To be Presented in CAISE 2017 — Pre-print

Accommodating Openness Requirements in Software
Platforms: A Goal-Oriented Approach

Mahsa H. Sadj Eric Yu-?

1Department of Computer Science, University of Tooont
2Faculty of Information, University of Toronto
{mhsadi, eric} @cs.toronto.edu

Abstract. Open innovation is becoming an important straiagoftware devel-
opment. Following this strategy, software compaaiesincreasingly opening up
their platforms to third-party products. Howevepeaing up software platforms
to third-party applications raises serious concaimsut critical quality require-
ments, such as security, performance, privacy aoprigtary ownership. Adopt-
ing appropriate openness design strategies, whiéh épen-innovation objec-
tives while maintaining quality requirements, cdits deliberate analysis of
openness requirements from early on in openingottpvare platforms. We pro-
pose to treat openness as a distinct class of umoetibnal requirements, and to
refine and analyze it in parallel with other destgmcerns using a goal-oriented
approach. We exterttie Non-Functional Requirements (NFR) analysis method
with a new set of catalogues for specifying anthiefj openness requirements
in software platforms. We apply our approach tasiethe design of data provi-
sion service in two real-world open software platfe and discuss the results.

Keywords: Ecosystems; Open Platforms; Software Design; Remgnts

1 Introduction

Open innovation is becoming an increasingly impur&drategy in software develop-
ment. Following this strategy, software developmangianizations open up their pro-
cesses and software platforms to external devedoipeorder to use external ideas,
knowledge and paths to markets (as well as thenat®nes) to advance their technol-
ogy[1]. External developers become part of a softwareystem offering complemen-

tary products and services for the open platfdins5].

However, opening up software platforms to thirdtparoducts is recognized as one
of the most difficult transitions in software pradwevelopment. While openness has
the potential to create momentum for the widespesaption and support of the plat-
formin the market, it may lead to losing overall cohtrbthe platform[2]. Moreover,
opening up platforms to third-party applicationsea serious concerns about critical
quality requirements, such as security, performagpigprietary ownershipf the plat-
form and its complementary applications. Yet, themo systematic method to address
these concerns in opening up platforms.

adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

A successful transition to an open platform retie@dopting openness design strat-
egies that can fulfill open innovation objectivelsile preserving the quality of the plat-
form and complementary applications and servicetoping such balancedesign
strategies calls for deliberate analysis of theiiregnents that openness introduces on
the design of software platforms from early onha transition process. Nevertheless,
openness is only one design concern among manshizaild be accommodated in
software platforms. Effective openness designeias should optimally fulfill all of
these concerns.

Example. Consider a common design scenarioopening up software platforms:
providing data service to third-party applicatiarnghe design includes decisions about
how a platform communicates data with third-pagplacations and how third-party
applications communicate data with each other. §ldesign alternatives can be con-
sidered for opening up platform data to third-papplications; namely: (1Fentral-
ized data provision (CDPPIatform centrally checks every data communicetibe-
tween third-party applications; (Zemi-centralized data provision (SDR) mediator
(either the platform or the end-user) decides wdretimd under what conditions third-
party applications can communicate directly; anyl 8centralized data provision
(DDP): Third-party applications communicate data dingetithout any central control.

To choose an appropriate design strategy to opgtatiiorm dataperformancecan
be a critical concern for a specific platform. Cidesing this,centralized data provi-
sionis not an appropriate design since central datér@oimposes additional load on
the platform and increases data access time fiat-fizirty applicationdata integrity
can be another requirement for the platform. Is tegardcentralized data provision
performs well since every data operation is peréatrander direct control of the plat-
form, helping eliminate inconsistencies in simuéiaus data read and write operations.
Comparablysemi-centralized data provisiaiso works well enough if platform is the
mediator and if the platform decides to controtical data operations itselfDecou-
pling third-party applicationds also important for thepen platform since with the
increase of third-party applications, it will beffdiult to maintain the platform and
prevent potential erroneous and malicious data comcations. Considering thisen-
tralized data provisioris the most effective design since it minimizes tioupling of
third-party applicationdncreasing adoptability of the platforamong external devel-
opers can be one main reason for opening up thipta However centralized data
provisioncreates &ccessibility barriers for the platform since third-party aaliions
should be checked and permitted by the platforhetanstalled and access their re-
quired run-time data. This difficulty negatively pacts the platform adoptability.

To choose the most appropriate openness desigegtraystematic methods are
required that help decide between these competiddréeracting requirements.

Contributions. We propose to treat openness as a distinct clagsrefunctional re-
quirements, and to refine and analyze it in paralith other concerns in designing
software platforms using a goal-oriented requiretmerodeling languadé]. The pro-
posed approadilows to specify and refine the business requirgmleehind openness,

the technical quality requirements that openneg®#®s on the design of software plat-
forms, and the concerns that openness introducegham quality requirements. The
refined requirements are used as criteria for Saeoptimal design alternatives. To
facilitate specification and analysis of opennespiirements, we propose three types
of catalogues: (1Ppenness requirements specification and refineiweatogues(2)
Openness operationalization cataloguasd (3)Openness correlation catalogudhe
catalogues encode alternative paths for refinirhcerationalizing openness require-
ments, which can be customized for a particulaigthesontext. We apply our proposed
approach to revisit the design of data provisiamise in two real-world open software
platforms and discuss the results.

