
Analyzing the Evolution of Software Development:
from Creative Chaos to Software Ecosystems

Mahsa Hasani Sadi
Department of Computer Science

University of Toronto
Toronto, Canada

mhsadi@cs.toronto.edu

Eric Yu

Faculty of Information
University of Toronto

Toronto, Canada
eric.yu@utoronto.ca

Abstract— As a software organization matures and expands,
it often evolves through different styles of organization, for
example, beginning with creative chaos as a start-up, then
introducing disciplined processes to raise quality, and later
regaining agility through light-weight practices. Recently, many
firms join collaborative networks to develop software products
and platforms for a shared market, constituting "Software
Ecosystems". At each stage of evolution, the software
organization aims to overcome critical challenges faced in its
earlier stages, while balancing business, organizational, social,
and technical forces of change. To illustrate how the evolutionary
trajectory of a software development firm is shaped by various
interacting forces, we draw upon a longitudinal case study taken
from the literature. We use the i* strategic actors modeling
framework to help analyze the forces that trigger the transition
from one organizational configuration to another.

Keywords—Software Development Organization; Evolution;
Software Ecosystems; Agile Development; Product Line
Engineering; Waterfall; Creative Chaos; Modeling & Analysis;
Strategic Actors.

I. INTRODUCTION

As a software development firm grows, its needs, objectives
and environment change correspondingly. To survive in the
face of these internal and external changes, the organization
must adapt its processes, structures and behavior on an ongoing
basis. As a result, a software development enterprise often
experiences various evolutionary stages during its life cycle;
for instance, beginning in Creative Chaos as a start-up, then
adopting disciplined processes to control growth and raise
quality, and later turning to light-weight Agile development
practices to balance between discipline in production and
flexibility in responding to changing customer demands [1].
Recently, due to economic and business incentives, the
software development industry is shifting towards Software
Ecosystems (SECO) in which firms join collaborative networks
to develop software products and platforms for a shared market
[2, 3, 4, 5].

As a software organization moves from one stage to
another, it has to overcome the challenges of previous stages, to
align its objectives and organizational configurations with the
new environment, and to seek balance amongst various
business, organizational, technical, and social forces of change.

As noted in a recent study analyzing the state of the art in
software development research and practice [6], current
engineering methods and techniques that deal with evolution
and adaptation focus on changes that occur in software
products and in software development processes. They
overlook the changes that are also occurring at the same time in
organizational, social, and business configurations.
Furthermore, current approaches tend to attend to one software
product or product line at a time, in the context of a single
project within one software development organization.
Increasingly however, change needs to be understood and
analyzed on a broader temporal and spatial span, involving
many business and social actors over longer periods of time.

In this paper, we aim to identify the challenges arising from
the broader perspective of evolution where business,
organizational, and social forces interact and co-evolve with
technical products and processes in software development, and
to obtain the requirements for suitable analysis and modeling
techniques. To this objective, we examine the evolutionary
trajectory of a software development organization over many
years, drawing upon a longitudinal study from the literature [7].
We use the i* strategic actors modeling framework [8], which
has received wide experimentation for modeling sociotechnical
settings, to uncover and analyze the pertinent issues.

The rest of this paper is organized as follows: In section 2,
the related literature is reviewed and the contributions of this
research are highlighted. In section 3, we analyze the
evolutionary trajectory of a software development organization.
As each stage of the organization unfolds, we uncover and
analyze the driving forces of change using the i* modeling
framework. The implications from modeling and analysis, and
the challenging issues are discussed in section 4. Finally, we
summarize the outcomes of this research and conclude in
section 5.

II. RELATED RESEARCH

In this section, we review the related literature and highlight
the contributions of this research. The research efforts related to
this work can be categorized in three classes:

1) Software Evolution. Extensive research has been devoted
to the analysis of software evolution, including [9, 10, 11, 12,
13, 14, 15]. In this class of research efforts, evolution is viewed
as a software design problem and the main focus is on

theorizing and addressing the evolution of software artifacts
and processes. Correspondingly, methods and systematic tools
have been developed to support and manage the evolution of
software products throughout their lifecycle.

However, in this research, we adopt a novel perspective by
analyzing the evolution of software development in the context
of a software development firm. In the context of an enterprise,
the evolution of software development is intertwined with
various social, organizational and business forces, which are as
influential as technical concerns in shaping the evolutionary
trajectory of software development activities. To the best of our
knowledge, the only research effort close to this research
is [16].

In [16], the evolutionary development of a single software
system has been analyzed in the socio-technical environment of
an enterprise, using the i* framework. Therein, it has been
argued that the evolution of software systems is in fact a co-
evolution triggered by various changing organizational and
social forces surrounding the software system. In contrast, in
this research, we adopt a higher level of abstraction and analyze
the evolution of software development activities in an
organization. Using i* modeling, we illustrate that the
evolutionary trajectory of software production is shaped by the
co-development of various evolving business, organizational
and social aspects in an enterprise. We also demonstrate that
the scope of co-evolution may transcend the boundaries of an
organization and include its external environment.

