
EMMSAD, p. 1, 2015.

© Springer-Verlag Berlin Heidelberg 2015

Designing Software Ecosystems: How Can Modeling

Techniques Help?

Mahsa H. Sadi
1
, Eric Yu

2,1

1Department of Computer Science, University of Toronto, Canada
2Faculty of Information, University of Toronto, Canada

{mhsadi,eric}@cs.toronto.edu

Abstract. It has become an increasingly common practice for software compa-

nies to collaborate with external developers in order to develop software plat-

forms for a shared market, constituting software ecosystems. Creating and sus-

taining a software ecosystem is a challenging problem that involves numerous

technical, organizational, and business concerns. To support the systematic de-

sign of software ecosystems, modeling is a crucial tool. In this paper, we (a)

identify a set of descriptive and analytical requirements raised in the design of

software ecosystems; (b) review several modeling techniques used for describ-

ing and examining software ecosystems; and (c) assess the support of the re-

viewed techniques towards addressing the identified requirements. The results

provide insight into the gaps between the issues raised in the design of software

ecosystems, and the coverage of the studied techniques, suggesting an agenda

for future research.

Keywords: Software Ecosystems. Design. Modeling. Analysis. Review.

1 Introduction

Collaboration has become an increasingly critical factor to the success of software

companies [1-2]. There are various forces driving software companies to collaborate

[3-4]: the shift towards the development of software platforms; the urge to share the

costs of production; and the need to satisfy the varying demands of market, which

usually fall outside the domain expertise of one software company. These forces have

led to a recent software development practice, referred to as software ecosystem in

which a keystone software company collaborates with other companies and develop-

ers to develop and extend a software platform for a shared market [5-6].

Two well-known examples of software ecosystems are the Google Android and the

Apple iOS ecosystems. The main goal of both ecosystems is to provide a software

platform, and complementary software applications and services for the market.

Hence, both Google and Apple companies have established a network of collaborators

(or partners) consisting of application developers, software companies, and content

providers. While Google and Apple develop the key software platform (i.e. the mobile

operating system), other application developers and software development companies

provide complementary software applications and services for the related operating

2

systems. Moreover, content providers supply content such as data, music and game

for the applications. Google and Apple make the applications and content developed

by external parties visible to the market via the online stores of App Store and Google

Play [7-8].

Designing and organizing a sustainable collaboration in software ecosystems is a

challenging problem for a keystone software company. First, it involves various

boundary decisions, made at the legal and economical borders of the keystone soft-

ware company and its environment [4, 9]. To open up the software platform and de-

velopment activities to external companies and developers, the scope of the decisions

transcends the organizational boundaries of the company and raise serious concerns

and risks about control, ownership, intellectual property, security, privacy, trust, and

quality. [9-13]. Second, collaboration in software ecosystems is multi-faceted, span-

ning various technical, business, and organizational concerns that must be addressed

simultaneously [10, 14-15]. A successful software ecosystem needs to have a viable

business model, a well-organized inter-organizational interaction model [7, 10], a

well-designed collaborative software development process [13], and a software plat-

form that enables the collaboration [16].

For instance, Google and Apple each pursues different approaches to organize

their collaboration with external developers and content providers [17]. Each strategy

has its own advantages and disadvantages. Google licenses Android for free. This

makes the Android platform openly accessible to external developers in order to ex-

tend it with complementary applications and services. In contrast, the Apple iOS is

proprietary and is accessible to a limited community of software developers directly

controlled or owned by Apple. One advantage of Google’s strategy in organizing its

software ecosystem is that it attracts more software developers and companies to

adopt Google Android as a platform. Its disadvantage is that the open strategy results

in higher uncertainty in the quality of the final set of software products and makes

Android platform and its complementary services and application loosely integrated.

On the other hand, Apple’s strategy, while limiting the adoption of the platform to a

smaller number of developers, leads to a tight integration between platform and its

complementary services and applications, and thus a software platform of higher

quality [17].

The above example illustrates the complexity of the issues raised in organizing

collaboration in a software ecosystem. The pivotal role of a well-organized collabora-

tion among partners in the success software ecosystems [1-3] demands concentrated

effort on developing systematic methods and techniques to support the design of

software ecosystems. To address this need, a small but growing strand of recent re-

search efforts have specifically focused on providing model-based approaches to de-

scribe and analyze software ecosystems. To this objective, two main strategies are

pursued: (a) developing new modeling techniques [18], (b) using or adapting the

available modeling techniques to describe and analyze software ecosystems [7, 10,

19-21]. However, these modeling approaches vary widely in the terminology that they

use, and the analytical capabilities they provide. Moreover, due to the short time since

the widespread adoption of the practice of software ecosystem by the software com-

3

munity, there is as yet no rigorous study on analyzing the needs raised in the design of

software ecosystems.

In a preliminary attempt to address the above issues, in this paper, we identify

what descriptive and analytical requirements are raised in the design of software eco-

systems, and to what extent they are currently supported by a set of modeling tech-

niques used to describe and analyze software ecosystems. The results identify the

gaps between the descriptive and analytical needs raised in the design of software

ecosystems and the current coverage of model-based approaches, suggesting an agen-

da for future research.

The rest of this paper is organized as follows: Section 2 identifies a set of descrip-

tive and analytical requirements in designing software ecosystems. Section 3 reviews

and summarizes a set of modeling techniques used to examine software ecosystems.