2 The Proposed Approach

We consider openness as a concern that shouldthe the design of platforms func-
tionalities[7]. We describe openness as a soft goal (i.e. actolgehat can be fulfilled
to various degrees) and refinaiging contribution links. We assess the fulfillmdet
gree of openness requirements in alternative desephanisms using the goal-oriented
forward evaluation proceduf6].

To deal with openness requirements, we customiegeNtbn-Functional Require-
ments (NFR) analysis methdfl]. The customized approach is comprised of seven
main steps, which can be performed iterativ€ly:Specifying and refining openness
requirements(2) Specifying and refining other design concer®; Prioritizing the
requirements(4) ldentifying possible alternative operationalizagp(5) Evaluating
fulfillment degree of the identified requirementsaach operationalizatiof$) Ana-
lyzing potential trade-offs; an@) Selecting an appropriate design mechanism.

To facilitate specification and analysis of opermas a class of non-functional re-
quirements, we extend NFR with a new set of cat@egnamelppenness catalogues
Openness catalogues are of three main tyi¢©penness requirements specification
and refinement catalogug®) Openness requirements operationalization catalogues
and(3) Openness correlatiocataloguesThese catalogues are used in the related steps
described above, and provide extensible and cugtdit@ patterns for specifying, re-
fining and operationalizing openness requirementheé design of software platforms.

In the following, we present instances from eagietpf the openness catalogues.
To save space, we omit the details about the cdengkfinition and refinement of the
items in the presented catalogues, and the sofraaswvhich the items are extracted.

Openness Requirements Specification and Refineme@atalogues.These cata-
logues help characterize and refine the specificirements and concerns that open-
ness introduces on the design of software platfo@pgnness requirements catalogues
are of three typegl) Business-level openness requirements cataloddgSystem-
level openness requirements catalogaesl(3) General design concerns catalogues

System-Level Openness Requirements Catalogbese catalogues characterize gen-

eral technical and quality requirements that shd@dnet in the design of open plat-
forms. Three instances of system-level opennessreagents catalogues are shown in
Fig 1L For example, the first cataloguBid 1-g identifies that openness introduces
seven types of requirements on the design of softpiatforms, includingéccessibil-
ity” and “extensibility. From this catalogue, requirements specificapiaths can be
generated, such astd open up a platform, the platform needs to bessible to third-
party applications’, or “To open up a platform, the platform design needsetexten-
sibleg’. The second catalogu€&if 1-b) identifies that &ccessibility requirement can
be refined in four ways, includingitcessibility [functionality or servicéhnd “acces-
sibility [data]”. From this catalogue, more detailed requiremepeifications can be
generated, such a$d open up a platform, platform data need to beesasible to third-
party applications. The third cataloguer{g 1-9 identifies that &xtensibility require-
ment introduces six types of requirements on dqglat design, includingomposa-
bility [Platform]” and “deployability [Third-party applications] each of which needs
to be further refined into more fine-grained requments. From this catalogues, refine-
ment paths can be generated suchTasrake a platform design extensible, the plat-
form needs to be composabhland subsequentlyTo make a platform composable,
third-party applications should be decoupled frdma platform and from each otHer

e Openness [Platform]
Help—Help’ Help Help Help. Help——Help.

Accessibility Extensibility — Distributability Interoperability =~ Reusability Modifiability =~ Transparency
[Platform] [Platform] [Platform] [Platform] [Platform] [Platform] [Platform]
[8] [9] [10] [2] [11] [12] [13]

@ Accessibility [Platform]
Help—_Help Help! Hel
Accessibility Accessibility Accessibility Accessibility
[Functionality / Service] [Data] [Structure] [Source]
G Extensibility [Platform]
Help——Help Help Help Help——Help
Flexibility =~ Composability Stability Deployability Configurability Evolvability
[Platform] [Platform] [Platform] [TP APP] [Platform] [Platform]
ELS PN
Help Help Help Help Help
o D Indefand Indesend)
Decoupling evelopment ndependent ndepéndent Backward-
[TP APP] A synchronization Deployment Behaviour Compatibility
[TP APP] [TP APP] [TP APP] [Platform]

Fig. 1. Three Instances of the System-Level Openness Reneiits Catalogues

To develop system-level openness requirementsocates, two steps are per-
formed: (1) The content of the catalogues is ektdhfrom the Software Engineering
literature discussing technical requirements innopeftware platforms. (2) The re-
quirements are classified, related, and refinedgusivo types of non-functional re-
quirement refinemeri6]: topic refinement (e.g Accessibility catalogue) and type re-
finement (e.g. Opennessand “Extensibility catalogues). To structure the content,
related elements of the goal-oriented requiremetadeling language are use&aoft
goal’ element is used to represent non-functional nexmpénts, andHelp” contribu-
tion link is used to relate and refine the requieais.