2) Software Adaptation. Adaptation of software systems
and artifacts with the changing needs and situation of the
environment is the focus of self-adaptive software systems [17,
18]. In this class of research, adaptation and reconfiguration is
mainly discussed as aligning the structure and behavior of a
single software system with its environment. Adaptation has
also been discussed at the level of software development
activities and processes in Agile software development [19].
Agile development methods accommodate adaptive
mechanisms in the software process models to align software
products with the changing demands of customers. The scope
of adaptation in Agile processes is bounded to the re-
configuration of software development activities, products and
teams within a single development project.

However, herein, we argue that adaptation is also a crucial
concern for managing the evolutionary development of a
software development organization. Moreover, we illustrate the
ongoing reconfiguration of a software development firm in
response to its changing needs and environment over time. At
an enterprise level, various business, organizational, social, and
technical issues are introduced in the adaptation process which
transcend the temporal and spatial boundaries of a single
software project and a single product. In this research, we
model and analyze how co-adaptation occurs between
organizational configurations, business needs, software
development activities, and social aspects, in a software
development firm.

3) Modeling Development and Evolution of Software.
Numerous models and meta-models have been proposed to
analyze different aspects of software development. For
example, Software Process Engineering Meta-model 2.0

(SPEM 2.0) [20] adopts a process-centered view towards the
analysis of software development activities, and focuses on the
software development activities, roles, and products. Software
Ecosystems Meta-model (SEM) [21] models business and
technical networks of relationships among several software
development firms. However, each of these meta-models
focuses on one specific aspect of software development. To
analyze the evolution of software development, a modeling and
analysis technique is required which can capture and relate the
heterogeneous elements of the context.

Moreover, specific modeling and visualization techniques
have been proposed to analyze the evolution and adaptation of
different aspects of software development activities: HISMO
meta-model for representing the history and time dimension in
the evolution of software artifacts in [22]; Technical
Ecosystems Modeling Notation (TECMO) meta-model [23] for
analyzing the evolution of software artifacts in Software
Ecosystems; and graph models in [24] to analyze the evolution
of software components over time. However, the proposed
modeling approaches mainly focus on the evolution of system
aspects in software development.

Additionally, to understand and visualize the evolution of
environment and social aspects in software development,
statistical models and biological models have been used in [25]
and [26] respectively. Causal models have also been applied to
address the co-evolution of organizational, business, social, and
technical factors in software projects and software processes
[27, 28]. In this class of efforts, to address the heterogeneity of
environmental elements involved in software evolution, models
with quantitative assumptions in the background are used.
However, since available data on the evolution of software
development mostly exists in the form of descriptive texts and
reports, we adopt a qualitative reasoning approach to analyze
the evolution of software development, which is intrinsically
more consistent with the context of available information.

III. ANALYZING THE EVOLUTION OF A SOFTWARE

DEVELOPMENT ORGANZIATION

To help understand and analyze what various forces of
change are involved in the evolution of software development
activities and how they drive evolution, in this section, we use
the i* modeling framework [8]. i* is a modeling approach, with
the main focus on how, in a network of strategic actors, actors
depend on each other, in order to fulfill their goals, to perform
their tasks and to furnish their resources. Within the boundaries
of each actor, means-ends links from tasks to goals can be used
to answer “Why” questions behind actors strategic decisions.
Multiple tasks for achieving the same goal represent variability
in means selection. The notion of the soft goal in i* can be used
to explicate the quality criteria to select from different means or
identify qualitative goals in actors’ dependencies. Given
characteristics such as the heterogeneity of involved factors in
the evolution of a software development organization, i* might
be expected to offer suitable support for analyzing and
reasoning about the evolution of software development. We
examine how the capabilities of i* can be utilized to understand
and analyze the evolutionary trajectories of software
development firms.

Fig. 1. Organziational Configuration of the Creative Chaos Stage

To this objective, we analyze the ethnography of a software
firm [7] which has gone through four evolutionary stages of
Creative Chaos, Waterfall, Agile Product Line Engineering,
and Software Ecosystems over fourteen years, using i*. At
each stage, we focus on revealing the driving forces of change
prompting evolution from one stage to another and how they
trigger transition to a new organizational configuration. We
utilize i* models to uncover problems that trigger evolution
and to support analysis on how to transition to the next stage.

At the border of each transition, four meta-steps are
followed:

1) The snapshot of the actors’ network before each
transition is modeled based on the textual description of the
scenario reported in [7].

2) The driving forces of change prompting evolution are
captured in terms of internal and external unmet goals and
quality criteria of the participant actors.

3) The i* models are used to analyze and characterize the
problematic situations and to reason about how to resolve
it.

4) The snapshot of actors’ configuration after each
transition is modeled based on the textual description of the
scenario.

A. The Creative Chaos Stage

Scenario Description: In its start-up phase, the main
objective of the company was to develop and grow its
homemade software product. To this end, the company started
with a small software team that offered services to a small
number of customers. The main driver of product development
was daily interactions between customers and the developers.
No specific restriction and control was applied on requirements

and change requests. This phase was extremely productive and
creative. However, with the growth of product and increase of
customers, the number of features and functionalities grew as
well as the number of defects. The development work became
stressful with lots of overtime and little control [7].

Modeling and Analysis with i*: To better understand and
eventually resolve the problematic situation, one would need to
know: What do specifically customers depend on the
developers for? Why can’t developers keep up with the
development workload? Why does the development team
interact daily with the customers? What other options does
software team have to communicate with customers?

