
To be Presented in CAiSE 2017 – Pre-print

adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Accommodating Openness Requirements in Software
Platforms: A Goal-Oriented Approach

Mahsa H. Sadi1, Eric Yu1,2

1 Department of Computer Science, University of Toronto
2 Faculty of Information, University of Toronto
{mhsadi, eric} @ cs.toronto.edu

Abstract. Open innovation is becoming an important strategy in software devel-
opment. Following this strategy, software companies are increasingly opening up
their platforms to third-party products. However, opening up software platforms
to third-party applications raises serious concerns about critical quality require-
ments, such as security, performance, privacy and proprietary ownership. Adopt-
ing appropriate openness design strategies, which fulfill open-innovation objec-
tives while maintaining quality requirements, calls for deliberate analysis of
openness requirements from early on in opening up software platforms. We pro-
pose to treat openness as a distinct class of non-functional requirements, and to
refine and analyze it in parallel with other design concerns using a goal-oriented
approach. We extend the Non-Functional Requirements (NFR) analysis method
with a new set of catalogues for specifying and refining openness requirements
in software platforms. We apply our approach to revisit the design of data provi-
sion service in two real-world open software platforms and discuss the results.

Keywords: Ecosystems; Open Platforms; Software Design; Requirements

1 Introduction

Open innovation is becoming an increasingly important strategy in software develop-
ment. Following this strategy, software development organizations open up their pro-
cesses and software platforms to external developers in order to use external ideas,
knowledge and paths to markets (as well as the internal ones) to advance their technol-
ogy [1]. External developers become part of a software ecosystem offering complemen-
tary products and services for the open platforms [2 - 5].

However, opening up software platforms to third-party products is recognized as one
of the most difficult transitions in software product development. While openness has
the potential to create momentum for the widespread adoption and support of the plat-
form in the market, it may lead to losing overall control of the platform [2]. Moreover,
opening up platforms to third-party applications raises serious concerns about critical
quality requirements, such as security, performance, proprietary ownership of the plat-
form and its complementary applications. Yet, there is no systematic method to address
these concerns in opening up platforms.

A successful transition to an open platform relies on adopting openness design strat-
egies that can fulfill open innovation objectives while preserving the quality of the plat-
form and complementary applications and services. Adopting such balanced design
strategies calls for deliberate analysis of the requirements that openness introduces on
the design of software platforms from early on in the transition process. Nevertheless,
openness is only one design concern among many that should be accommodated in
software platforms. Effective openness design strategies should optimally fulfill all of
these concerns.

Example. Consider a common design scenario in opening up software platforms:
providing data service to third-party applications. The design includes decisions about
how a platform communicates data with third-party applications and how third-party
applications communicate data with each other. Three design alternatives can be con-
sidered for opening up platform data to third-party applications; namely: (1) Central-
ized data provision (CDP): Platform centrally checks every data communications be-
tween third-party applications; (2) Semi-centralized data provision (SDP): A mediator
(either the platform or the end-user) decides whether and under what conditions third-
party applications can communicate directly; and (3) Decentralized data provision
(DDP): Third-party applications communicate data directly without any central control.

To choose an appropriate design strategy to open up platform data, performance can
be a critical concern for a specific platform. Considering this, centralized data provi-
sion is not an appropriate design since central data control imposes additional load on
the platform and increases data access time for third-party applications. Data integrity
can be another requirement for the platform. In this regard, centralized data provision
performs well since every data operation is performed under direct control of the plat-
form, helping eliminate inconsistencies in simultaneous data read and write operations.
Comparably, semi-centralized data provision also works well enough if platform is the
mediator and if the platform decides to control critical data operations itself. Decou-
pling third-party applications is also important for the open platform since with the
increase of third-party applications, it will be difficult to maintain the platform and
prevent potential erroneous and malicious data communications. Considering this, cen-
tralized data provision is the most effective design since it minimizes the coupling of
third-party applications. Increasing adoptability of the platform among external devel-
opers can be one main reason for opening up the platform. However, centralized data
provision creates “accessibility” barriers for the platform since third-party applications
should be checked and permitted by the platform to be installed and access their re-
quired run-time data. This difficulty negatively impacts the platform adoptability.

To choose the most appropriate openness design strategy, systematic methods are
required that help decide between these competing and interacting requirements.