Business-Level Openness Requirements CataloJuese catalogues characterize
general non-technical requirements in open softywtatorms and relate them to sys-
tem-level openness requirements. Non-technicaliregents include the business and
organizational incentives that drive the need fmermess as well as the social require-
ments that should be met in open software platfoash business-level openness
requirements catalogue has two parts: a set oftexmical requirements and the re-
lated technical requirements. Two instances ofetltadalogues are depictedFig 2

For example, the first catalogueiq 2-3 identifies that Stickinessand “Market Pres-
encé are two non-technical requirements in open saféyaatforms. Stickiness refers
to the degree that a software platform supportedtginued use by a user instead of
switching to a competitor platforfi4]. “Stickiness can be further related to more
fine-grained business requirements suchNetwWork sizé Network size refers to the
number of complementary application and servicassbpport a platforfil5]. From
this catalogue, specifications and refinement pesimsbe generated, such &né ob-
jective in opening up a software platform is torgase the stickiness of the platfotm
and then To increase the stickiness of a platform, the nkvgize of the platform
should grow" “ Network sizérequirement can then be related and refined stesy-
level openness requirements, suchasssibility. One refinement is as followsTo
increase the network size of a platform, the platfmeeds to be made accessible to
third-party applications.

@ Custc Related Objectives Market-Related Objectives @ Network Effect Objectives
[14] . [14] t[14] [14] ’ [14] O LN
Customer Community Stickiness Market Presence Software Vendor Partner ECosyStem Garivity
[Platform] [Platform] [Platform] Offering [Platform] [Platform]
Help. Help Help Help Help

Network size [Platform]

[a)
Adoptability [Platform]

Help Help
Hely

Accessibility
[Platform]

Accessibility Extensibility

[Platform] [Platform]

Interoperability
[Platform]

Modifiability
[Platform]

Fig. 2. Two Instances of the Business-Level Openness Reqeires Catalogues

To develop business-level openness catalogueg heps are taken: (1) The con-
tent of the catalogues is extracted from a set udifss and Software Engineering
literature discussing open innovation, and thermss, organizational, and social needs
that it introduce®n the development of software platforms. (2) Téguirements are
described using soft goals, and categorized, bkt refined usinghelg’ contribu-
tion links. Since business-level openness requintsrare often described as openness
business objectives, the notion of soft goal iscemtually close for describing these
requirements. (3) The last row of refinement iatelbusiness-level openness catalogue
is related to a set of first-row refinements in fystem-level openness requirements
(i.e. Fig 1-3 using“helg contribution links. Contribution links allow tansoothly re-
fine and relate the business-level requirementsthe system-level requirements.

General Design Concerns Catalogu€hese catalogues characterize general concerns
and requirements raised in opening up softwardqutas. These concermeay have

synergistic or conflicting relationships with opess requirements, and need to be re-
fined and operationalized in parallel with opennesgiirements in designing software
platforms. Two instances of this group are showhign3. For example, the first cata-
logue Fig 3-9 identifies ‘security as a general concern in opening up software plat-
forms and also characterizes the specific typeseofirity requirements (such &s-
tegrity’ and “availability”) that are potentially impacted by openness remménts.
From this catalogue, specifications can be gengratech asSecurity needs to be as-
sured in opening up a platfofmThen this requirement can be further refinedaks
lows: “To assure platform security, integrity of the pdath data should be preservéd

(a) Security [Platform] [6]) Performance [Platformje]
Help Hel
— o
Help—Help™ Help Help_Help. Time Space
Availability Integrity Confidentiality —Operational Privacy Perfoamance Perforxnance
[Platform] [Pla7tf‘(3rm] [Platform] Security [Platform] Help Help Help, Help
Help~ Help, [Platform] Help = ©
Response Access Management Performance of
Completeness Accuracy Isolatability Time Time Time Computing
[Platform] [Platfortnl [Platform] [Platform] [Platform] [Platform] Resource
Help™ ~ Help Help. Help Help [Platform]
¢ o o
Consistency Value Accuracy Timely Isolatability Isolatability
[Platform] [Platform] Accuracy [Platform [Platform
Help Help [Platform] components] data]

Consistency Value Accuracy
[Data] [Platform data]

Fig. 3. Two Instances of the General Design Concerns Catatog

The content of this group of catalogues is extchfri@m a set of Software Engineer-
ing and Business literature discussing problemscems, and requirements in opening
up software platforms. The content is then stratwimilar to the previous catalogues.
Some requirements in this group, such as securiyparformance overlap with exist-
ing NFR cataloguef§]. The existing catalogues have been reused andnoizstd ac-
cording to the specific context of open softwaratfokrms.

Openness Requirements Operationalization Catalogue©perationalization cata-
logues identify the system functionalities thatidddoe specifically designed to open
up platforms to third-party products. They alsoraptate alternative mechanisms and
patterns for designing these functional requiresieéBach openness operationalization
catalogue has two parts: (Bpsign objectivesthe specific functionality that need to
designed or implemented; and (d@sign alternatives Alternative mechanisms to re-
alize the design objective. An instance of the ogss operationalization catalogues is
illustrated inTable 1 The catalogue is related to the design @ata provision and
communications serviteThe catalogue elaborates on three generic altea mech-
anisms for designing this functionality, namely) @entralized data provisign(2)
Semi-centralized data provisip(8) Decentralized data provision

The content of these catalogues is extracted frasataof Software Engineering
research resources discussing technical desigpesf software platforms.