Section 4 evaluates the support of the reviewed techniques for the specified require-

ments. Section 5 concludes the paper and discusses how to improve the support of

modeling techniques for designing software ecosystems.

2 Designing Software Ecosystems: A Set of Descriptive and

Analytical Requirements

In this section, we identify what issues are raised in the design of software ecosystems

and what descriptive and analytical capabilities are required to address these issues.

The requirements are developed based on the analysis and synthesis of the available

literature on software ecosystems from a design-oriented perspective.

Table 1. A set of requirements to describe software ecosystems

P-1
Collaborator: Identifying the members of a software ecosytem and their roles – Example: Specifying

the keystone software company; content providers; software developers; software companies.
RR*: [10, 18, 22, 23]

P-2
Interaction: Identifying the relationships among members – Example: Specifying the business or
technical relationships among the members of a software ecosystem. RR*:[10, 18, 22, 23]

P-3
Activity (or Responsbility): Specifying the resources, activities and commitment of the members –

Example:The specific business or software development activity performed by a member. RR*:[10, 22]

A-1
Type:Specifying different types and categories of collaborators, interactions, and responsibilities–
Example: Identifying a financial or knowledge exchange relationship RR*: [18, 22]

A-2

Constraint: Specifying constraints and rules on collaborators, interactions, and activitiess –

Example:Describing the conditions and rules on an interaction between a keystone software company

and external software developer; or Describing the level of access of one software developer to the
platform. RR*:[18]

A-3
Attribute: Specifying attributes and characteristics of collaborators, interactions, and their activities

– Example: Identifying an important or a reliable collaborator or a critical interaction. RR*: [18, 24]

A-4

Characteristic of Collaboration: Specifying the characteristics and attributes of a collaboration (i.e.

the configuration of collaborators, their activities and their interactions) – Example: Identifying a

healthy, productive or secure collaboration between two or more collaborators. RR*: [1, 25]
*

RR: Related Resources

2.1 A Set of Requirements for Describing Software Ecosystems

The first step in designing software ecosystems is to describe them. The description

should provide a clear view of the structure of collaboration or partnership in software

ecosystems; i.e., members and the interactions among them. For this purpose, a mod-

4

eling technique needs to at least be able to describe and represent the following pri-

mary elements (either textually or graphically): (a) Collaborator; (b) Interaction; (c)

Activity (or Responsibility). To further delineate the structure of a collaboration, each

of the above concepts can be augmented with the following ancillary information: (i)

Type; (ii) Constraint; (iii) Attribute; and (iv) Characteristic of Collaboration. The

ancillary information enables more elaborate description of a software ecosystem. The

description for each of these features is provided in Table 1.

2.2 A Set of Analytical Requirements in Software Ecosystems

To identify what analysis issues are raised in the design of software ecosystems, we

adopt a top-down domain analysis approach: we first explain general steps in the de-

velopment of a software ecosystem; we then identify a set of the analysis concerns

raised in each of these steps. A modeling technique used to represent a software eco-

system needs to support answering these analysis concerns.

Table 2. A set of analytical requirements in designing software ecosystems

S-1

Analyzing incentives and motivations of collaborators: – Example questions: Q1. How to foster

collaboration and how to motivate external developers and companies to participate and contribute to

the platform? / Q2. What are the intrinsic and extrinsic motivations of software developers and soft-
ware companies for joining the software ecosystem? RR*: [17]

S-2
Analyzing for trust and reliability: – Example questions: Q1. How to create and ensure trust between

the collaborators? / Q2.How reliable is the collaboration? / Q3. How reliable are the collaborators?
RR*:[6]

O-1

Analyzing for risk, vulnerability, tolerance, costs and benefits: – Example questions: Q1. What

risks are involved in the collaboration? / Q2. What are the costs and benefits of opening up software

platform towards external stakeholders? / Q3. What dependencies are created between the collaborators
and how critical are these interactions and dependencies? / Q4. What if the collaborators do not fulfill

their commitments? / Q5. How tolerant is the keystone company and other collaborators against poten-

tial failures in collaboration? RR*:[12]

O-2

Analyzing for distributing and decentralizing responsibilities and resources: – Example questions:
Q1. How to distribute the activities, responsibilities, and resources of software development and service

provision among collaborators? RR*: [2, 3, 9, 11]

O-3

Analyzing for distributing control, authority, decision making, and access: – Example questions:

Q1. How to distribute the control and authority of decision making over software development among

collaborators? / How much control and access should be given to each collaborator over software
platform? RR*: [9, 11, 13]

O-4
Analyzing for distributing ownership and power: – Example questions: Q1. How to distribute the

ownership of software products and services among collaborators? RR*: [9]

O-5

Analyzing for openness and sharing in collaboration: – Example questions: Q1. What is the ac-
ceptable level of openness of the keystone software company in collaboration? / Q2. What information,

products, and resources need to be shared between the collaborators? / Q3. How to open up software

development processes and platforms to external collaborators? RR*: [2, 3, 7, 9, 13,15]

O-6

Analyzing for security and privacy: – Example questions: Q1. How to preserve the security and
privacy of the platform and processes of the keystone software development organization in collabora-

tion? / Q2. Is the collaboration secure? / Q3. Is the privacy of collaborators preserved? RR*: [6]