Contributions. We propose to treat openness as a distinct class of non-functional re-
quirements, and to refine and analyze it in parallel with other concerns in designing
software platforms using a goal-oriented requirements modeling language [6]. The pro-
posed approach allows to specify and refine the business requirements behind openness,

the technical quality requirements that openness imposes on the design of software plat-
forms, and the concerns that openness introduces on other quality requirements. The
refined requirements are used as criteria for selecting optimal design alternatives. To
facilitate specification and analysis of openness requirements, we propose three types
of catalogues: (1) Openness requirements specification and refinement catalogues; (2)
Openness operationalization catalogues; and (3) Openness correlation catalogues. The
catalogues encode alternative paths for refining and operationalizing openness require-
ments, which can be customized for a particular design context. We apply our proposed
approach to revisit the design of data provision service in two real-world open software
platforms and discuss the results.

2 The Proposed Approach

We consider openness as a concern that should be met in the design of platforms func-
tionalities [7]. We describe openness as a soft goal (i.e. an objective that can be fulfilled
to various degrees) and refine it using contribution links. We assess the fulfillment de-
gree of openness requirements in alternative design mechanisms using the goal-oriented
forward evaluation procedure [6].

To deal with openness requirements, we customize the Non-Functional Require-
ments (NFR) analysis method [6]. The customized approach is comprised of seven
main steps, which can be performed iteratively: (1) Specifying and refining openness
requirements; (2) Specifying and refining other design concerns; (3) Prioritizing the
requirements; (4) Identifying possible alternative operationalizations; (5) Evaluating
fulfillment degree of the identified requirements in each operationalization; (6) Ana-
lyzing potential trade-offs; and (7) Selecting an appropriate design mechanism.

To facilitate specification and analysis of openness as a class of non-functional re-
quirements, we extend NFR with a new set of catalogues, namely openness catalogues.
Openness catalogues are of three main types: (1) Openness requirements specification
and refinement catalogues; (2) Openness requirements operationalization catalogues;
and (3) Openness correlation catalogues. These catalogues are used in the related steps
described above, and provide extensible and customizable patterns for specifying, re-
fining and operationalizing openness requirements in the design of software platforms.

In the following, we present instances from each type of the openness catalogues.
To save space, we omit the details about the complete definition and refinement of the
items in the presented catalogues, and the sources from which the items are extracted.

Openness Requirements Specification and Refinement Catalogues. These cata-
logues help characterize and refine the specific requirements and concerns that open-
ness introduces on the design of software platforms. Openness requirements catalogues
are of three types: (1) Business-level openness requirements catalogues. (2) System-
level openness requirements catalogues; and (3) General design concerns catalogues.

System-Level Openness Requirements Catalogues. These catalogues characterize gen-

eral technical and quality requirements that should be met in the design of open plat-
forms. Three instances of system-level openness requirements catalogues are shown in
Fig 1. For example, the first catalogue (Fig 1-a) identifies that openness introduces
seven types of requirements on the design of software platforms, including “accessibil-
ity” and “extensibility”. From this catalogue, requirements specification paths can be
generated, such as: “To open up a platform, the platform needs to be accessible to third-
party applications”, or “To open up a platform, the platform design needs to be exten-
sible”. The second catalogue (Fig 1-b) identifies that “accessibility” requirement can
be refined in four ways, including “accessibility [functionality or service]” and “acces-
sibility [data]”. From this catalogue, more detailed requirements specifications can be
generated, such as “To open up a platform, platform data need to be accessible to third-
party applications”. The third catalogue (Fig 1-c) identifies that “extensibility” require-
ment introduces six types of requirements on a platform design, including “composa-
bility [Platform] ” and “deployability [Third-party applications]”, each of which needs
to be further refined into more fine-grained requirements. From this catalogues, refine-
ment paths can be generated such as “To make a platform design extensible, the plat-
form needs to be composable”, and subsequently “To make a platform composable,
third-party applications should be decoupled from the platform and from each other”.

Fig. 1. Three Instances of the System-Level Openness Requirements Catalogues

To develop system-level openness requirements catalogues, two steps are per-
formed: (1) The content of the catalogues is extracted from the Software Engineering
literature discussing technical requirements in open software platforms. (2) The re-
quirements are classified, related, and refined using two types of non-functional re-
quirement refinement [6]: topic refinement (e.g. “Accessibility” catalogue) and type re-
finement (e.g. “Openness” and “Extensibility” catalogues). To structure the content,
related elements of the goal-oriented requirements modeling language are used. “Soft
goal” element is used to represent non-functional requirements, and “Help” contribu-
tion link is used to relate and refine the requirements.