In the Creative Chaos stage (Fig. 1), customers depended
on the software team to develop quality software in timely
manner. This is modeled with the goal dependency of
“Software be developed and maintained”, and the soft goal
dependencies of “Quality [software]” and “Demands be
fulfilled in timely manner” between the “Customers” and the
“Software Team” actors. On the other hand, for the software
team and the organization, in its start-up stage, the satisfaction
of the customers was of critical strategic importance (the X
notation in Fig. 1). One reason for the importance of this
dependency is that from business perspective, “Customer
satisfaction” contributes to “Reputation” of the organization
and leads to the increase of customers (the “Large customer
base” soft goal). Therefore, “Customer be satisfied” is
modeled as a critical soft goal dependency between software
team and customer.

From a technical perspective, to “Develop software”, the
software team had to “Obtain customers’ requirements and
feedbacks”. To this end, the software team interacted daily
with the customers (“Daily interactions with customer” task).
In these interactions, customers provided the software team
with “Requirements and change Requests” – a strategic

resource dependency between software team and customers.
Requirements and change requests were directly received and
responded to by the developers in a timely manner. Therefore,
the “Daily interactions with customers” task led to improving
the “Service quality” soft goal which subsequently contributed
positively to the “Customer satisfaction” soft goal (a business
objective) and satisficed the soft goal dependency of
“Demands be fulfilled in timely manner”.

However, with the growth of software product as well as
customer base (change in the business environment), “Daily
interactions with customers” task became problematic:
Directing customers’ requirements to the developers without
any control, and their immediate application by developers
caused damage to the “Quality [software]” soft goal (modeled
by hurt contribution). This task also created huge workload for
developers, hurting the “Reasonable development workload”
soft goal for the software team. Moreover, to “Develop
software” while preserving “Reasonable Development
workload”, the software team required the needed capacity
from among its developers (illustrated by “Development
capacity” resource decomposition relationship). However, with
the increase of customers, the “Development capacity”

resource did not respond to the increasing demands and
requirements of customers.

As the organizational configuration of Fig. 1 depicts, in the
Creative Chaos stage, the company heavily relies on the
software team to meet both its business and technical
objectives. There are direct relationships between customers
and the software team, and the “Daily interactions with
customers” activity is a source of problem for two desired
qualities “Reasonable development workload” and “Quality
[software]”. Therefore, to resolve the unmet soft goals of
“Reasonable development workload” and “Quality software”,
the software team has to 1) look for other alternatives for
obtaining customers’ requirements and feedbacks, 2) the
intense dependencies between “Software Team” and
“Customers” have to be reconfigured, and 3) development
capacity has to be increased.

Indeed, in the next stage, the software development
company reconfigured the dependencies between the software
team and customers (change in the organizational
configuration), reduced the responsibilities of software team
and came up with other alternatives for “Obtaining customers’
requirements and feedback”.

Fig. 2. Organziational Configuration of the Waterfall Stage

B. The Waterfall Stage

Scenario Description: To cope with the increase of
customers, to manage the growth of product and of defects, and
to control requirements and change requests, the company
formalized the software development process according to
waterfall development principles. Upfront detailed planning of
requirements was thus emphasized followed by consecutive
design and development processes. The Research and
Development department (R & D) – in charge of developing
software – was extended with quality assurance activities to
establish a certain level of control, and to continue the
development of the product alongside the growth of customer
base. To manage the growth of product and the growth of
customers, a Product Management Group was formed,
comprising of a group of experienced employees. They have
other responsibilities but spend part of their time in planning
[7].

Modeling and Analysis with i*: In terms of modeling, in
this stage, we want to capture the reconfiguration of the
organization and to see how it affected the objectives of the
company and the customers including “Reasonable
development workload”, “Quality [software]” and “Demands
be fulfilled in timely manner”. Is it possible to show that
“Development workload” has moderated in this stage?

As depicted in Fig. 2, to resolve the problem of
unreasonable development workload, three main changes were
applied in the organizational configuration of the development
team: 1) the Product Management Group (PMG) was formed,
creating a new role with two main responsibilities: “Manage
and plan product development” and “Manage customers and
requirements”. (To highlight the evolution of organizational
configuration in comparison to the previous stage, the new
elements are shown in bold font in the models.) PMG is
modeled as a role since it can potentially be assigned to
different persons. A group of experienced employees with
other responsibilities partly played this role. Therefore, “Obtain
customers’ requirements and feedback” task was delegated to
PMT as a sub task of “Manage customers and requirements”.
2) To obtain requirements from customers, “Daily interactions
with customer” was replaced with “Regular meetings with
customers” which contributed positively to the “Reasonable
workload” soft goal of the PMG role. Moreover, to control
requirements and regulate change requests, the task “Upfront
detailed planning of requirements” was added to the
responsibilities of the PMG role. The outcome of this task (the
“Detailed design” resource) was fed as a resource into the
“Implement software” task of “Software team”. As Fig. 2
demonstrates, these changes in the configuration of work
relationships significantly reduced the responsibilities of
developers by delegating them to the PMG and satisfied the soft
goal of “Reasonable development workload”. 3) Furthermore,
to control the “Quality [software]” soft goal and to reduce
defects, the “Assure quality” activity was added to the
responsibilities of the software team.