O-7

Analyzing for health, productivity, robustness, performance: – Example questions: Q1. Is the

configuration of collaboration productive and robust? / Q2. Will the relationships among members lead

to a productive collaboration? RR*: [1,2, 9, 25]

O-8

Analyzing for alignment and conflict resolution: – Example questions: Q1. How to resolve conflicts
between the collaborators and their contributions to the platform? / Q2. How to align the objectives of

the collaborators with the keystone software company? RR*: [5, 10]
* RR: Related Resources

5

Generally, from the perspective of a keystone software company who is in charge

of the software platform, three main phases can be considered in the development of a

software ecosystem [3, 6]:

1. Setting up the software ecosystem (S): The main activities in this step include: (a) to

identify the objectives of developing the software ecosystem, and (b) to motivate

external stakeholders (including software developers and software companies) to

collaborate and contribute to the software platform.

2. Organizing collaboration and opening up the software development processes and

the software platform to collaborators (O): In this stage, the keystone software

company needs (a) to organize and configure the collaboration in the software eco-

system by specifying the collaborators, their roles and activities, and configuring

the interactions among them; (b) to decide about how to distribute, decentralize and

share access, information, activities, resources, products, responsibilities, and con-

trol among the collaborators.

3. Monitoring and governing the software ecosystem (M): The main activities in this

stage include: (a) monitoring the health and sustainability of the collaboration, (b)

orchestrating collaborations among the members, and (c) maintaining and evolving

the collaboration and the platform.

In the above phases, specifically phase 1 and 2, several concerns are raised which

require elaborate analysis. In Table 2, we identify a set of these concerns by providing

example questions that can be raised for a keystone software company. It should be

mentioned that the analysis concerns are generic. Therefore, these concerns can be

raised for software business managers in the business and organizational context, or

for the software project managers and software developers in the software develop-

ment context.

3 Several Techniques Used for Modeling Software Ecosystems

In this section, we review and summarize a set of modeling techniques that have been

used to examine software ecosystems. To include the modeling techniques in the re-

view, two steps have been performed:

Collecting the Modeling Techniques. To gather the modeling techniques, two steps

were taken: (a) An extensive search was conducted to collect the available literature

on software ecosystems. To perform the search, two recent systemic reviews (pub-

lished in 2013) [6, 26] were used as an initial catalog for collecting the resources.

Then, the collection was updated and extended with more recent literature. The study

[6] contains a categorized list of the resources that propose procedures or techniques,

qualitative or descriptive models, tools or notations, analytical models, and empirical

models for software ecosystems. The study [26] identifies a set of resources on soft-

ware ecosystem modeling. (b) From the collected set, those research efforts are se-

lected that use a model-based approach and a modeling technique to describe or ana-

lyze a software ecosystem.

Selecting the Modeling Techniques. The criteria for the inclusion of the modeling

techniques in this review are as follows: (i) The collected resource must use a model-

ing technique to represent the structure of software ecosystems. (ii) The members of a

6

software ecosystem and the relationships among them must be explicitly modeled.

(iii) The modeling technique must have a well-defined and well-documented syntax,

semantics, and notation. The notation can be either graphical or textual.

In the collected literature, a few modeling techniques have been used to describe

software ecosystems including Product Deployment Context (PDC) Diagram, a com-

ponent of Software Ecosystem Meta-model (SEM) [18], Technical Ecosystem Model-

ing Notation (TECMO) meta-model [27], and UML Deployment Diagram [10], but

were omitted according to the second criterion. These techniques focus on modeling

the software platform, but do not deal with the involved actors and the relationships

among them. Another group of work offers various meta-models such as Associate

Models [22], the SPO software ecosystem meta-model [28], and SPEM meta-model

[29]. This group is excluded according to the third criterion. The focus of these efforts

is on the meta-model level and not on the technique. There were also a few models,

such as Graph Representations [30], and Food-web models [8] which lack a well-

defined semantics and syntax, and are also omitted from this study.

Ultimately, five modeling techniques were selected that met the above criteria,

namely, SSN [18], i* [15, 21], BMC [10, 20], VN [19], and e
3
Value [7]. From among

the selected techniques, only SSN is specifically proposed for modeling software

ecosystems. The other techniques are generic and widely used in various domains. In

the following, we briefly review how each technique can help describe and examine

software ecosystems.

3.1 An Overview of the Selected Techniques

Software Supply Network Diagram (SSN). SSN is one component of the Software

Ecosystem Meta-model (SEM), the formally proposed meta-model for describing and

analyzing software ecosystems [18]. SSN is used to represent the structures of soft-

ware supply chains in software ecosystems [24]. SSN explicates the business relation-

ships among the members of a software ecosystem in terms of input and output flows

between actors. One specific characteristic of SSN is that its terminology is developed

based on the terms used in software development activities. Therefore, it is under-

standable by software developers.