Business-Level Openness Requirements Catalogues. These catalogues characterize
general non-technical requirements in open software platforms and relate them to sys-
tem-level openness requirements. Non-technical requirements include the business and
organizational incentives that drive the need for openness as well as the social require-
ments that should be met in open software platforms. Each business-level openness
requirements catalogue has two parts: a set of non-technical requirements and the re-
lated technical requirements. Two instances of these catalogues are depicted in Fig 2.
For example, the first catalogue (Fig 2-a) identifies that “Stickiness” and “Market Pres-
ence” are two non-technical requirements in open software platforms. Stickiness refers
to the degree that a software platform supports its continued use by a user instead of
switching to a competitor platform [14]. “Stickiness” can be further related to more
fine-grained business requirements such as “Network size”. Network size refers to the
number of complementary application and services that support a platform [15]. From
this catalogue, specifications and refinement paths can be generated, such as “One ob-
jective in opening up a software platform is to increase the stickiness of the platform.”,
and then “To increase the stickiness of a platform, the network size of the platform
should grow.” “ Network size” requirement can then be related and refined to system-
level openness requirements, such as “accessibility”. One refinement is as follows: “To
increase the network size of a platform, the platform needs to be made accessible to
third-party applications.”

Fig. 2. Two Instances of the Business-Level Openness Requirements Catalogues

To develop business-level openness catalogues, three steps are taken: (1) The con-
tent of the catalogues is extracted from a set of Business and Software Engineering
literature discussing open innovation, and the business, organizational, and social needs
that it introduces on the development of software platforms. (2) The requirements are
described using soft goals, and categorized, related and refined using “help” contribu-
tion links. Since business-level openness requirements are often described as openness
business objectives, the notion of soft goal is conceptually close for describing these
requirements. (3) The last row of refinement in each business-level openness catalogue
is related to a set of first-row refinements in the system-level openness requirements
(i.e. Fig 1-a) using “help” contribution links. Contribution links allow to smoothly re-
fine and relate the business-level requirements into the system-level requirements.

General Design Concerns Catalogues. These catalogues characterize general concerns
and requirements raised in opening up software platforms. These concerns may have

synergistic or conflicting relationships with openness requirements, and need to be re-
fined and operationalized in parallel with openness requirements in designing software
platforms. Two instances of this group are shown in Fig 3. For example, the first cata-
logue (Fig 3-a) identifies “security” as a general concern in opening up software plat-
forms and also characterizes the specific types of security requirements (such as “in-
tegrity” and “availability”) that are potentially impacted by openness requirements.
From this catalogue, specifications can be generated, such as “Security needs to be as-
sured in opening up a platform”. Then this requirement can be further refined as fol-
lows: “To assure platform security, integrity of the platform data should be preserved.”

Fig. 3. Two Instances of the General Design Concerns Catalogues

The content of this group of catalogues is extracted from a set of Software Engineer-
ing and Business literature discussing problems, concerns, and requirements in opening
up software platforms. The content is then structured similar to the previous catalogues.
Some requirements in this group, such as security and performance overlap with exist-
ing NFR catalogues [6]. The existing catalogues have been reused and customized ac-
cording to the specific context of open software platforms.

Openness Requirements Operationalization Catalogues. Operationalization cata-
logues identify the system functionalities that should be specifically designed to open
up platforms to third-party products. They also enumerate alternative mechanisms and
patterns for designing these functional requirements. Each openness operationalization
catalogue has two parts: (a) Design objectives: the specific functionality that need to
designed or implemented; and (b) Design alternatives: Alternative mechanisms to re-
alize the design objective. An instance of the openness operationalization catalogues is
illustrated in Table 1. The catalogue is related to the design of “Data provision and
communications service”. The catalogue elaborates on three generic alternative mech-
anisms for designing this functionality, namely: (1) Centralized data provision; (2)
Semi-centralized data provision; (3) Decentralized data provision.

 The content of these catalogues is extracted from a set of Software Engineering
research resources discussing technical design of open software platforms.