However, this reconfiguration created severe problems for
the company: “Upfront detailed planning of requirements”
violated the “Flexibility” and “Rapid Development” soft goals,

(related to the technical aspects of software development
activities), which subsequently damaged the quality of service
(“Service quality” soft goal was perverted). Decline of Service
quality subsequently damaged the two soft goals of “Customer
satisfaction” and “Demands be fulfilled in timely manners”.
Finally, this problem negatively influenced the “Customers’
satisfaction” (the business aspect of the software development
company). (Propagation rules in i* [29] are utilized to reason
over the negative influence of technical aspects on business
objectives.) Moreover, postponing quality assurance activities
to the end of the development process together with the slow
production process resulted in the late identification of
problems and increased rework. During the Waterfall stage,
serious problems arose. Inflexibility of the development
process on one hand, and instability of customers’
requirements on the other, critically reduced production
performance, incurring high costs on the organization.

C. The Agile Product Line Engineering Stage

Scenario Description: As the company grew, the product
expanded into a product line capable of serving various usage
scenarios. This change introduced two separate processes of
development for the software products with different time
cycles. Development of the product line was conducted in one-
year cycles, while the development of customized products was
conducted in much shorter cycles. Alongside the growth of the
organization and of the product line, the Product Management
Group was re-established as a full-time Product Strategy
Group team managed by a Chief Strategy officer. The
company acquired one of its former competitors and boosted
the number of employees significantly. Through extensive
internal training during one year, most of the organization was
using the Agile development process. To improve the
performance of the development and to cope effectively with
changing users’ requirements, Agile software development
techniques were adopted. Functional requirements were
replaced by explicit expression and evaluation of product
qualities, which were preferably stated by customers involved
in the development process. Moreover, regular customer
review meetings were held in which the result of iterative
development was evaluated and validated by customers. As a
result, the number of issues near release was reduced, and the
delivered product matched customers’ expectations better [7].

Modeling and Analysis with i*: In terms of modeling,
one would need to ask: How did the software development
organization attain flexibility in software development and
software products? What choices and options did it create for
its customers?

As depicted in Fig. 3, “To develop software”, the “Iterative
development” means was adopted by the software team which
was decomposed into two main activities of “Develop product
line” and “Develop customized products”. This change
introduced two new options: 1) “Offer pre‐configured
products” (which offered ready-to-use products based on the
common needs of customers) and 2) “Offer customized
products” (which offered products requiring customized
configuration and minor development). As a result, the needs
of the new customers were fulfilled immediately by offering

pre-configure products. Moreover, the specific needs and
requirements of the special customers were addressed by
configuring products in short cycles These two options
alleviated the problems with the two soft goals of “Rapid
development” and “Flexibility [Requirements]” to some extent.

To manage the development of the software product line,
the PMT role turned into a full-time responsibility of the
“Product Strategy Group” (depicted by actor element in i*)
with the main responsibility of “Strategic planning for software
product line”. The result of this activity was the “Product
road map” to identify the main features to be added to the core

of the product line, which was fed into the “Develop product
line” process of the software development team.

To improve the performance of the development and to
cope more effectively with changing requirements of users,
Agile software development techniques were adopted.
Notably, “Regular customer review meetings” were held in
which the result of the iterative development were evaluated
and validated by customers as a means to “Obtain Customer’s
requirements and feedback”. As a result, the number of issues
near release was reduced, and the delivered products matched
customers’ expectations better (the soft goals of “Service
quality” and “Customer satisfaction” were satisficed.

Fig. 3. Organziational Configuration of the Agile Product Line Engineering Stage

The adoption of the Agile development required active
participation and engagement of customers in the development
process. Therefore, it created a new critical goal dependency
between the organization and the customers: “Customers be
engaged in development” – marked by X in Fig. 3. However,
this dependency required customers to regularly assign part of
their time to product development. This expectation was not
welcome by the customers because it required customers or
customer representatives to spend some of their busy time in
the development process of the company. In other words, they
did not have enough motivation to participate. As depicted in
Fig. 3, the “Customers be engaged in development”
dependency was not met in this stage. Consequently, although
the introduction of the Agile development resolved the
problems of slow and flexible development, it created
misalignment problems between the interests of the customers
and objectives of the company.

From an analytical viewpoint, this raises the question of
how this misalignment between the intents of the organization
and the motivation of customers can be resolved. How can the
customers be motivated and encouraged to participate in the
development process in addition to fulfilling their own
objectives? Is it possible to create a sense of being a member
of the organization within the customers?

D. The Software Ecosystem Stage

Scenario Description: To foster customer participation,
the company provided training programs to both developers
and customers. After a few iterations, they became engaged in
the development process. Co-creating the product became the
common objective of the company and the stakeholders. On
one side, the company had the most up-to-date knowledge of
the technology and the ability to make use of it. On the other
side, customers held the most up-to-date knowledge of various
business domains and the domain-specific requirements of the
product. To enhance supporting services for the software
product, and to facilitate the integration of the software with
other products, the company began offering extensibility
frameworks and APIs. The provision of APIs provided
external stakeholders with the business opportunity of
extending the product with additional features and
functionalities independently of the company. As a result, a
third party was shaped; i.e., a set of external organizations
based their business on the software product as a platform
with the main objectives of developing value-adding solutions
and products, and offering consulting services. To facilitate
the extension of the core product by the third party, the
company developed a flexibility framework as an interface for
extending the software product line. This collaboration
became beneficial for both sides. On one hand, the company
could focus on the development and evolution of the core of
software product line while delegating the development and
extension of variants and plug-ins to the third party. On the
other hand, the third party could have access to the big market
of the company [7].