Table 1.0ne Instance of the Openness Requirements Opeaktiation Catalogues

Design Objective:To provide data service to third-party applications

Design Mechanism 1: Centralized Data Provision (CDH16]

The platform controls every data and informaticeriactions between third-party applications andptae
form, and between one third-party application andtleer. In this design, all data is stored ardhange

through a single API in the platform. Data is aseesthrough the platform API either by expligét/se

operations or publish/subscribe at run-time. An iehtifies available data at run-time.

Design Mechanism 2: Semi-Centralized Data Provisio(SDP)[17]

Third-party applications can communicate data diyée some cases. Thirparty applications declare wi

data they need at install-time. The requests atialip submitted to a mediator (i.e. end-usemptatform)

The mediator decides to allow data communicatiaresty or not. If yes, third-party applicationsnceom-
municate directly. If no, the mediator decidesdateool data read operations, data write operatiorizoth.

Design Mechanism 3: Decentralized Data Provision (DP) [10]

Third-party applications can directly exchange datd information with each other. Data interactibes
tween two third-party applications are controlled aupervised by the thifgarty application that provid

the requested data. Data access requests areedeataun-time and the data provider applicatioespon-
sible for managing the requests and controllingcthresistency of data read and write operations.

Partner Ecosystem Stickiness ~ Market Presence Software Vendor ~ Marketreach New market ~ New community
Gravity ([;Iatform] [Platform] [Platform] Offering [Platform] [Platform] [Platform] [Platform]
=]
Help Help. Help Help Help. Help Help
Adoptability [Platform] Network Size [Platform] Innovative Features [Platform)
> Openness Performance Ownership
Security Help Help [Platform] Help Help [Platform] [Platform]
[Platfor/m]s[?\ @
S >X Hel % Hel
Operational V¥ et el - - i ‘;es onse
Security integrity n Privacy Accessibility Extensibility ¢ P!
Confidentiality[[Platform [Platfrom] Time
[Platform] [Platform [Platform]
Helb Data] [Platform el Data) ol %‘/ [Platform] Help
" wyDatal Isolatability, | o Deployability o
i Accuracy | [Platform |° :I:Imt?osa;)lllty [TP App] P
atform
i Help[D:-Jt:-J] l e Data] Help Help Help
[e=)
Availability) Confidentiality Accessibility IL Independent Independent Access Ownership
(TP App Consistency (TP App Isolatability [pjatform Decoupling Deployment Behaviour time [Platform
Data] [Data] Datal [TPAppDatal ~ pata] [TPAPP] [TPApp] [TPAppl [Data] Data]
! A) & K

Help Help

G: Provide Data\
Semi - centralized Decentralized

data provision data provision data provision

Fig. 4. One Instance of the Openness Correlation Catalogues

Openness Correlation CataloguesOpenness correlation catalogues identify the im-
pact of each openness design alternative (in tleeatipnalization catalogues) on the
fulfillment of the related openness requirementstkie specification and refinement
catalogues). An instance of a correlation catalags@own inFig 4. For example, one
securityconcern in designing data provision service camldta integrity (Integrity
[platform data]"). This requirement can be further decomposed‘iatzuracy [data]

and then tonsistency [datd] The presented catalogue identifies traritralized data

provisiori design alternative meets the requirement of datsistency. In contrast, the
other two alternatives ofsémi-centralized data provisiband “decentralized data
provisior’ violate this requirement. Another requirementttheay be important in
opening up a platform isatcessibility [platform], which can be further refined into
“accessibility [data]. The catalogue identifies thaténtralized data provisidrhas a
negative impact on the accessibility of platforntedén contrast, the other two alterna-
tives have a positive impact on this requirement.

To develop correlation catalogues, two steps ar@peed: (1) The related require-
ments that are affected by each alternative operaization are selected from the re-
quirement refinement catalogues. (2) The positiveagative impact of the alternative
on fulfilling the related alternatives is assesSétk assessment is done based on expert
knowledge from the design alternatives and musideempanied by a sound reasoning
or evidence. The alternative mechanisms are askaga@st the last row of refinement
for each related requirement, and are describergusielg’ or “hurt’ contribution
links. A detailed example of an assessment is gdea/in[7].

3 Application of the Proposed Approach

We use the proposed approach to revisit the higbl-lrchitectural design of data pro-
vision service in two real-world open software fidans. Both platforms are embedded
operating systems. The first platform is an opagatiystem controlling the electronic
units of a vehicle and the second one is an operatistem for smartphone devices.

To apply the proposed approach on each design teseyreparatory steps have
been taken: (1) The documents containing informagibout the design of each plat-
form have been collected from the literature. (B¢ Thformation required for applying
the proposed approach has been extracted fronotleeted documents. The extracted
information is of two types: (a) the important dgsrequirements for each case; i.e. the
requirements that openness introduces and otheraesoncerns that should be con-
sidered in opening up each platform; and (b) therity of each design requirement.
Where the required information was absent or nptieily mentioned, we have aug-
mented the information based on our own understgnfiom the case. Augmented
information is distinguished from the extractecbimhation using “*".

To use the catalogues, two preparatory steps melee performed. (1) The domain
requirements are matched with the requirementssitevailable in the catalogues. If
the wording of a requirement is different, the nastilar requirement item in the cat-
alogues is selectetf.no similar item is found, the correct placemefthe requirement
is found and the related catalogue is augmenteld meétv the content. Adding new
content may also need modifying the structure efdatalogue. (2) The evaluation of
design mechanisms in the correlation cataloguesaisaybe revised in each context.