Fig. 1. An example of a SSN Diagram (originally developed in [18])

The main elements of SSN modeling language are “Actors”, “Trade Relation-

ships”, “Flows”, and “Gateways”. An “Actor” is an organization or company that

participates in a software ecosystem and can be a “Company of Interest”, “Supplier”,

Dutch SV

Osp 1

Osp 2

CSV

Partner X Customer

P.2

$.4P.4

P.3 P.1

$.1 $.2

P.5P.1

Customer

Supplier

Company of Interest Intermediary

Customer’s
Customer

X.Y

Flow

Tarde
Relationship

XOR Gateway

OR

P.1 Product

$.1 Finance

S.1 Services

C.1 Content

R.1
Software component
Requirements

Des.1 Software Component
Design

Com.1 Software Component

As.1 Software Component Assembly

Sys.1 System

Ser.1 Service

7

“Customer”, “Intermediatory” or “Customers’ customer”. A “Trade Relationship”

connects two actors, and is comprised of one or more flows. A “Flow” represents an

artifact or service from one actor to another and is of different types of: “Products”,

“Services”, “Finance”, and “Content”. A “Gateway” represents a logical relationship

between flows and can be “OR” or “XOR”. A SSN diagram is comprised of nodes

and edges (see Fig. 1 as an example). Nodes represent the members and their roles in

a software ecosystem. Edges represent input / output flows between the members. In

SSN, participant actors (organizations) are represented by their names. Trade relation-

ships are depicted in the format of X.Y. X represents the type of flow and Y repre-

sents the ID of flow.

The i* Modeling Technique. i* is a generic social modeling technique describing

intentional relationships among actors from different business, technical and organi-

zational perspectives [31]. i* explicates the relationships among the members of a

software ecosystem in terms of strategic dependencies among strategic actors. The

model can be used to explicate the objectives and reasoning of the members for de-

veloping or joining a software ecosystem [15, 21].

Fig. 2. An example of software ecosystem modeling using i* (excerpted from [21])

In i*, “actors” are intentional, set “Goals” or “Soft Goals”, and can come up with

different alternatives (“Task”, “Resource”, “Strategic Dependency”) to achieve their

goals. Strategic dependencies indicate that one actor relies on another actor to have a

goal achieved, a task performed, or a resource furnished. Different types of open,

Customer

Developer

Satisfaction

with platform

Profitability

from platform

Help

Big market

Create platform

specific

applications

Adopt open

platform Help

Help

Help
Help

Have

software

Acquire

Get

applications

Get platform

Variety

Satisfaction

Help

D

D

D
D

D

Application be

supported and

maintained

Software
Vendor

Sell software

platform

Provide

product-related

services

Build market

channel for

appliction

Platforms-specific

applications be

supplied

Run software

business using

the open

ecosystemPlatforms

be

produced

Supply

platform to the

developers

D

D

Market

channel be

provided

D

Visible to

end users

D

Platform-specific

applications be

developed

D

D

Revenue

share

D

D

Developer

satisfaction

D

D

D
D

Platform

D
D

User

satisfaction

ü

ü

ü ü

D

û û Soft goal

Hard goal
Resources

Task

û û Dissatisfied

ü

ü

Satisfied

ü ü
Partially Satisfied Partially Satisfied

Means-EndsD
Strategic

 Dependency

Decomposition

License &

Maintenance

Fee

Variety

Easy to

use

û û

8

committed and critical strategic dependencies explicate different degrees of control

and vulnerability of the depender in the relationship between two actors. As Fig. 2

illustrates, the motivations of developers for adopting a software platform are cap-

tured in terms of soft goals such as “Easy to use”, and “Profitability from platform”.

Moreover, as shown by a sample evaluation of the objectives, although the platform is

not easy to use, it adequately satisfies the developers to join the software ecosystem

because it has a big market.

Business Model Canvas (BMC). BMC is a structured textual technique, developed

based on Business Model Ontology (BMO) – a generic ontology to represent the

business model of an organization [32]. This technique can be used to illustrate a

high-level business view of a software company and its collaborators, and to describe

how a member creates value in a software ecosystem [10, 20] (see Fig. 3 for an ex-

ample). BMC describes which products and services a software company provides

and lists who are its collaborators (partners) in the software ecosystem. For this pur-

pose, the following building blocks are used: The products and services a company

provides are listed in the “Value Proposition”. The activities and the resources that are

necessary to provide the services and products are listed in the “Key Activities” and

“Key Resources” section. Customers to whom the organization offers services and

products are listed in the “Customer Segments” section. Collaborators and partners of

the software company are listed in the “Key Partners” section. “Channels” identifies

the means by which the company gets in touch with its customers, and “Relationship”

describes the type of link a company establishes between itself and its customer.

Key Partners

 Manufacturer

 Supplier

 Content Provider

 Communication Provider

 Service Operator

 Add-on developer

 Owner

 End user

 Regulatory Agency

 Information Broker

Key
Activities

 Production

 Product line man-
agement

Value Proposition

Service types:

 Product

 Process

 Life Cycle

 Extended

 Open interfaces

 Quality attributes

Customer Relationships

 Product life cycle

 Liability

 Ownership of information
and privacy

Customer Segments

 Broader customer
reach

 Improved customer
feedback

 Customer differentia-
tion

Key Resources

 Development
Environment

 Human capital

 Branding

 Standards

Channels

 Sales

 Distribution

 Configuration

 Information

 Channel ownership

Cost Structure

 Development cost

 Product cost

 Operating cost

 Information cost

Revenue streams

 Volume increases

 Recurring sales

 Direct sales of software

 Subscription fees

 Revenue sharing

Fig. 3. An example of a BMC developed for a software ecosystem (excerpted from [20])

Value Network Diagram (VN). VN is a generic technique to describe the value ex-

change relationships between a set of human actors. The language of VN is comprised

of “Actor”, “Transaction”, “Value exchange” and “deliverable” concepts, and is

mainly used to explicate the business and inter-organizational relationships between a

set of organizations [33]. VN can be used to describe and analyze how members cre-

ate value in a software ecosystem [19] (see Fig. 4 as an example). In VN, the mem-

bers of a software ecosystem are represented by ovals and the relationships among the

members are represented by uni-directional or bi-directional arrows. Arrows represent

the exchange of tangible and intangible deliverables (such as goods, services,

knowledge, and revenue, or benefit) between the members.

