What can be decided locally without identifiers?

Pierre Fraigniaud
Mika Göös
Amos Korman
Jukka Suomela

University Paris Diderot & CNRS
University of Toronto
University Paris Diderot & CNRS
University of Helsinki & HIIT
Input: graph G

Local decision

Fraigniaud et al.

Local decision without IDs

23rd July 2013
Input: graph G
Output: is $G \in \mathcal{P}$?
Local decision

Input: graph G
Output: is $G \in \mathcal{P}$?
Input: graph G
Output: is $G \in \mathcal{P}$?
Local decision

Input: graph G

Output: is $G \in \mathcal{P}$?
Input: graph G

Output: is $G \in \mathcal{P}$?
Input: graph G
Output: is $G \in \mathcal{P}$?
Input: graph G
Output: is $G \in \mathcal{P}$?

Local algorithm
\[\equiv O(1) \text{ communication rounds} \]
\[\equiv O(1) \text{ radius neighbourhood} \]
Input: graph G
Output: is $G \in \mathcal{P}$?

yes / no
Local decision

Input: graph G

Output: is $G \in \mathcal{P}$?

G is accepted iff all nodes output *yes*
Local decision

Input: graph G
Output: is $G \in \mathcal{P}$?

Locally decidable \mathcal{P}:
- triangle-freeness
- Eulerian graphs
- line graphs
- Locally checkable labellings (G, ℓ)
Our question

We ask: Do node identifiers help in local decision?
Our question

We ask: Do node identifiers help in local decision?

IDs do not seem useful…

- Graph properties do not depend on node labels
- Symmetry breaking is not needed for decision problems!
Our question—formalised

LOCAL model
(deterministic)

\[V(G) \subseteq \{1,2,3,\ldots\} \]
Our question—formalised

LOCAL model (deterministic)

\[V(G) \subseteq \{1, 2, 3, \ldots \} \]

ID-oblivious model

Restriction: Output is **invariant** under relabelling the nodes

(i.e., depends only on **topology**)

[FHK OPODIS’12]
Easy cases

Warm up!

Under some assumptions:

\[\text{LOCAL} = \text{ID-obliviuous} \]

Proof by simulation…
Easy cases

Let A be a LOCAL decision algorithm

ID-oblivious simulation of A

Input: local neighbourhood (H, v) of G

For each ID-assignment $f : V(H) \to \{1, 2, \ldots, n\}$:

- if $A(f(H, v)) = \text{no}$ then output no.

Otherwise output yes.

Assumptions: ● Nodes know n
Easy cases

Let \(A \) be a \texttt{LOCAL} decision algorithm

<table>
<thead>
<tr>
<th>ID-oblivious simulation of (A)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: local neighbourhood ((H, v)) of (G)</td>
</tr>
<tr>
<td>For each ID-assignment (f : V(H) \to {1, 2, \ldots }):</td>
</tr>
<tr>
<td>- if (A(f(H, v)) = \text{no}) then output (\text{no}).</td>
</tr>
<tr>
<td>Otherwise output (\text{yes}).</td>
</tr>
</tbody>
</table>

Assumptions: Nodes do not know \(n \)
Easy cases

Let A be a \textit{LOCAL} decision algorithm

ID-oblivious simulation of A

Input: local neighbourhood (H,v) of G

For each ID-assignment $f : V(H) \to \{1, 2, \ldots \}$:

- if $A(f(H,v)) = \text{no}$ then output no.
- Otherwise, output yes.

Assumptions:
- Nodes do not know n
- Nodes are Turing computable
Our main result

<table>
<thead>
<tr>
<th>Main theorem*</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCAL \neq ID-oblivious</td>
</tr>
<tr>
<td>(I.e., there is a locally decidable property that cannot be decided ID-obliviously)</td>
</tr>
</tbody>
</table>

Assumptions:
- Nodes do not know n
- Nodes are Turing computable
Our main result

Main theorem*

\[
\text{LOCAL} \neq \text{ID-obliviuous}
\]

(I.e., there is a locally decidable property that cannot be decided ID-obliviiously)

* Contrary to a conjecture of \[\text{[FHK'}12]\]

Assumptions:
- Nodes do not know \(n\)
- Nodes are Turing computable
Our main result

Main theorem

\[
\text{LOCAL} \neq \text{ID-oblivilous}
\]

(I.e., there is a locally decidable property that cannot be decided ID-oblivilously)

* Contrary to a conjecture of [FHK’12]

Proof...
Separation under promise

<table>
<thead>
<tr>
<th>Promise problem</th>
</tr>
</thead>
</table>
| **Input:** ● $G = (G, M)$ is a labelled n-cycle
● M is a Turing machine |
| **Promise:** ● If M halts in s steps, then $n \geq s$ |
| **Output:** ● *yes* if M runs forever
● *no* if M halts |
Separation under promise

Promise problem

| Input: | • $G = (G, M)$ is a labelled n-cycle
| | • M is a Turing machine |
| Promise: | • If M halts in s steps, then $n \geq s$ |
| Output: | • Yes if M runs forever
| | • No if M halts |

ID-oblivious **Impossible:** Must solve the Halting Problem
Separation under promise

Promise problem

Input:
- $G = (G, M)$ is a labelled n-cycle
- M is a Turing machine

Promise:
- If M halts in s steps, then $n \geq s$

Output:
- yes if M runs forever
- no if M halts

ID-oblivious

Impossible: Must solve the Halting Problem

LOCAL

Possible: Node v simulates M for $\text{ID}(v)$ steps
Getting rid of the promise

Promise: • If M halts in s steps, then $n \geq s$
Getting rid of the promise

Promise: \bullet \text{If } M \text{ halts in } s \text{ steps, then } n \geq s

\Downarrow \text{ Replace!} \Downarrow

Computation table of \(M \)

\subseteq G

\text{yes instance}
Getting rid of the promise

Promise: • If M halts in s steps, then $n \geq s$

\[\Downarrow \text{Replace!} \Downarrow \]

Computation table of M

Interesting bit: Table needs to be obfuscated!
Summary

For local decision, we proved:

\[\text{LOCAL} \neq \text{ID-obliviuous} \]
For local decision, we proved:

\[\text{LOCAL} \neq \text{ID-obliviuous} \]

<table>
<thead>
<tr>
<th>Decision</th>
<th>IDs help</th>
<th>IDs don’t help</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This work</td>
<td>[FHK OPODIS’12]</td>
</tr>
<tr>
<td>Search</td>
<td>[HHRS SIROCCO’12]</td>
<td>[NS Sicomp’95] [GHS PODC’12]</td>
</tr>
</tbody>
</table>
For local decision, we proved:

\[\text{LOCAL} \neq \text{ID-obliviuous} \]

Randomisation?

- Open problems in randomized decision [FKPP DISC'12]
Summary

For local decision, we proved:

\[\text{LOCAL} \neq \text{ID-obliviuous} \]

Randomisation?

- Open problems in \textit{randomised} decision [FKPP DISC’12]

Cheers!