Table 1. One Instance of the Openness Requirements Operationalization Catalogues

Design Objective: To provide data service to third-party applications

Design Mechanism 1: Centralized Data Provision (CDP) [16]
The platform controls every data and information interactions between third-party applications and the plat-
form, and between one third-party application and another. In this design, all data is stored and exchanged
through a single API in the platform. Data is accessed through the platform API either by explicit get/set
operations or publish/subscribe at run-time. An API identifies available data at run-time.
Design Mechanism 2: Semi-Centralized Data Provision (SDP) [17]
Third-party applications can communicate data directly in some cases. Third-party applications declare what
data they need at install-time. The requests are initially submitted to a mediator (i.e. end-user or platform).
The mediator decides to allow data communications directly or not. If yes, third-party applications can com-
municate directly. If no, the mediator decides to control data read operations, data write operations or both.
Design Mechanism 3: Decentralized Data Provision (DDP) [10]
Third-party applications can directly exchange data and information with each other. Data interactions be-
tween two third-party applications are controlled and supervised by the third-party application that provides
the requested data. Data access requests are declared at run-time and the data provider application is respon-
sible for managing the requests and controlling the consistency of data read and write operations.

Fig. 4. One Instance of the Openness Correlation Catalogues

Openness Correlation Catalogues. Openness correlation catalogues identify the im-
pact of each openness design alternative (in the operationalization catalogues) on the
fulfillment of the related openness requirements (in the specification and refinement
catalogues). An instance of a correlation catalogue is shown in Fig 4. For example, one
security concern in designing data provision service can be data integrity (“Integrity
[platform data]”). This requirement can be further decomposed into “accuracy [data]”
and then “consistency [data]”. The presented catalogue identifies that “centralized data

provision” design alternative meets the requirement of data consistency. In contrast, the
other two alternatives of “semi-centralized data provision” and “decentralized data
provision” violate this requirement. Another requirement that may be important in
opening up a platform is “accessibility [platform]”, which can be further refined into
“accessibility [data]”. The catalogue identifies that “centralized data provision” has a
negative impact on the accessibility of platform data. In contrast, the other two alterna-
tives have a positive impact on this requirement.

To develop correlation catalogues, two steps are performed: (1) The related require-
ments that are affected by each alternative operationalization are selected from the re-
quirement refinement catalogues. (2) The positive or negative impact of the alternative
on fulfilling the related alternatives is assessed. The assessment is done based on expert
knowledge from the design alternatives and must be accompanied by a sound reasoning
or evidence. The alternative mechanisms are assessed against the last row of refinement
for each related requirement, and are described using “help” or “hurt” contribution
links. A detailed example of an assessment is provided in [7].

3 Application of the Proposed Approach

We use the proposed approach to revisit the high-level architectural design of data pro-
vision service in two real-world open software platforms. Both platforms are embedded
operating systems. The first platform is an operating system controlling the electronic
units of a vehicle and the second one is an operating system for smartphone devices.

To apply the proposed approach on each design case, two preparatory steps have
been taken: (1) The documents containing information about the design of each plat-
form have been collected from the literature. (2) The information required for applying
the proposed approach has been extracted from the collected documents. The extracted
information is of two types: (a) the important design requirements for each case; i.e. the
requirements that openness introduces and other general concerns that should be con-
sidered in opening up each platform; and (b) the priority of each design requirement.
Where the required information was absent or not explicitly mentioned, we have aug-
mented the information based on our own understanding from the case. Augmented
information is distinguished from the extracted information using “*”.

To use the catalogues, two preparatory steps need to be performed. (1) The domain
requirements are matched with the requirements items available in the catalogues. If
the wording of a requirement is different, the most similar requirement item in the cat-
alogues is selected. If no similar item is found, the correct placement of the requirement
is found and the related catalogue is augmented with new the content. Adding new
content may also need modifying the structure of the catalogue. (2) The evaluation of
design mechanisms in the correlation catalogues may also be revised in each context.

To re-design the data provision service in each case, the seven steps described in the
beginning of Section 2 are performed. To refine the requirements in each design con-
text, the related refinement paths in the catalogue presented in Fig 4 are used. Refine-
ment is done up to the level that there is evaluation data for the refined requirement and

the three alternative designs in the correlation catalogue. The fulfillment of the require-
ments is then evaluated using the goal-oriented forward evaluation procedure. The eval-
uation results identify the degree of requirements fulfillment in each design alternative.
Requirements fulfillment is described in five degrees: Satificed (Sat), Partially Satis-
ficed (PSat), Conflict (Conf), Partially Denied (PDen), and Denied (Den). The evalua-
tion results are used to compare alternative designs and identify the potential trade-offs
that should be made between identified requirements by choosing each option. Based
on the comparison results, the most appropriate design for the data provision service is
selected. The selected option is then compared to the original design.