9

Fig. 4. An example of a VN developed for a software ecosystem (excerpted from [19])

e
3
Value Modeling. e

3
Value modeling technique explicates how economic value is

created and exchanged within a network of actors [34]. This technique is used to illus-

trate the economically valuable activities of the members of a software ecosystem and

the inter-organizational relationships among them [7] (see Fig. 5 as an example). In

e
3
value modeling, the relationships among the actors are captured in terms of activity

flows and input/output flows. The main modeling elements are “Actor”, “Market

Segment”, “Value Activity”, “Value exchange”, and “Value Object”. An Actor” is an

economically independent (and often a legal) entity and represents a company or a

customer. A group of actors (companies or customers) that share common properties

are identified as a “Market Segment”. For example, in Fig. 5, “Testing and verifica-

tion party” is identified as a market segment representing a group of companies which

collaborate with the operating system manufacturer to test the operating system. Ac-

tivities in e
3
value modeling

are “value activities” meaning that they are economically

profitable for the actors. Interactions among actor are captured in terms of “Value

exchange” and “Value object”. “Value Exchange” represents trade relationships be-

tween actors. “Value object” represents the exchanged object and can be of the types

“Services”, “Product”, “Money”, or “Experiences”.

Fig. 5. An example of an e3value developed for a software ecosystem (excerpted from [7])

3.2 Summary of the Reviewed Modeling Techniques

Table 3 provides an overall summary of the reviewed techniques for modeling soft-

ware ecosystems based on several general criteria. These criteria investigate three

main characteristics of the modeling techniques, namely (a) the objective and the

Software
Vendor

Customers

System
Integerator

Acquisition
Targets

Software
Partners

Services

Resell SoftwareSuppliers Resell Software

Assets Endorse
Software

Sell
Software

Educate
Consultants

Products,
Asset,

Or Services

Payments

Operating system
manufacturer

Supply testing
license

Get testing
license

Testing and verification party

Verify
software

Test
software

Get
certificate

Software developer

Get software
testedSupply

certificate

Signing partner

Activity

Actor

Market
Segment

Connect
element

Start
stimulus

End stimulus Value
exchange

Value
interface

Value port

OR element

AND
element

10

intended users, (b) general usability features, and (c) the specific support and maturity

of the techniques for modeling software ecosystems. These characteristics are labeled

with A, B and C in Table 3.

Table 3. Summary of the reviewed techniques for modeling software ecosystems

 SSN i* VN BMC e3V

A-1 Focal viewpoint

Business + + + + +

Inter-organizational + + + −/− * +

Technical (Software Development) *1/+ */+ −/− −/− −/−

A-2 Intended users

Software Business Manager + + + + +

Software Project Manager −/− −/+ −/− −/− −/*

Software Developer −/− −/+ −/− −/− −/−

B-1
Support for

analysis

Qualitative + + + + +

Quantitative −/* −/× −/− −/− * 2

B-2
Representation

mode

Textual − − − + −

Visual + + + − +

B-3 Refinement and traceability − + − − −

B-4 Multiple views * 3 − − − −

B-5 Formal syntax and semantics + + − 4 + +

B-6 Tool support − + − + +

C-1 Experimentation maturity for software ecosystems 5 + × × * ×

C-2 Methodology support for software ecosystems × − − − −

C-3 Documentation support for software ecosystems 6 * * × × ×

Legend: (−): Not supported. (×): Poorly supported. (*): Partially supported. (+): Supported.
* In pair evaluations, the first symbol shows current support of the modeling language and the second symbol shows the

potential of the language for supporting the criteria.

Notes:
1 The main focus of SSN is on modeling the business relationships among the members of a software ecosystem; howev-

er, the terminology is based on software development activities and can support the technical relationships to some extent.
2 e3V supports quantitative analysis on the financial aspect of interactions among actors.
3 Although SSN does not support multiple views of a software ecosystem, it is accompanied by another component in the

SEM meta-model, named Product Deployment Context (PDC). PDC provides the architectural viewpoint of a software

ecosystem.
4 VN lacks a formal definition of syntax. It is not clearly defined what information should be represented in the models

and how the information should be represented.
5 This criterion is assessed as follows: (×) Poorly supported: the model is experimented in examples. (*) Partially

supported: the model is experimented in real-world case studies by researchers. (+) Supported: the model is experimented

by practitionars and intended users in real settings.
6 This criterion is assessed as follows: (×) Poorly supported: the number of available documentation; i.e. publications,

technical papers and websites is less than 2. (*) Partially supported: the number of available documentation is more than 2

and less than 5. (+) Supported: the number of available documentation is more than 5.