To re-design the data provision service in each,dag seven steps described in the
beginning ofSection 2are performed. To refine the requirements in eaxdigth con-
text, the related refinement paths in the catalqmesented irig 4 are used. Refine-
ment is done up to the level that there is evatuatiata for the refined requirement and

the three alternative designs in the correlatidalogue. The fulfillment of the require-
ments is then evaluated using the goal-orientesddnt evaluation proceduréhe eval-
uation results identify the degree of requireméuifd8iment in each design alternative.
Requirements fulfilment is described in five deggeSatificed (Sat), Partially Satis-
ficed (PSat), Conflict (Conf), Partially Denied (Bb),andDenied (Den)The evalua-
tion results are used to compare alternative desigd identify the potential trade-offs
that should be made between identified requiremiayntshoosing each option. Based
on the comparison results, the most appropriatiguaésr the data provision service is
selected. The selected option is then comparetktoriginal design.

An Open Embedded Automotive Software PlatformThe information related to this
platform is extracted frorfiL6]. In [16], the process of designing the platform is ex
plained in detail. The document explains the neraents of the platform, their prior-
ities, the decisions that were made to design tatopm, and the rationale for those
decisions. However, no modeling and analysis haa bene in the design proceas.
the information required for our analysis was aaal# in the document.

The platform is an operating system sitting on ébphe electronic hardware of a
vehicle to control the vehicle electronic unitseTgiatform has to deal with safety crit-
ical functionalities and data. Thus it should bghty dependable. The platform has
been opened to different types of third-party aggtlons, such as applications devel-
oped by certified developers and applications dgesd by undirected developers.
Third-party applications sit on top of the platfoamd add functionality to it. Examples
of these additional functionalities include: autadimaontrol of the speed of the vehicle
or displaying the speed of the vehicle in the digplro perform such operations, third-
party applications may need read or write acceskata (such as speed and lateral ac-
celeration data), controlled by the platform orewtthird-party applications.

The important design requirements of the platfona their priorities are described
in Table 2 The related paths in the catalogud-af 4 that help specify and refine the
requirements as well as their fulfillment in eatiermative design are shown g 5.

Table 2. Design Requirements for the Open Embbedded Autom&iatform

Design Requirements | Text Description

Openness Requirements

“The software platform must fulfil a set of progestto allow thedecoupling of
Type: “Composability” |applications andeliminate the need fodevelopment synchronization. The ar-
Priority: “High” chitecture shouldllow development, integration and validation opligations
independent of other applications. Non-technica@rsiannot do this them-
selves, it must be provided for by application angilatform developers.”
“The applications must be possiltdebe deployed independently of each other
Type: ‘Deployability” |and theproduct behavior must not depend on the order in which applications
Priority: “High” are ingtalled. There must also be a deployment infrastructurplace whicl
fulfils necessary integrity requirements.”

General Design Concerns
“Many embedded domains hastingent dependability requirements.real-
Type: ‘Dependability” time requirements for the execution of individual applicatignisitegrity re-
Priority: “High” quirements, high availability, andmechanisms teliminate undesiredfeature
interaction if several applications interact with the samelafrs.”

Security Openness Performance

[Platform] n [Platform] [Platform]
¥ X ¥ |ntegrity P X % PEL
: n
Operational Deployability Help

e %% _[Platform Data] Help
Securityf;‘ps o % n XX oa nbX ¥
Y Composability ¥ % % ey [ppl :: T Response
[PlatformrLIp Accuracy Ip\l %% [Platforml /"—'(tensibility Wx * Time
Hel

[Platfrom] e Hel Halp
llx[Data]H,.,,lxx D# V;::x "dp\ca‘zxxld g""" |:1 ‘d,xx [L[Pl‘it‘florm]
=2)T evelopment .~ Independent ndepéndent X
Availability — Consistency ... ;o nisarion D‘*_I_C::F;:"g Deployment Behaviour ACCESS time
[TP App Data] [Datal] [] [Datal]
u L 9

~ v
Semi - centralized

data_provision data provision data_provision
> v v R % x 1
Gal T<a:s>k Sofgioal Means-Ends Satisficed Partially Conflict Partially Denied Very

Satisficed Denied Critical

!
A d CDP: Centralized SDP: Semi-centralized DDP: Decentralized Critical

ugmente data provision data provision data provision
Item Left-Most Evaluation Labels Middle Evaluation Labels Right-Most Evaluation Labels

Fig. 5. Specification, Refinement, and Evaluation of thedmant Design Requirements

Table 3summarizes the fulfillment of key requirementseach design alternative.
As shown, tentralized data provisidroutperforms the other two alternatives in ful-
filling all the requirements except performancectmtrast, the other two alternatives
partially satisfice performance. Howevegemhi-centralized data provisidwiolates
two openness requirements ebtposability and “deployability, and “decentralized
data provisiori underperforms in the fulfilment of all the othexquirements.