Modeling and Analysis with i*: The model produced for
this stage should explain how the misalignment between
company’s objectives and customers’ interests was resolved in
the Software Ecosystem stage. How were incentives created in

the customers to entice them to participate in the development
of the product? What changes happened in the relationships
between customers and the organization?

As illustrated in Fig. 4, “Offer extensibility framework”
was added to the set of services the company provided. As a
result, two actors were introduced to the configuration of the
organization. The Extensibility framework was added as a new
technical actor to the socio-technical environment of the
organization serving as an intermediary between the inner
boundary of the organization and the external environment
(see the placement of this actor on the border of Software
development company actor in Fig. 4). Offering the
extensibility framework created the “Third Party” as a new
external stakeholder of the organization. The “Extensibility
framework” actor provided the “Third Party” with the
“Platform extension points” resource enabling them to
“Extend software product services” in various ways –
including “Develop value‐adding products” and “Offer
consulting services”.

Provision of the extensibility framework contributed to the
interests of the organization in two ways: 1) It created the
opportunity of “Open innovation” which had a positive
influence on the “Reputation” soft goal. 2) Via the
extensibility framework, customers could integrate the
software with other products. This change added “Variety of
services” which had a positive contribution to the “Customer
attraction” soft goal and contributed to “Large customer
base”. Moreover, this “Third Party” actor had the same interest
in the product as the organization: Third party’s business
depended on the software product. Therefore, engagement in
the development was beneficial to it. As a result, the
dependency of “Customers be engaged in development”
between the organization and customers was shifted to the third
party and was satisficed since it was of “Shared value”. In
return, the third party was dependent on the company for it to
become visible to a large base of the organization’s customers
(“Visibility to customers” soft goal), and to be provided with a
“Marketing channel”. Correspondingly, the responsibility of
“Support third party” was added to the activities of the
organization.

As Fig. 4 clearly demonstrates, the external environment of
the company has dramatically changed in the Software
Ecosystems stage. The addition of the Extensibility framework
actor and its use as a software platform, has relatively opened
the boundary of the organization to the third party and enabled
the independent extension of the software product by actors
external to the company. Moreover, the supply network of the
software product has been distributed between the main
organization and the third party.

IV. DISCUSSION

In this section, we first discuss our experience in
attempting to analyze the evolution of a software development
firm and highlight the challenging issues. Then, we examine to
what extent the capabilities of the i* modeling framework can
help address some of these challenges.

Requirements

and change

requests

D

D

D

D

D

D

D

D

D

D

D

D

D

D
D

D

D

D

D

D

D

D
D

PlatformExtension points

D

D
D

D

D

D
D

D

D

D

Fig. 4. Organziational Configuration of the Software Ecosystem Stage

A. Observations

Throughout analyzing the case study, we observed the
following issues:

1) Evolution is a multi-dimensional phenomenon, not
limited to the technical aspects of software development. In
the software development organization under study, various
business, organizational, social, and technical aspects co-
evolved over relatively short periods. For example, in the
start-up stage, changes in the business and organizational
environment, such as the increase of customers, led to the

reorganization of software development activities. In contrast,
in the Software Ecosystems stage, evolution in software
development technology (developing web APIs for the
product line) created a new business environment which
dramatically changed the stakeholders’ relationships in the
supply network of the software product, and confronted the
organization with new business opportunities and threats.

Implications: The above examples provide evidence that:
a) Business, social, and organizational environment change
throughout software development over relatively short

periods; and b) Evolution of software development products
and activities may dramatically change the business and
organizational environment. Therefore, from the viewpoint of
a software development firm, i) business, organizational and
social aspects do not remain fixed throughout software
development; and ii) evolution and adaptation are multi-
dimensional, and not merely limited to software products and
software processes.

Consequently, to have a clear understanding of the
evolution of software development, it is necessary to consider
the broader (business, organizational and social) environment
in which software development is conducted. In other words,
in addition to software-related causes, factors such as
organizational, business and economic, and social aspects
should also be considered as the causes of software evolution.
Moreover, to manage this multi-dimensional evolution in a
software development firm, systematic methods and analysis
techniques are required which go beyond the level of software
products and software processes in dealing with evolution and
adaptation.

2) Change in software development activities is tightly tied
with organizational design, business design and social design.
In the case study, we came across several instances where
social, business and organizational designs were required to be
revised and reconfigured in tandem with change in software
development activities. For example, one main driving force
prompting transition from the Agile Product Line Engineering
stage to the Software Ecosystems stage was the lack of enough
motivation in the customers to collaborate in the development
of software products – a social factor which was critical to the
success of software development processes of the enterprise.
However, this problem was resolved not by treating only the
social aspects of software development activities. The problem
was resolved by introducing a combination of changes in the
technical and business aspects. Creating a new business
environment, in which external stakeholders could have
shared value (individual benefits) in software products, could
attract the interest of third parties to participate. This change in
the business environment was respectively enabled by the
development of web APIs, which provided the technical
infrastructure for new forms of business collaboration.