As the criteria of group A demonstrate, the focus of the modeling techniques is

mainly on addressing the business and inter-organizational aspects of collaboration in

software ecosystems, reflecting the viewpoint of software business managers. Group

B criteria show that all of the techniques mainly support qualitative analysis, and the

majority of the techniques do not support or poorly support two features of “refine-

ment and traceability”, and “multiple views”. Refinement criterion evaluates the sup-

port of the modeling technique for developing a hierarchy of models with different

levels of details and different levels of information in them and the ability to trace

between the models. The multiple views criterion evaluates the ability of the tech-

nique to represent different views from a software ecosystem for different stakehold-

11

ers. Finally, the criteria of group C reveal that currently, the majority of modeling

techniques have not received adequate experimentation in modeling software ecosys-

tems and there is not yet enough documentation, methodology, or guidelines available

for using these techniques in the practice of software ecosystems.

4 Applying the Requirements to Assess the Reviewed Techniques

In this section, we analyze and assess the nature and extent of support offered by the

reviewed modeling techniques towards the design of software ecosystems based on

the descriptive and analytical requirements identified in Section 2.

4.1 Support for Describing Software Ecosystems

Evaluation Procedure. To evaluate the support of each modeling technique, it has

been checked whether the technique supports representing the primary and ancillary

elements, (P-1 to P-3) and (A-1 to A-4), introduced in Table 1.

Evaluation Results. The assessment of the reviewed modeling techniques based on

the descriptive requirements is presented in Table 4. As Table 4 demonstrates, except

for BMC, all the modeling techniques support representing collaborators and their

interactions in software ecosystems. In all the studied techniques, collaborators are

represented in terms of actors (but in each technique, actor has a different meaning.),

and the interactions among collaborators are mostly represented in terms of input-

output flows. However, the notion of activity is not supported by most of the model-

ing techniques. Moreover, the majority of techniques do not support describing ancil-

lary information about the collaborators, the activities and the interactions among

them.

Table 4. Assessment of the modeling techniques for describing software ecosystems
 P-1: Collaborator P-2: Activity (or Responsibility) P-3:Interaction

A-4
 A-1 A-2 A-3 A-1 A-2 A-3 A-1 A-2 A-3

SSN
+/(Actor)

*
 −

1
 +/(I-O Flow)

−
+

**
 − + − − − + − −

i*
+/(Actor/ Role/Agent) +/(Tasks/Resources/Goals/ Softgoals) + /(Strategic Dependency)

−
− − − − − − − − +

VN
+/(Actor) − +/(Activity Flow)

−
− − − − − − + − −

BMC
+/(Actor) *

2
 /(Activities / Resources) −

−
− − − − − − − − −

e3V
+ / (Market Segment /Actor) + (Activities) +/(I-O Flow/Activity Flow)

−
− − − − − − + − −

Legend: (−): Not supported. (*): Partially supported. (+): Supported.
* The first row in front of each modeling technique shows the support for describing the primary elements . The related

element of the modeling technique that support the represnetation of the primary element is also identified.
** The second row in front of each modeling technique shows the support for describing the anciliary concepts.

Notes:
1 SSN does not support representing the repsonbilities of collaborators. However, the other component of SEM, Product

Deployment Context (PDC), identifies the architectural components of a software ecosystem and SEM enables linking

the actors in SSN to the relevant components in PDC. [18]
2 BMC only identifies the key activities and resources of one colalborator (software company).

12

4.2 Support for Analyzing Software Ecosystems

Evaluation Procedure. To evaluate the support of the modeling techniques for each

type of analysis identified in Table 2, the following four criteria are used:

(1) Information Support (IS). This criterion evaluates whether the model expresses the

required information to draw conclusion about an analysis concern.

(2) Analysis Representation (AR). This criterion identifies whether the information

related to the analysis is captured inside the model or outside the model.

(3) Alternative Analysis and Comparison (AAC). This criterion identifies whether the

modeling technique enables representing and comparing the consequences of two or

more alternatives to address one analysis concern.

(4) Type of Analysis (TA). This criterion identifies whether the modeling technique

enables descriptive analysis or predictive analysis.

Evaluation Results. Table 5 evaluates the capabilities of the reviewed modeling

techniques to support the analytical requirements of software ecosystems (S-1 to O-8

in Table 2). As the results demonstrate, the majority of the reviewed techniques do

not provide enough information (IS) to address the analysis questions raised in the

design of a software ecosystems. From among those techniques that provide adequate

information support for one type analysis, the majority do not capture adequate in-

formation related to performing the analysis (AR). Representing and comparing al-

ternatives to address the analysis concerns (AAC) is covered by only one technique

(i*). Finally, all of the models merely enable descriptive analysis and do not support

prediction and prescription capabilities for designing a software ecosystem.

Table 5. Assessment of the modeling techniques for analyzing software ecosystems

 S-1 S-2 O-1 O-2 O-3 O-4 O-5 O-6 O-7 O-8

SSN
−/O * −/O +/O −/O −/O −/O +/O −/O −/O −/O

O/D
 **

i*
+/I +/I +/I +/I +/I −/I +/I +/I −/I +/I

I/D

VN
−/O −/O +/O −/O −/O −/O +/O −/O −/O −/O

O/D

BMC
−/O −/O −/O −/O −/O −/O −/O −/O −/O −/O

 O/D

e3V
−/O −/O +/O +/O +/O +/O +/O −/O −/O −/O

O/D

Legend: (−): Unable to support. (+): Able to support. I: Information captured inside the model. O:
Information captured outside the model. D: Descriptive analysis. P: Predictive or Prescriptive analysis.
* The pair evaluations in the first row in front of each modeling technique identify the following
information: The first symbol evaluates the information support. The second symbol evaluates analysis

representation capability.
** The pair evaluations in the second row in front of each modeling technique identify the following

information: The first symbol evaluates alternative analysis and comparison capability. The second

symbol identifies the type of analysis supported.