Table 3. Fullfililment of the Important Requirements in Dasifjlternatives for Data Provision

Requirements Security Openness Performance
oS Y CP DP RT

Priority H H H H H

CDP PSat PSat PSat PSa PDen

SDP PSat PDen PDen PDen PSat

DDP PDen PDen PDen PDen PSat

OS: Operational Security [Platformiy : Integrity [Platform Data]CP: Composability [TP Application]pP: Deployability
[TP Application];RT: Response Time [Platform: High (Very Critical)

Although “centralized data provisidrfulfills four of the five important design re-
quirements and achieves the highest rank amonthtie alternatives, it has negative
impact on the performance of the platform. Cergealicontrol over all data interactions
creates a bottleneck in the platform. In case wéis simultaneous data read and write
requests, this design creates a queue of reghestshould be checked by the platform
and increases the waiting time of data operatidosvever, the automotive platform is
in charge of safety-critical and real-time openasioConsidering this, performance is
not a negligible requirement.

In comparison, $emi-centralized data provisignthough violating two openness
requirements of¢omposability and “deployability, alleviates the load of platform by
delegating the control c(fomedata interactions to the related third-party aggtlons.

Since critical third-party applications are develdiby certified developers, the plat-
form can easily decide to control which data operst delegating the control of less
critical data interactions to the related thirdtpapplications. Considering this, semi-
centralized control does not negatively impactitibegrity and security of the platform
data. Accordingly, we assess the final impactsaitii-centralized data provisibon
“Security [Platform] as positive. Thus, it would be reasonable toifaersome de-
grees of tomposability and “deployablity to achieve higher degrees of performance
for real-time operations of the automotive platform

In [16], “centralized data provisidnalternative has been adopted to open up the
automotive platform data tall typesof third-party applications. The problem of per-
formance (real-time data access) is alleviate@ttaching different priorities to differ-
ent types of third-party applications waiting iretbata request queue. However, ac-
cording to our analysis, for the third-party apations with less safety-critical opera-
tions “semi-centralized data provisidis also appropriate. Thus, using both options of
centralized and semi-centralized data provisioompen platform data to different types
of third-party applications improves performancdjles minimizing negative impacts
on the openness requirements of composability aptbglability.

This difference might have several reasons: (1joR@ance has been sacrificed to
gain higher degrees of composability and deploitsgh&nd probably security. (2) It is
also possible that the track of performance requéirgs has been lost in designing data
provision service. This is plausible due to thgdéanumber of decisions made during
the design and the lack of support for requiremaatsking. (3) Alternatively, due to
some domain characteristics hot mentioned expliaitthe design document, such as
the hardware infrastructure, performance is noti@antly impacted by the bottleneck
of centralized data provision.

An Open Embedded Mobile Operating System PlatformDifferent pieces of infor-
mation related to the design of the mobile platfdrave been collected frofg2, 15,
17]. Some requirements and priorities have been addeedban our understanding
from the context, which are distinguished by “*".

The platform is an operating system sitting on tdpthe hardware device of a
smartphone to control its functionalities. The fadeh hosts native and non-native ap-
plications. Third-party applications add a widegamf functionalities that could be of
potential interest to various mobile users. Develept of mobile applications is highly
knowledge-intensive. Thus, mobile application depetent is usually open to a wide
range of third-party developers. Third-party apgicns may need read or write access
to platform data or the data generated by othed-{barty applications.

The requirements of the mobile platform and theionities are described ihable
4. The related specification and refinement patbhmfthe catalogue dfig 4 and the
fulfillment degree of the requirements in each gesilternative are shown kig 6.

Table 5summarizes the fulfillment of the identified reagrinents in each design
alternative. As showncéntralized data provisidrunderperforms in fulfilling all the
high-priority requirements, namehatcessibility, “ adoptability’, “ partner ecosystem

gravity’, “innovative featurés and ‘performancé Interestingly, this alternative out-

performs in fulfillingmedium-priorityrequirements, such asdmposability, “ deploy-
ability” and “ownershig. In contrast, the other two design alternativgsadly satisfice
high-priority design requirements. Howevesemi-centralized data provisibmper-
forms better in fulfilling privacy [data]’ requirement.

Table 4. Design Requirements for the Open Mobile Platform

Design Requirements | Text Description
Openness Requirements
“In many knowledge intensive domains, users andrazl parties play amm-

Type: portant role in developing innovative products. The mobile operating system
“Innovative Products’ [providers benefit from emerging external innovasidrecauséaving a high
Priority: “High” number of applicationsincreasegheattractiveness of the platform fopotential

customers. Having large number of customers lead to a bigganket share
the mobile application market15]

“Third-party developers have to be considered@m®rtant players in the mo-
bile ecosystems. While not every application carctresidered innovativeg