An Open Embedded Automotive Software Platform. The information related to this
platform is extracted from [16]. In [16], the process of designing the platform is ex-
plained in detail. The document explains the requirements of the platform, their prior-
ities, the decisions that were made to design the platform, and the rationale for those
decisions. However, no modeling and analysis has been done in the design process. All
the information required for our analysis was available in the document.

The platform is an operating system sitting on top of the electronic hardware of a
vehicle to control the vehicle electronic units. The platform has to deal with safety crit-
ical functionalities and data. Thus it should be highly dependable. The platform has
been opened to different types of third-party applications, such as applications devel-
oped by certified developers and applications developed by undirected developers.
Third-party applications sit on top of the platform and add functionality to it. Examples
of these additional functionalities include: automatic control of the speed of the vehicle
or displaying the speed of the vehicle in the display. To perform such operations, third-
party applications may need read or write access to data (such as speed and lateral ac-
celeration data), controlled by the platform or other third-party applications.

The important design requirements of the platform and their priorities are described
in Table 2. The related paths in the catalogue of Fig 4 that help specify and refine the
requirements as well as their fulfillment in each alternative design are shown in Fig 5.

Table 2. Design Requirements for the Open Embbedded Automotive Platform

Design Requirements Text Description
Openness Requirements

Type: “Composability”
Priority: “High ”

“The software platform must fulfil a set of properties to allow the decoupling of
applications and eliminate the need for development synchronization. The ar-
chitecture should allow development, integration and validation of applications
independent of other applications. Non-technical users cannot do this them-
selves, it must be provided for by application and/or platform developers.”

Type: “Deployability”
Priority: “High ”

“The applications must be possible to be deployed independently of each other,
and the product behavior must not depend on the order in which applications
are installed. There must also be a deployment infrastructure in place which
fulfils necessary integrity requirements.”

General Design Concerns

Type: “Dependability”
Priority: “High ”

“Many embedded domains have stringent dependability requirements; i.e. real-
time requirements for the execution of individual applications, integrity re-
quirements, high availability, and mechanisms to eliminate undesired feature
interaction if several applications interact with the same actuators.”

Fig. 5. Specification, Refinement, and Evaluation of the Important Design Requirements

Table 3 summarizes the fulfillment of key requirements in each design alternative.
As shown, “centralized data provision” outperforms the other two alternatives in ful-
filling all the requirements except performance. In contrast, the other two alternatives
partially satisfice performance. However, “semi-centralized data provision” violates
two openness requirements of “composability” and “deployability”, and “decentralized
data provision” underperforms in the fulfillment of all the other requirements.

Table 3. Fullfillment of the Important Requirements in Design Alternatives for Data Provision

Requirements
Security Openness Performance

OS IY CP DP RT
Priority H H H H H
CDP PSat PSat PSat PSat PDen
SDP PSat PDen PDen PDen PSat
DDP PDen PDen PDen PDen PSat
OS: Operational Security [Platform]; IY : Integrity [Platform Data]; CP: Composability [TP Application]; DP: Deployability
[TP Application]; RT: Response Time [Platform]; H: High (Very Critical)

Although “centralized data provision” fulfills four of the five important design re-
quirements and achieves the highest rank among the three alternatives, it has negative
impact on the performance of the platform. Centralized control over all data interactions
creates a bottleneck in the platform. In case of several simultaneous data read and write
requests, this design creates a queue of requests that should be checked by the platform
and increases the waiting time of data operations. However, the automotive platform is
in charge of safety-critical and real-time operations. Considering this, performance is
not a negligible requirement.

In comparison, “semi-centralized data provision”, though violating two openness
requirements of “composability” and “deployability”, alleviates the load of platform by
delegating the control of some data interactions to the related third-party applications.