Implications: The above series of changes convey that: a)
Evolution of software development activities is an ongoing
enterprise development in which the analysis and design of
social, organizational, and business factors is as crucial as
software design and development and should be conducted in
parallel; and b) The boundaries of software development are
not limited to a single organization, a single project and a
single software product. These issues can be observed i) in the
evolution of software development throughout various stages
of the organization; and ii) in the Software Ecosystems stage
alone. In this stage, the boundaries of software development
were opened up to external organizational actors, and the
scope of software development has shifted to software
platforms, transcending the temporal and spatial boundaries of
a single software project.

Hence, systematic methods and analysis techniques are
required to consider the issue of software development beyond

the temporal and spatial scope of a single software project, a
single software development firm and a single software
product. Additionally, analysis and design of business and
economics, social, and organizational configurations should be
conducted in tandem with software development activities.

B. Support for Analysis and Modeling

In this section, we highlight some analysis and modeling
requirements needed to address the challenges discussed in
section A, and examine how i* strategic actors modeling
framework can address these requirements.

 Reasoning about the co-evolution of software development
with organizational, business, and social designs. To
address this type of analysis, it is required a) to capture and
identify the causes of evolution in the socio-technical
context of software development, and b) to identify and
reason about the influence of these causes on each other and
on the evolution of software development.

 Co-aligning software design and development with
business, organizational and social designs. To address this
design concern, it is required a) to capture and model
various heterogeneous aspects, such as software
development activities, organizational configurations,
business environment, and social aspects in a single model;
b) to elicit and reason about the dependencies and
relationships between these heterogeneous aspects; and c)
to reason about the alternatives and trade-offs to transition
from one configuration to another.

In the following, we discuss how the i* modeling
framework addresses the above requirements:

1) Homogenous modeling for the heterogeneous context of a
software development organization.

i* offers two mechanisms to address this requirement: a)
By modeling the socio-technical context of a software
development organization as a network of strategic actors, it
provides the uniform element of strategic actor for modeling
different social, business, organizational and technical
elements, and the dependencies between these elements. For
example, in the Software Ecosystems stage, the notion of
actors can be used to model both the human actors such as
“Customer” and “Third Party” as well as “Extensibility
Framework” which is a technical actor in the configuration of
the organization. b) Goal decomposition relationships and
contribution relationships between soft goals can be used to
capture and analyze a collection of heterogeneous elements
together. For example, in the Software Ecosystems stage
(Fig. 4) soft goals such as “Reputation” and “Customer
attraction” are business objectives. However, goals such as
“Rapid development” and “Quality [software]” are objectives
related to the software development activities. i* models
enable capturing and analysis of the collection of these factors
in one model.

2) Strategic & intentional reasoning about evolution.

The notion of goals in i* (hard goals and soft goals) can be
used to provide an intentional perspective of evolution in
software development. More precisely, the reasons for

evolution can be captured in terms of misalignment between
the goals and quality objectives of strategic actors and the
current configuration of the organization (unmet goals and
unmet soft goals of the strategic actors in the as-is situation).
For example, one driving force of change prompting transition
from the Creative Chaos to the Waterfall stage was that the
organizational configuration of the firm was not aligned with
the “Reasonable development workload” soft goal of the
“Software team” actor. This misalignment is captured in terms
of an unmet quality objective in Fig. 1. Another misalignment
prompting the evolution was the unmet soft goal “Quality
[software]” (a critical strategic dependency between
“Software team” actor and “Customer” actor) in the
configuration of the Creative Chaos stage. Throughout the
analysis of the case study, we developed an intentional
reasoning over the evolution of the software development
organization conforming to how the evolutionary trajectory of
the firm unfolded over time.

3) Open-ended means-ends relationships to model and reason
about alternative evolutionary intentional actions.

The notion of open-ended intentional variability in means-
ends relationships can be utilized to model and reason about
the alternative evolutionary strategic courses of actions that
can be taken by strategic actors. If the driving forces of change
are captured in terms of unmet quality objectives, strategic
actors can come up with new means (including new tasks,
resources, goals and strategic dependencies) to satisfy them.
For instance, one change in the activities of the organization
from the Waterfall to the Agile Product Line Engineering
(Fig. 3) was that new alternatives were introduced to achieve
“Offer product” task; i.e., in addition to “Offer customized
product”, a new option was created to “Offer pre‐configured
products”, which could control one portion of the demands of
new customers. Respectively, as the company evolved, new
options and variabilities were introduced for offering products
to customers. Moreover, in some cases, the adoption of a new
means requires establishing new dependencies with existing or
new actors. For example, in the Software Ecosystem stage, the
addition of the “Offer extensibility framework” as a new
means to address the “Manage customers’ requirements” end
resulted in establishing new relationships between the
company and the third party. This kind of change results in the
evolution of social and organizational configuration of the
firm.

