaved, more intuitive filter. Sim-
ilarly, for the extractor, we do not manually look for a specific periodic signal in the data. Instead, we let a
CNN learn to extract the signal. As demonstrated by the CNN being able to generalize across participants and
participant groups, it is able to learn more complex patterns which accurately predict respiratory rate.

Another recent paper, MindfulWatch [14], uses accelerometer and gyroscope data to estimate respiratory
rate during meditation. Similar to SleepMonitor, MindfulWatch builds a historical model of respiratory rates.
However, since MindfulWatch is designed for meditation where participants hold certain postures for periods
of times, it monitors for posture changes and reinitializes a model for each new posture. This idea works well for
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meditation because motion occurs for a short period of time followed by a longer period of being still. This gives
the Kalman filter or some other historical model time to re-initialize. While this pattern of motion followed by
stillness does occur in the wild, we suspect that it is not very common. Additionally, stillness during meditation
is very different from being still in the wild. For example, over the course of a day, a person sitting at a desk
would be considered still. But this person could be typing or using a phone, which still results in motion at the
wrist. We suspect that for these reasons, an approach designed for meditation would not transfer well to wild
environments.

While we used the accelerometer and gyroscope on a smartwatch, other works have looked at detecting
respiratory rate from a photoplethysmogram (PPG) collected from a pulse oximeter [4, 6, 19]. However, these
techniques are also susceptible to motion artifacts [27]. PPG also has the downside of being affected by skin tone
[8, 23] and conditions such as anemia [31]. Additionally, while most smartwatches use a pulse oximeter for heart
rate monitoring, very few provide access to the raw PPG data and as of Android API version 28, the Android
sensor manager documentation does not have an entry for PPG sensors4. While most studies examining pulse
oximetry use data collected from a fingertip, the forehead or an earlobe, the current interest in smartwatches
has brought about a push to bring pulse oximetry to the wrist. For example, the first wrist-based pulse oximeter
was approved by the FDA in 2018 [12]. As wrist-based pulse oximetry becomes more developed, respiratory rate
from wrist-based PPG data may also be a viable option. This could open doors to sensor fusion techniques that
use both IMU and PPG data for even more accurate respiratory rate monitoring.

6 DISCUSSION
The idea of filtering data by throwing out sections that are unreliable is not new. However, we argue that in
in-the-wild environments this becomes a much more significant and challenging problem because there are no
guarantees about what is happening in the environment, and there are many assumptions embedded within
systems. For example, although we tried to make our data collection study as close to real-world as possible by
placing very few constraints on participants, we did operate under the assumption that the participants were
wearing their smartwatch. In the real-world, users are likely not wearing their smartwatch for large parts of the
day (e.g., while sleeping or relaxing at home). In our experience, detecting when the watch is not being worn is
not trivial. Applying any sort of detection algorithm to sensor data while the watch is not being worn can result
in unusual results. For example, we have observed that even when a smartwatch is not being worn, the heart
rate sensor still produces valid heart rate readings. Similarly, BioWatch takes the most periodic signal within a
frequency range, so it is possible that it will produce respiratory rate readings even if the watch is not worn. If we
wanted to deploy WearBreathing in a real-world experiment, we would have to analyze how it behaves in these
kinds of scenarios. Ideally, the filter would reject data from when the watch is not being worn. In our current
work, the random forest was only trained with data where the watch was worn so we do not know how it will
behave in a real-world deployment. However, this is not an inherent limitation of our result and can be solved
with more training data or by implementing another filter to reject data from when the watch is not worn.

In our analysis, we accept all windowswhere the value generated by the filter is below some threshold. Because
the goal of the filters is to select windows that will produce a high accuracy reading, accepting all values below a
threshold is a way to control for accuracy. If we set a lower threshold, we are seeking higher accuracy. While we
empirically found that 90% of readings occur within 90 seconds of each other, there is no guarantee of how long
until a reading is produced (although not receiving readings may itself be a useful signal). Though stochastically
receiving readings may be acceptable for some applications, other applications may require consistent, periodic
readings.WearBreathing is also able to support these applications. If an application needs a reading everyminute,
it could buffer filter and extractor outputs for the last minute, and select the best window(s) from the buffer when

4https://developer.android.com/reference/android/hardware/Sensor

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 2, Article 56. Publication date: June 2019.