Type:"Partner Ecosys-

tem Gravity” larger pool of developers will provide more innovative output. Thenetwork
Priority: “High” size of developersand end users (i.e. network effectsyill be a significant factor
for application developers in selecting which melgtosystem to join[15]
“Entry barriers of both monetary antéchnical nature, including entry barrier
Type: for application market, development resource nesuisprograming languag,
“Low Entry Barriers” will be a significant factor for developers in selecting which mohliatform tc
Priority: “High” join. Cpenness and entry barriers include aspects of laaedwoftware and mar-
ket in open platforms [15]
Partner Ecosystem X d Market reach New market New community
Gravity [Platform] = * [Platform] X X [Plat‘g)rm] N [Platform] XXX
Helpx ‘s Help. Help Help
11 Adoptability [Platform] Il Innovative Features [Platform] Y%
! !
) Op§en§n§ss Performance Ownership
Security 4y x Help [Platform] Help Help [Platform] [Platform)
[Platform] | XV P x
L% |
¥ Help Yo, Privacy Lxx Help
g{‘tleérﬁy C‘l ‘f,:d,.(i P:;t:o]rm Extensibility R)é;z gnse
[Platform onfidentiality| Data [Platform] [Platfrom] esp
Help pata] [Platform telp LLx e %39 % Time Help
Lxx Data] Isolatability Lxx Deployability | [Platform]
Accuracy [Platform " Composability [TPApp] Help
neplDatal l vy Datal Hel;[PIatform] Help Help
L% XA (L " x X% Lx% XA b X%
%% " o L% pccessibility %% * |ndependent Independent Access Ownership
A Confidentiality . . .
Consistency (TP App Isolatability [Platform Decoupling Deployment Behaviour time [Platform
[Data] Data] [TP App Data] Data] [TPAPPl [TPApp] [TPApp] [Data] Data)

data provision

v
Semi - centralized

data provision

v
Decentralized
data provision

{CDP: Centralized data provision —
i Left-Most Evaluation Labels

SDP: Semi-centralized data provision —
Middle Evaluation Labels

DDP:

: Decentralized data provision — |}

Right-Most Evaluation Labels

Fig. 6. Specification, Refinement, and Evaluation of thedmant Design Requirements

Table 5. Fullfillment of the Important Requirements in Dasi§jlternatives for Data Provision

Require- [Security [Openness: System-Levi®penness: Business-LevéPerformance |Ownership
ments

*PV AC *CP *DP AP ICF *PR * oW
Priority *M H *M *M H H *H *M
CDP PSat PDen PSat PSatPDen “ Conf- PDen PDen PSat
SDP PSat PSat PDen PDegn PSat N GenPSat PSat PDen
DDP PDen PSat PDen PDen PSat N CenPSat PSat PDen

PV: Privacy [Platform Data]AC: Accessibility [Platform];CP: Composability [Plat]DP: Deployability [TP App];AP:
Adoptability; NS: Network Size [Platform]iCF: Innovative and Complementary Featur®R: Performance@W: Own-
ership;H: High (Very Critical) ;M: Medium (Critical);: Conflict is resolved to partially denied or paHy satisficed.

Although “semi-centralized data provisibsatisfices all the high-priority require-
ments and achieves the highest score from amortithe design alternatives, its im-
plementation has negative impact on temennessequirements of composability
and ‘deployability. It also violates tlata ownershiprequirement. Nevertheless, com-
posability and deployability are two important teial quality attributes for an open
platform. Decoupling third-party applications fraeach other and reducing their de-
pendencies plays an important role in the maintalitgand controllability of the plat-
form. Specifically when the size of a platform atsdcomplementary applications and
services grow, which is usually the case for amompebile platform. Moreover, the
ownership of platform data is not a negligible riegmnent for a platform owner.

However, ‘accessibility and the impact it has on thadoptability’ and ‘innovative
feature$ is strategically critical to the success of a neplatform in the market, spe-
cifically in a fierce competition with other platfms. Thus, it would be reasonable to
sacrifice some degrees of thgstem-level openness requireméatgain more support
from innovative and complementary applications fihsiness-level openness require-
ment3, specifically in a knowledge-intensive domaimaasbile applications.

The result of our analysis indicates thsgthi-centralized data provisibis the best
option from among the three alternatives to opemapile platform data to third-party
applications. This result is consistent with realld implementation of open mobile
platforms such as Android.7]. In Android, third-party applications declare tthata
they require from the platform and other third-gaapplications at install time. The
access is permitted by the end user (i.e. endisisee mediator).

4 Discussion

Our goal was to provide a method to determine gpate design strategies for open-
ing up software platforms to third-party applicasoWe proposed to treat openness as
a non-functional requirement and to use a goahtettapproach to refine and analyze
openness in parallel with other requirements. Hfi@ed requirements are used to se-
lect optimal design options. We have developed afseatalogues that facilitate rea-
soning about openness requirements.

We applied the proposed approach to revisit theggdes data provision service in
two real-world open software platforms: an autor®platform and a mobile platform.
Our goal was to determine the most appropriate mg@design strategy for each case.

In the first case, our analysis identifies thabebination of centralized and semi-cen-
tralized data provision can be used to open upplaorm data to different types of
third-party applications. This result is slightliffdrent from the original design of the
platform, which is only centralized data provisid¥e aim to discuss the results of our
analysis with the original designers in a futureigiew. In the second case, our results
are consistent with the design of open mobile ptatf, such as Android. The analysis
justifies the accessibility of mobile platforms egternal applications. Moreover, the
analysis shows that system-level openness requitsroan be sacrificed to fulfill busi-
ness-level openness requirements. Finally, in bagies there is no design option that
can fulfill all the identified requirements. In dacase, trade-offs should be made.
Therefore, it is crucial to detect and analyzetthde-off points.

The proposed approach allows to reason about opsragea distinct requirement.
This approach complements recent research effarthe development of open soft-
ware platforms, which either focus on the technétsdign of the platforms, including
API development (e.d9, 13, 18)) or on the business aspect (¢23.19]).