Since critical third-party applications are developed by certified developers, the plat-
form can easily decide to control which data operations, delegating the control of less
critical data interactions to the related third-party applications. Considering this, semi-
centralized control does not negatively impact the integrity and security of the platform
data. Accordingly, we assess the final impact of “semi-centralized data provision” on
“Security [Platform]” as positive. Thus, it would be reasonable to sacrifice some de-
grees of “composability” and “deployablity” to achieve higher degrees of performance
for real-time operations of the automotive platform.

In [16], “centralized data provision” alternative has been adopted to open up the
automotive platform data to all types of third-party applications. The problem of per-
formance (real-time data access) is alleviated via attaching different priorities to differ-
ent types of third-party applications waiting in the data request queue. However, ac-
cording to our analysis, for the third-party applications with less safety-critical opera-
tions “semi-centralized data provision” is also appropriate. Thus, using both options of
centralized and semi-centralized data provision to open platform data to different types
of third-party applications improves performance, while minimizing negative impacts
on the openness requirements of composability and deployability.

This difference might have several reasons: (1) Performance has been sacrificed to
gain higher degrees of composability and deployability, and probably security. (2) It is
also possible that the track of performance requirements has been lost in designing data
provision service. This is plausible due to the large number of decisions made during
the design and the lack of support for requirements tracking. (3) Alternatively, due to
some domain characteristics not mentioned explicitly in the design document, such as
the hardware infrastructure, performance is not significantly impacted by the bottleneck
of centralized data provision.

An Open Embedded Mobile Operating System Platform. Different pieces of infor-
mation related to the design of the mobile platform have been collected from [2, 15,
17]. Some requirements and priorities have been added based on our understanding
from the context, which are distinguished by “*”.

The platform is an operating system sitting on top of the hardware device of a
smartphone to control its functionalities. The platform hosts native and non-native ap-
plications. Third-party applications add a wide range of functionalities that could be of
potential interest to various mobile users. Development of mobile applications is highly
knowledge-intensive. Thus, mobile application development is usually open to a wide
range of third-party developers. Third-party applications may need read or write access
to platform data or the data generated by other third-party applications.

The requirements of the mobile platform and their priorities are described in Table
4. The related specification and refinement paths from the catalogue of Fig 4 and the
fulfillment degree of the requirements in each design alternative are shown in Fig 6.

Table 5 summarizes the fulfillment of the identified requirements in each design
alternative. As shown, “centralized data provision” underperforms in fulfilling all the
high-priority requirements, namely “accessibility”, “ adoptability”, “ partner ecosystem
gravity”, “ innovative features”, and “performance”. Interestingly, this alternative out-

performs in fulfilling medium-priority requirements, such as “composability”, “ deploy-
ability” and “ownership”. In contrast, the other two design alternatives equally satisfice
high-priority design requirements. However, “semi-centralized data provision” per-
forms better in fulfilling “privacy [data]” requirement.

Table 4. Design Requirements for the Open Mobile Platform

Design Requirements Text Description
Openness Requirements

Type:
“ Innovative Products”
Priority: “High ”

“In many knowledge intensive domains, users and external parties play an im-
portant role in developing innovative products. The mobile operating system
providers benefit from emerging external innovations because having a high
number of applications increases the attractiveness of the platform for potential
customers. Having large number of customers lead to a bigger market share in
the mobile application market.” [15]

Type: “Partner Ecosys-
tem Gravity”
Priority: “High”

“Third-party developers have to be considered as important players in the mo-
bile ecosystems. While not every application can be considered innovative, a
larger pool of developers will provide more innovative output. The network
size of developers and end users (i.e. network effects) will be a significant factor
for application developers in selecting which mobile ecosystem to join.” [15]

Type:
“Low Entry Barriers”
Priority: “High”

“Entry barriers of both monetary and technical nature, including entry barriers
for application market, development resource needs and programing languages,
will be a significant factor for developers in selecting which mobile platform to
join. Openness and entry barriers include aspects of hardware, software and mar-
ket in open platforms.” [15]

Fig. 6. Specification, Refinement, and Evaluation of the Important Design Requirements

Table 5. Fullfillment of the Important Requirements in Design Alternatives for Data Provision

Require-
ments

Security Openness: System-Level Openness: Business-Level Performance Ownership

 *PV AC *CP *DP AP ICF *PR * OW
Priority *M H *M *M H H *H *M
CDP PSat PDen PSat PSat PDen ^ Conf → PDen PDen PSat
SDP PSat PSat PDen PDen PSat ^ Conf → PSat PSat PDen
DDP PDen PSat PDen PDen PSat ^ Conf → PSat PSat PDen
PV: Privacy [Platform Data]; AC: Accessibility [Platform]; CP: Composability [Plat]; DP: Deployability [TP App]; AP:
Adoptability; NS: Network Size [Platform]; ICF : Innovative and Complementary Features; PR: Performance; OW: Own-
ership; H: High (Very Critical) ; M : Medium (Critical); ̂ : Conflict is resolved to partially denied or partially satisficed.