56:20 • D. Liaqat et al.

a reading had to be produced. In this use case, applications also have the freedom to determine how they choose
the best window(s). They could, for example, choose the window with the minimum filter value or take an
average of the 10% of windows with the lowest filter value.

Furthermore, while we are able to achieve accurate results using a single threshold value for all participants, it
may be possible to further improve accuracy by selecting custom thresholds for each user. However, this would
require collecting ground truth data from each participant in order to find the optimal threshold. For example,
for a study with a small number of participants, the participant on-boarding process could require wearing a
ground truth device and a smartwatch for a short period. Then, the filter threshold applied to this user’s data
is chosen based on the timing/accuracy requirements of the study. However, such an approach would not be
suitable for larger studies or crowd-sourced data.

We would also like to point out the importance of validating algorithms on target populations. A system for
respiratory rate monitoring is more likely to be useful for people who have some lung disease. However, as
we have shown, there can be a difference in accuracy on participants with chronic lung disease and healthy
participants. The essence of the issue is that the performance on our test data may not match performance in
our actual deployment. One way around this would be to collect a small amount of ground truth data from some
or all participants in the real deployment. For example, in a 3 month deployment of 20 participants, it may be
feasible to randomly select 5 participants to wear the BioHarness for a few hours. This would give an estimate of
how the system is performing in the deployment. While this has overhead, we believe a scheme like this is akin
to insurance. It is worth paying this overhead and having an idea of the system’s accuracy rather than ending
up with hard-acquired and expensive data with little understanding of the accuracy.

Finally, our proposed system makes use of smartwatches, which have limited battery and processing capa-
bilities. We have shown that with duty cycling or offline processing, our approach can run on a smartwatch
and provide a full day’s worth of battery life. Alternatively, offloading approaches may allow real-time process-
ing with very little overhead and without the need for duty cycling, by running the random forest filter on an
auxiliary low-power processor and waking up the main CPU to run the CNN when a good window is detected.

An example of an application leveraging offloading technology is Google’s Now Playing [33]. This system
uses an always-on microphone and digital signal processor (DSP) to listen to the environment. When the DSP
detects that music is playing, it wakes up the main processor, which can search a small local database of popular
songs or send the information to the cloud to match against a large database. With this three-tier architecture,
Now Playing is able to provide always-on song recognition with less than 1% daily battery usage. Similarly, we
could run the WearBreathing random forest filter on an always-on, low-power processor. When it accepts a
window we can wake up the main processor to either run the CNN on the smartwatch GPU or off-load it to the
smartphone or a cloud service.

While programming an integrated DSP is feasible for large companies, it is difficult for most developers and
researchers. There are, however, research projects such as LittleRock [29], K2 [25] and Sidewinder [24] that try
to make these kinds of systems easier to develop. Sidewinder in particular, proposed providing developers with
data processing algorithms as building blocks that would run on the low power processor. The BioWatch and
SleepMonitor filters we discussed would be straightforward to set up on a system like Sidewinder. If machine
learning models such as random forests were supported, we would be able to run the filter on the low-power
processor.

7 CONCLUSION
In this paper, we present WearBreathing, which enables everyday respiratory rate monitoring. The WearBreath-
ing system is composed of two parts. The first is a random forest based filter that is able to detect when input
data will result in an accurate respiratory rate. The second is a convolutional neural network based model for
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extracting respiratory rate from accelerometer and gyroscope data. The combination of these two models results
in a tunable respiratory rate monitor that enables users to trade-off frequency for accuracy. Testing on a diverse,
out-of-the-lab dataset, we demonstrate that WearBreathing is able to detect respiratory rate with an MAE of
2.05 breaths/minute while producing a reading on average every 50 seconds, which is 3.6 times better than the
previous state of the art. We demonstrate that WearBreathing is highly tunable: users who are more interested
in accuracy could opt to receive less, but more accurate data by simply decreasing a single threshold. Finally,
we show that a current smartwatch is able to run WearBreathing while providing a full day’s worth of battery
life. The net result is a system that, for the first time, is able to accurately monitor respiratory rate outside of lab
environments using a smartwatch. We hope WearBreathing inspires and enables new research into respiratory
rate analysis.
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