This paper presents only one instance of a compfgtaness correlation catalogue
that we have developed. The complete definition r@fithement of the requirements
and operationalizations in the presented catalomuaddition to other catalogues will
be published in a future work.

To improve the applicability of the proposed appigahree issues need to be fur-
ther addressed: (1) The catalogues and the moeetdaped for a specific domain be-
come complex too quickly. To handle this complex@ytomated support is required.
(2) The evaluation procedure to select optimalgtesirategies needs to be made effi-
cient via omitting exhaustive evaluations of ak thptions. (3) The evaluation proce-
dure should allow to assess the final impact efctalg multiple operationalizations on
the fulfillment of the identified requirements irdasign process.

Further research is needed to extend and valitiatedntent of the proposed cata-
logues and to compare the proposed approach wéthrpguirements analysis methods
for software systems, such as Architecture TradeA@élysis Method (ATAM)[20].

5 Conclusion

We proposed a goal-oriented approach for analyap@nness requirement in software
platforms. The proposed approach is supported bgtaf catalogues that facilitate
specification and refinement of openness requirgs@ie presented instances of these
catalogues herein. Specification and analysis gfirements is essential for adopting
effective openness design strategies that @pert enoughto benefit from the contri-
butions of third-party applications and at the sdime possess the quality aflvsed
systems. Adopting such balanced strategies isalrfgzithe viability and sustainability
of open platforms. Further research is neededsiesashe effectiveness of the proposed
approach and catalogues in case studies of optarpigorojects.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Chesbrough, H. W. (2006). Open innovation: The maperrative for creating and profiting
from technology. Harvard Business Press.

. Boudreau, K. (2010). Open platform strategies ammbvation: Granting access vs. de-

volving control. Management Science, 56(10), 188921
West, J. (2003). How open is open enough?: Meldnogrietary and open source platform
strategies. Research policy, 32(7), 1259-1285.

. Jansen, S., Brinkkemper, S., Souer, J., & Luinendur@012). Shades of Gray: Opening

up a software producing organization with the opeftware enterprise model. Journal of
Systems and Software, 85(7), 1495-1510.

Sadi, M. H., & Yu, E. (2014). Analyzing the evoli of software development: from cre-
ative chaos to software ecosystems. In IEEE Eigitdrnational Conference on Research
Challenges in Information Science (RCIS), 2014, (1-11)

Chung, L., Nixon, B. A., Yu, E., & Mylopoulos, J. (28). Non-functional requirements in

software engineering (Vol. 5). Springer Science &iBass Media.

Sadi, M. H., & Yu, E. (2017). Modeling and Analygi®©penness Trade-Offs in Software
Platforms: A Goal-Oriented Approach. In InternatibiVorking Conference on Require-

ments Engineering: Foundation for Software Qudfity. 33-49).

. Anvaari, M., & Jansen, S. (2010). Evaluating amttitiral openness in mobile software plat-

forms. In Proceedings of the Fourth European Cont&ren Software Architecture: Com-
panion Volume (85-92).

. Bosch, J., & Bosch-Sijtsema, P. (2010). From intiégmnato composition: On the impact of

software product lines, global development and ystesns. Journal of Systems and Soft-
ware, 83(1), 67-76.

Scacchi, W. (2007). Free/open source software dpwetnt: Recent research results and
methods. Advances in Computers, 69, 243-295.

Bosch, J. (2010). Architecture challenges for saféwecosystems. In Proceedings of the
Fourth European Conference on Software ArchitectDoenpanion Volume (pp. 93-95).
Baresi, L., Di Nitto, E., & Ghezzi, C. (2006). Towasden-world software: Issue and chal-
lenges. Computer, 39(10), 36-43.

Cataldo, M., & Herbsleb, J. D. (201@chitecting in software ecosystems: interfacedran
lucence as an enabler for scalable collaboratioRréceedings of the Fourth European Con-
ference on Software Architecture: Companion Volu®712).

Popp, K. M. (2010). Goals of Software Vendors fartRer Ecosystems—A Practitioner” s
View. In Software Business (181-186).

Koch, S., & Kerschbaum, M. (2014). Joining a sntaofpe ecosystem: Application devel-
opers’ motivations and decision criteria. Inforroatiand Software Technology, 56(11).
Eklund, U., & Bosch, J. (2014). Architecture for eedded open software ecosystems. Jour-
nal of Systems and Software, 92, 128-142.

Shabtai, A., Fledel, Y., Kanonov, U., Elovici, Dplev, S., & Glezer, C. (2010). Google
android: A comprehensive security assessment. I&&ttirity & Privacy, (2), 35-44.
Christensen, H. B., Hansen, K. M., Kyng, M., & Margk&. (2014). Analysis and design
of software ecosystem architectures—Towards theelégedicine ecosystem. Information
and Software Technology, 56(11), 1476-1492.

Ghazawneh, A., & Henfridsson, O. (2013). Balancitegfprm control and external contri-
bution in thirdparty development: the boundary resources modé&rriration Systems
Journal, 23(2), 173-192.

Kazman, R., Klein, M., Barbacci, M., Longstaff, Tipton, H., & Carriere, J. (1998). The
architecture tradeoff analysis method. In FourtBEEEInternational Conference on Engi-
neering of Complex Computer Systems, 1998. ICECCSI@geRdings. (68-78).