Although “semi-centralized data provision” satisfices all the high-priority require-
ments and achieves the highest score from among the three design alternatives, its im-
plementation has negative impact on two openness requirements of “composability”
and “deployability”. It also violates “data ownership” requirement. Nevertheless, com-
posability and deployability are two important technical quality attributes for an open
platform. Decoupling third-party applications from each other and reducing their de-
pendencies plays an important role in the maintainability and controllability of the plat-
form. Specifically when the size of a platform and its complementary applications and
services grow, which is usually the case for an open mobile platform. Moreover, the
ownership of platform data is not a negligible requirement for a platform owner.

However, “accessibility” and the impact it has on the “adoptability” and ‘innovative
features” is strategically critical to the success of a mobile platform in the market, spe-
cifically in a fierce competition with other platforms. Thus, it would be reasonable to
sacrifice some degrees of the system-level openness requirements to gain more support
from innovative and complementary applications (the business-level openness require-
ments), specifically in a knowledge-intensive domain as mobile applications.

The result of our analysis indicates that “semi-centralized data provision” is the best
option from among the three alternatives to open up mobile platform data to third-party
applications. This result is consistent with real-world implementation of open mobile
platforms such as Android [17]. In Android, third-party applications declare the data
they require from the platform and other third-party applications at install time. The
access is permitted by the end user (i.e. end user is the mediator).

4 Discussion

Our goal was to provide a method to determine appropriate design strategies for open-
ing up software platforms to third-party applications. We proposed to treat openness as
a non-functional requirement and to use a goal-oriented approach to refine and analyze
openness in parallel with other requirements. The refined requirements are used to se-
lect optimal design options. We have developed a set of catalogues that facilitate rea-
soning about openness requirements.

We applied the proposed approach to revisit the design of data provision service in
two real-world open software platforms: an automotive platform and a mobile platform.
Our goal was to determine the most appropriate openness design strategy for each case.

In the first case, our analysis identifies that a combination of centralized and semi-cen-
tralized data provision can be used to open up the platform data to different types of
third-party applications. This result is slightly different from the original design of the
platform, which is only centralized data provision. We aim to discuss the results of our
analysis with the original designers in a future interview. In the second case, our results
are consistent with the design of open mobile platforms, such as Android. The analysis
justifies the accessibility of mobile platforms to external applications. Moreover, the
analysis shows that system-level openness requirements can be sacrificed to fulfill busi-
ness-level openness requirements. Finally, in both cases there is no design option that
can fulfill all the identified requirements. In each case, trade-offs should be made.
Therefore, it is crucial to detect and analyze the trade-off points.

The proposed approach allows to reason about openness as a distinct requirement.
This approach complements recent research efforts on the development of open soft-
ware platforms, which either focus on the technical design of the platforms, including
API development (e.g. [9, 13, 18])) or on the business aspect (e.g. [2, 19]).

This paper presents only one instance of a complete openness correlation catalogue
that we have developed. The complete definition and refinement of the requirements
and operationalizations in the presented catalogues in addition to other catalogues will
be published in a future work.

To improve the applicability of the proposed approach, three issues need to be fur-
ther addressed: (1) The catalogues and the models developed for a specific domain be-
come complex too quickly. To handle this complexity, automated support is required.
(2) The evaluation procedure to select optimal design strategies needs to be made effi-
cient via omitting exhaustive evaluations of all the options. (3) The evaluation proce-
dure should allow to assess the final impact of selecting multiple operationalizations on
the fulfillment of the identified requirements in a design process.

Further research is needed to extend and validate the content of the proposed cata-
logues and to compare the proposed approach with peer requirements analysis methods
for software systems, such as Architecture Trade-Off Analysis Method (ATAM) [20].