13

5 Conclusion

Software ecosystem is a recent software development practice in which various soft-

ware companies, application developers, and content providers collaborate to develop

software platforms, and complementary software applications and services for a

shared market. Herein, we identified a set of descriptive and analytical requirements

raised in the design of software ecosystems, and investigated to what extent these

requirements are addressed by a set of techniques used to model software ecosystems.

In the following, we identify the gaps and suggest how to enhance the modeling sup-

port for designing software ecosystems:

 Lack of support for representing the technical aspect of collaboration: Designing

and organizing a sustainable collaboration in software ecosystems involves technical

concerns as well as business concerns. However, the focus of the studied modeling

techniques is mainly on describing and analyzing the business aspect of collaboration.

They mainly reflect the viewpoint of software business managers. Modeling tech-

niques that reflect the viewpoint of software project managers and software develop-

ers, and the technical relationships among the members can complement the reviewed

techniques.

 Lack of alignment between the business and organizational viewpoints and the

technical viewpoints: Technical aspect of collaborations in a software ecosystem

should follow the rules and restrictions in the business and organizational aspects [6].

Models are the main tools for aligning and tracing between these dimensions. Specifi-

cally, two features of “refinement and traceability”, and “multiple views” in modeling

techniques enable aligning between different viewpoints. Enriching these features in

the studied modeling techniques alleviates the issue of alignment in designing soft-

ware ecosystems.

 Weak representation support: SSN is the formally proposed technique for model-

ing the relationships among the members of a software ecosystem. However, SSN

does not support describing the activities of the collaborators in software ecosystems.

Moreover, the majority of the studied techniques provide very little support for de-

scribing constraints and the attributes of collaborators, their activities, and the interac-

tions among them. Enriching the syntax and semantics of the studied techniques to

support these features, or using the techniques that already support these features

enhance the representation of software ecosystems.

 Weak methodological support: There is not enough methodology and documenta-

tion support on how to model and analyze software ecosystems using the reviewed

techniques. Moreover, most of the studied modeling techniques have not received

enough experimentation and evaluation in real case studies and by practitioners. Ad-

dressing these weaknesses leads to further clarification of the descriptive and analyti-

cal needs in software ecosystems as well as how to improve the effectiveness of each

technique.

 Weak analysis support: The majority of the studied techniques do not include

enough information to support the analysis concerns raised in the design of software

ecosystems. Alternative analysis and comparison is not supported by most of the

modeling techniques. No support is provided for the predictive and prescriptive anal-

ysis on software ecosystems. Enriching the support of each individual technique for

analysis, or providing guidelines to use a group of the modeling techniques in combi-

14

nation facilitates the design and development of software ecosystems.

Limitations of the Study. In this study, an initial set of modeling requirements for

designing software ecosystems is identified through the analysis of the published

literature. Confirming these requirements with practitioners and/or other active re-

search groups in software ecosystems strengthens the results of this study. Moreover,

the assessment of the modeling techniques against the identified analytical require-

ments needs to be further complemented by elaborating the evaluation criteria and

conducting empirical studies on the modeling techniques.

References

1. Iansiti, M., & Levien, R. (2004). Strategy as ecology. Harvard business review, 82(3), 68-

81.

2. Jansen, S., Finkelstein, A., & Brinkkemper, S. (2009). A sense of community: A research

agenda for software ecosystems. In 31st International Conference on Software Engineering-

Companion Volume, 2009 (pp. 187-190).

3. Bosch, J. (2009). From software product lines to software ecosystems. In Proceedings of the

13th International Software Product Line Conference (pp. 111-119). Carnegie Mellon Uni-

versity.

4. Bosch, J. (2012). Software ecosystems: Taking software development beyond the bounda-

ries of the organization. Journal of Systems and Software, 85(7), 1453-1454.

5. Jansen, S., & Cusumano, M. (2012). M.: Defining Software Ecosystems: A Survey of Soft-

ware Platforms and Business Network Governance. In Proceedings of fourth international

Workshop on Software Ecosystems (pp. 41-58).

6. Manikas, K., & Hansen, K. M. (2013). Software ecosystems–a systematic literature re-

view. Journal of Systems and Software, 86(5), 1294-1306.

7. Müller, R. M., Kijl, B., & Martens, J. K. (2011). A comparison of inter-organizational busi-

ness models of mobile app stores: there is more than open vs. closed. Journal of theoretical

and applied electronic commerce research,6(2), 63-76.

8. Lin, F., & Ye, W. (2009). Operating system battle in the ecosystem of smartphone industry.

In International Symposium on Information Engineering and Electronic Commerce, 2009.

IEEC'09. (pp. 617-621).

9. Jansen, S., Brinkkemper, S., Souer, J., & Luinenburg, L. (2012). Shades of gray: Opening up

a software producing organization with the open software enterprise model. Journal of Sys-

tems and Software, 85(7), 1495-1510.