4) Reasoning about social, organizational and business
designs together with technical design.

a) Designing the social system around software
development. The notion of strategic actors can be used to
analyze the social design of an organization. For example, in
the Agile Product Line Engineering stage, one driving force of
change was the unmet strategic dependency of “Customers be
engaged in development”. This unmet goal reveals the
misalignment between the intents of software development
organization and the interests of the customers. The analysis
of how to assure that customers have “Shared value” (as a soft
goal) in the development of software product is one attempt in

redesigning the social system of the enterprise in order to
motivate customers to collaborate with the organization.

b) Designing the organizational configurations around
software development. The concepts of actor boundary,
strategic dependencies, and roles can be utilized to analyze the
design of organizational configurations, and distribution of
responsibilities and activities between organizational actors in
a software development enterprise. For example, In the
Creative Chaos stage, one problem was the heavy workload of
the software development team. Using i* modeling, one could
analyze and demonstrate how the organizational configuration
of the firm was rearranged to resolve this problem. The
reduced number of strategic dependencies between the
“Software Team” actor and other organizational actors as well
as the reduced number of tasks of the “Software Team” actor
in Fig. 2, clearly demonstrate resolution of the problem along
with the growth of the organizational structures.

c) Designing the business environment around software
development. The concept of strategic rationale – including
goals, means-ends relationships, and quality objectives – can
be used to help analyze the governance of a software
development organization (decisions about strategies, tactics
and operations of a software development firm [30]) and its
business dynamics. For instance, in the Software Ecosystem
stage, the company had to decide how to open up the
organizational boundaries toward external stakeholders. This
decision involves multiple levels of analysis about: i) how to
incorporate external organizations and users in the business of
the software development firm (strategic level); ii) how to
open up the product line to external stakeholders (tactical
level); and iii) how to open up source code to external
developers (operational level). To take adaptive decisions, the
software development company should first have a clear
understanding of the strategic objectives and dependencies of
the involved stakeholders. Second, it needs to analyze the
benefits and costs as well as the opportunities and threats
associated with each alternative course of action it can take.
To reason about how to design the relationships between
different stakeholders, the i* notion of strategic dependencies
and actor boundaries can be used. Moreover, to explicate and
analyze the alternatives and trade-offs related to each of the
above levels of decision making, the i* notion of strategic
rationale can be used in addition. i*’s support for adaptive
organizational governance and business dynamics of a
software development firm has been further discussed in [31].

V. CONCLUSION

Our experience analyzing scenarios of a software
development organization shows that: a) Software
development activities co-evolve with social, business, and
organizational environment over short periods; b) Software
development is tightly tied with business, social, and
organizational designs; and c) The scope of software
development transcends the boundaries of a single software
development organization, a single software development
project, and a single software product. These features are
evident both from the evolution of the software development
organization over several stages and the specific stage of
Software Ecosystem, which is the most recent trend in the

software industry. Therefore, to help a software development
firm (and subsequently a software product) develop and grow
sustainably, analysis techniques and systematic engineering
methods are required which address the multi-dimensional co-
development of software products and software activities
together with business and economics, organizational
configurations, and social aspects. However, currently, the
focus of software development approaches is mainly on the
engineering and adaptation of a single software system within
the scope of a single project and a single organization,
neglecting the above issues [6, 32].

To address the above shortcomings, in a preliminary
attempt, we modeled and analyzed the evolutionary trajectory
of a software development firm, taking into account the
organizational, business and social dimensions as well as the
software product and software development activities. We also
delineated how capabilities of the i* strategic actors modeling
framework can help analyze, design and align various
heterogeneous dimensions of a software development firm.
Nevertheless, supporting the sustainable development and
evolution of a software development firm – specifically in the
face of recent trend towards Software Ecosystems – is a much
more complicated issue than what was discussed herein. We
aim to explore this research agenda further in our ongoing
research.

ACKNOWLEDGEMENTS

Financial support from the Natural Sciences and
Engineering Research Council of Canada (NSERC) and the
Ontario Research Foundation (ORF) are gratefully
acknowledged.

REFERENCES
[1] B. Boehm, and R. Turner. Balancing agility and discipline: A guide for

the perplexed. Addison-Wesley Professional, 2003.

[2] M. Iansiti, and R. Levien. "Strategy as ecology." Harvard business
review82, no. 3 (2004): 68-81.

[3] D. Messerschmitt, and C. Szyperski. "Software ecosystem:
understanding an indispensable technology and industry." MIT Press
Books 1 (2005).

[4] J. Bosch. "From software product lines to software ecosystems."
InProceedings of the 13th International Software Product Line
Conference, pp. 111-119. Carnegie Mellon University, 2009.

[5] S. Jansen, A. Finkelstein, and Sjaak Brinkkemper. "A sense of
community: A research agenda for software ecosystems." In Software
Engineering-Companion Volume, 2009. ICSE-Companion 2009. 31st
International Conference on, pp. 187-190. IEEE, 2009.

[6] M. Jarke, P. Loucopoulos, K. Lyytinen, J. Mylopoulos, and W.
Robinson. "The brave new world of design requirements." Information
Systems 36, no. 7 (2011), pp. 992-1008.

[7] G. K. Hanssen, "A longitudinal case study of an emerging software
ecosystem: Implications for practice and theory." Journal of Systems and
Software 85, no. 7 (2012), pp. 1455-1466.