5 Conclusion

We proposed a goal-oriented approach for analyzing openness requirement in software
platforms. The proposed approach is supported by a set of catalogues that facilitate
specification and refinement of openness requirements. We presented instances of these
catalogues herein. Specification and analysis of requirements is essential for adopting
effective openness design strategies that are “open enough” to benefit from the contri-
butions of third-party applications and at the same time possess the quality of “closed”
systems. Adopting such balanced strategies is crucial for the viability and sustainability
of open platforms. Further research is needed to assess the effectiveness of the proposed
approach and catalogues in case studies of open platform projects.

References

1. Chesbrough, H. W. (2006). Open innovation: The new imperative for creating and profiting
from technology. Harvard Business Press.

2. Boudreau, K. (2010). Open platform strategies and innovation: Granting access vs. de-
volving control. Management Science, 56(10), 1849-1872.

3. West, J. (2003). How open is open enough?: Melding proprietary and open source platform
strategies. Research policy, 32(7), 1259-1285.

4. Jansen, S., Brinkkemper, S., Souer, J., & Luinenburg, L. (2012). Shades of Gray: Opening
up a software producing organization with the open software enterprise model. Journal of
Systems and Software, 85(7), 1495-1510.

5. Sadi, M. H., & Yu, E. (2014). Analyzing the evolution of software development: from cre-
ative chaos to software ecosystems. In IEEE Eighth International Conference on Research
Challenges in Information Science (RCIS), 2014, (1-11).

6. Chung, L., Nixon, B. A., Yu, E., & Mylopoulos, J. (2012). Non-functional requirements in
software engineering (Vol. 5). Springer Science & Business Media.

7. Sadi, M. H., & Yu, E. (2017). Modeling and Analyzing Openness Trade-Offs in Software
Platforms: A Goal-Oriented Approach. In International Working Conference on Require-
ments Engineering: Foundation for Software Quality (pp. 33-49).

8. Anvaari, M., & Jansen, S. (2010). Evaluating architectural openness in mobile software plat-
forms. In Proceedings of the Fourth European Conference on Software Architecture: Com-
panion Volume (85-92).

9. Bosch, J., & Bosch-Sijtsema, P. (2010). From integration to composition: On the impact of
software product lines, global development and ecosystems. Journal of Systems and Soft-
ware, 83(1), 67-76.

10. Scacchi, W. (2007). Free/open source software development: Recent research results and
methods. Advances in Computers, 69, 243-295.

11. Bosch, J. (2010). Architecture challenges for software ecosystems. In Proceedings of the
Fourth European Conference on Software Architecture: Companion Volume (pp. 93-95).

12. Baresi, L., Di Nitto, E., & Ghezzi, C. (2006). Toward open-world software: Issue and chal-
lenges. Computer, 39(10), 36-43.

13. Cataldo, M., & Herbsleb, J. D. (2010). Architecting in software ecosystems: interface trans-
lucence as an enabler for scalable collaboration. In Proceedings of the Fourth European Con-
ference on Software Architecture: Companion Volume (65-72).

14. Popp, K. M. (2010). Goals of Software Vendors for Partner Ecosystems–A Practitioner´ s
View. In Software Business (181-186).

15. Koch, S., & Kerschbaum, M. (2014). Joining a smartphone ecosystem: Application devel-
opers’ motivations and decision criteria. Information and Software Technology, 56(11).

16. Eklund, U., & Bosch, J. (2014). Architecture for embedded open software ecosystems. Jour-
nal of Systems and Software, 92, 128-142.

17. Shabtai, A., Fledel, Y., Kanonov, U., Elovici, Y., Dolev, S., & Glezer, C. (2010). Google
android: A comprehensive security assessment. IEEE Security & Privacy, (2), 35-44.

18. Christensen, H. B., Hansen, K. M., Kyng, M., & Manikas, K. (2014). Analysis and design
of software ecosystem architectures–Towards the 4S telemedicine ecosystem. Information
and Software Technology, 56(11), 1476-1492.

19. Ghazawneh, A., & Henfridsson, O. (2013). Balancing platform control and external contri-
bution in third‐party development: the boundary resources model. Information Systems
Journal, 23(2), 173-192.

20. Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H., & Carriere, J. (1998). The
architecture tradeoff analysis method. In Fourth IEEE International Conference on Engi-
neering of Complex Computer Systems, 1998. ICECCS'98. Proceedings. (68-78).