10. Christensen, H. B., Hansen, K. M., Kyng, M., & Manikas, K. (2014). Analysis and design

of software ecosystem architectures–Towards the 4S telemedicine ecosystem. Information

and Software Technology, 56(11), 1476-1492.

11. Boudreau, K. (2010). Open platform strategies and innovation: Granting access vs. devolv-

ing control. Management Science, 56(10), 1849-1872.

12. Franch, X., Susi, A., Annosi, M. C., Ayala, C. P., Glott, R., Gross, D.,& Siena, A. (2013).

Managing Risk in Open Source Software Adoption. In ICSOFT (pp. 258-264).

13. Hanssen, G. K. (2012). A longitudinal case study of an emerging software ecosystem: Im-

plications for practice and theory. Journal of Systems and Software, 85(7), 1455-1466.

14. Jarke, M., Loucopoulos, P., Lyytinen, K., Mylopoulos, J., & Robinson, W. (2011). The

brave new world of design requirements. Information Systems, 36(7), 992-1008.

15. Sadi, M. H., & Yu, E. (2014). Analyzing the evolution of software development: From crea-

tive chaos to software ecosystems. In IEEE Eighth International Conference on Research

Challenges in Information Science (RCIS), (pp. 1-11). IEEE.

15

16. Cataldo, M., & Herbsleb, J. D. (2010). Architecting in software ecosystems: interface trans-

lucence as an enabler for scalable collaboration. In Proceedings of the Fourth European

Conference on Software Architecture: Companion Volume (pp. 65-72). ACM.

17. Koch, S., & Kerschbaum, M. (2014). Joining a smartphone ecosystem: Application devel-

opers’ motivations and decision criteria. Information and Software Technology, 56(11),

1423-1435.

18. Boucharas, V., Jansen, S., and Brinkkemper, S. (2009): "Formalizing software ecosystem

modeling." Proceedings of the 1st international workshop on Open component ecosystems.

19. Popp, K., & Meyer, R. (2010). Profit from Software Ecosystems: Business Models, Ecosys-

tems and Partnerships in the Software Industry. Books on Demand.

20. Axelsson, J., Papatheocharous, E., & Andersson, J. (2014). Characteristics of software eco-

systems for federated embedded systems: A case study. Information and Software Technol-

ogy , 56(11), 1457-1475.

21. Yu, E., & Deng, S. (2011). Understanding software ecosystems: A strategic modeling ap-

proach. proc of 3rd IWSECO, 65-76.

22. van Angeren, J., Kabbedijk, J., Jansen, S., & Popp, K. M. (2011). A Survey of Associate

Models used within Large Software Ecosystems. In IWSECO@ ICSOB, (pp. 27-39).

23. Jansen, S., Brinkkemper, S., & Finkelstein, A. (2009). Business Network Management as a

Survival Strategy: A Tale of Two Software Ecosystems. In IWSECO@ ICSR.

24. Handoyo, E., Jansen, S., & Brinkkemper, S. (2013). Software ecosystem modeling: the val-

ue chains. In Proceedings of the Fifth International Conference on Management of Emergent

Digital Ecosystems (pp. 17-24).

25. van den Berk, I., Jansen, S., & Luinenburg, L. (2010). Software ecosystems: a software eco-

system strategy assessment model. In Proceedings of the Fourth European Conference on

Software Architecture: Companion Volume (pp. 127-134).

26. Werner, C., & Jansen, S. (2013). A systematic mapping study on software ecosystems from

a three-dimensional perspective. Software Ecosystems: Analyzing and Managing Business

Networks in the Software Industry, 59-81.

27. Seidl, C., & Aßmann, U. (2013). Towards modeling and analyzing variability in evolving

software ecosystems. In Proceedings of the Seventh International Workshop on Variability

Modelling of Software-intensive Systems (p. 3).

28. Lungu, M., Lanza, M., Gîrba, T., & Robbes, R. (2010). The small project observatory: Visu-

alizing software ecosystems. Science of Computer Programming, 75(4), 264-275.

29. Pettersson, O., Svensson, M., Gil, D., Andersson, J., & Milrad, M. (2010). On the role of

software process modeling in software ecosystem design. In Proceedings of the Fourth Eu-

ropean Conference on Software Architecture: Companion Volume (pp. 103-110).

30. Manikas, K., & Hansen, K. M. (2013). Characterizing the Danish telemedicine ecosystem:

making sense of actor relationships. In Proceedings of the Fifth International Conference on

Management of Emergent Digital Ecosystems (pp. 211-218).

31. Yu, E., Giorgini, P., Maiden, N., & Mylopolous, J. (Eds.). (2011). Social modeling for re-

quirements engineering. MIT Press.

32. Osterwalder, A. (2004). The business model ontology: A proposition in a design science ap-

proach. Ph. D. Dissertation. Institut d’Informatique et Organisation. Lausanne, Switzerland,

University of Lausanne, Ecole des Hautes Etudes Commerciales HEC, 173.

33. Allee, V. (2008). Value network analysis and value conversion of tangible and intangible

assets. Journal of Intellectual Capital, 9(1), 5- 24.

34. Gordijn, J., Akkermans, H., & Van Vliet, H. (2000). Business modelling is not process

modelling. 1st Workshop on Conceptual modeling for e-business and the web (pp. 40-51).