[8] E. Yu, P. Giorgini, N. Maiden, and J. Mylopoulos, (Eds.). (2011). Social
modeling for requirements engineering. Mit Press.

[9] N. Chapin, J. Hale, K. Khan, J. Ramil, and W. Tan. "Types of software
evolution and software maintenance." Journal of software maintenance
and evolution: Research and Practice 13, no. 1 (2001), pp. 3-30.

[10] M. Lehman, J. Ramil, P. Wernick, D. Perry, and W. Turski. "Metrics
and laws of software evolution-the nineties view." In Software Metrics
Symposium, 1997. Proceedings., Fourth International, pp. 20-32. IEEE,
1997.

[11] N. Madhavji, J. Fernandez-Ramil, and D. Perry, eds. Software evolution
and feedback: Theory and practice. John Wiley & Sons, 2006.

[12] T. Men, A. Serebrenik, and A. Cleve, eds. Evolving Software Systems.
Springer Berlin, 2014.

[13] M. Lehman, and J. Ramil. "Software evolution and software evolution
processes." Annals of Software Engineering 14, no. 1-4 (2002), pp. 275-
309.

[14] T. Mens, M. Wermelinger, S. Ducasse, S. Demeyer, R. Hirschfeld, and
Mehdi Jazayeri. "Challenges in software evolution." In Principles of
Software Evolution, Eighth International Workshop on, pp. 13-22. IEEE,
2005.

[15] S. Bandinelli, A. Fuggetta, and C. Ghezzi. "Software process model
evolution in the SPADE environment." Software Engineering, IEEE
Transactions on 19, no. 12 (1993), pp. 1128-1144.

[16] E. Yu, A. Lapouchnian, and S. Deng. "Adapting to Uncertain and
Evolving Enterprise Requirements: The case of business-driven business
intelligence." In Research Challenges in Information Science (RCIS),
2013 IEEE Seventh International Conference on, pp. 1-12. IEEE, 2013.

[17] B. Cheng, R. Lemos, H. Giese, P. Inverardi, J. Magee, J. Andersson, B.
Becker et al. "Software engineering for self-adaptive systems: A
research roadmap." In Software engineering for self-adaptive systems,
pp. 1-26. Springer Berlin Heidelberg, 2009.

[18] P. Oreizy, N. Medvidovic, and R. N. Taylor. "Architecture-based
runtime software evolution." In Proceedings of the 20th international
conference on Software engineering, pp. 177-186. IEEE Computer
Society, 1998.

[19] J. Highsmith. Adaptive software development: a collaborative approach
to managing complex systems. Addison-Wesley, 2013.

[20] R. Bendraou, B. Combemale, Xavier Crégut, and M-P. Gervais.
"Definition of an Executable SPEM 2.0." In Software Engineering
Conference, 2007. APSEC 2007. 14th Asia-Pacific, pp. 390-397. IEEE,
2007.

[21] V. Boucharas, S. Jansen, and S. Brinkkemper. "Formalizing software
ecosystem modeling." In Proceedings of the 1st international workshop
on Open component ecosystems, pp. 41-50. ACM, 2009.

[22] T. Gîrba, and S. Ducasse. "Modeling history to analyze software
evolution." Journal of Software Maintenance and Evolution: Research
and Practice 18, no. 3 (2006), pp. 207-236.

[23] C. Seidl, and U. Aßmann. "Towards modeling and analyzing variability
in evolving software ecosystems." In Proceedings of the Seventh
International Workshop on Variability Modelling of Software-intensive
Systems, p. 3. ACM, 2013.

[24] V. Rajlich. "Modeling software evolution by evolving interoperation
graphs."Annals of Software Engineering 9, no. 1-2 (2000), pp. 235-248.

[25] T. Mens, and M. Goeminne. "Analysing the evolution of social aspects
of open source software ecosystems." In Third International Workshop
on Software Ecosystems (IWSECO-2011), pp. 1-14. 2011.

[26] T. Mens, M. Claes, P. Grosjean, and A. Serebrenik. "Studying Evolving
Software Ecosystems based on Ecological Models." InEvolving
Software Systems, pp. 297-326. Springer Berlin Heidelberg, 2014.

[27] R. Madachy. Software process dynamics. John Wiley & Sons, 2007.

[28] B. Chatters, M. Lehman, J. Ramil, and P. Wernick. "Modelling a
software evolution process." Software Process: Improvement and
Practice 5, no. 2-3 (2000), pp. 91-102.

[29] J. Horkoff, and E. Yu. "A qualitative, interactive evaluation procedure
for goal-and agent-oriented models." In CAiSE Forum. 2009.

[30] S. Jansen , S. Brinkkemper, J. Souer, and L. Luinenburg. "Shades of
gray: Opening up a software producing organization with the open
software enterprise model." Journal of Systems and Software 85, no. 7
(2012), pp. 1495-1510.

[31] E. Yu, and S. Deng. "Understanding Software Ecosystems: A Strategic
Modeling Approach." In Proceedings of the Workshop on Software
Ecosystems, pp. 65-76. 2010.

[32] Y. Dittrich. "Software Engineering Beyond the Project–Sustaining
Software Ecosystems." Information and Software Technology (2014),
doi: 101016/j.infsof.2014.02.012.

