1

REFSQ 2017 (pp 1 - 17) - Pre-Print

Modeling and Analyzing Openness Trade-Offs in
Software Platforms: A Goal-Oriented Approach

Mahsa H. Sadj Eric Yu-?

1 Department of Computer Science, University of Téoon
2Faculty of Information, University of Toronto
{mhsadi,eric} @cs.toronto.edu

Abstract. [Context and motivation] Open innovation is becoming an important
strategy in software development. Following thistgtgy, software companies
are increasingly opening up their platforms todtparty products for extension
and completion[Question / problem] Opening up software platforms to third-
party applications often involves difficult trad&sobetween openness require-
ments and critical design concemsch as security, performance, privacy, and
proprietary ownership. Deliberate assessment sktlrade-offs is crucial to the
ultimate quality and viability of an open softwaskatform. [Principal ideas /
results] We propose to treat openness as a distinct classmfunctional re-
quirements, and to model and analyze opennessreegnts and relatedade-
offs using a goal-oriented approach. The propoppdoach allows to refine and
analyze openness requirements in parallel withratbmpeting concerns in de-
signing software platforms. The refined requirerseare used as criteria for se-
lecting appropriate design options. We demonstrat@pproach using an exam-
ple of designing an open embedded software platfornihe automotive domain
reported in the literatur§Contributions] The proposed approach allows to bal-
ance the fulfillment of interacting requirementjmening up platforms to third-
party products, and to determine “good-enough” ‘@pkn-enough” platform
design strategies.

Keywords: Requirements Engineering, Software Design, Decislaking,
Open Software Platforms, Software Ecosystems, Qp&svation

Introduction

“How open is open enough?”"— Joel WHSt

Open innovation idecoming an increasingly important strategy invgafe develop-
ment. Following this strategy, software developtr@ganizations open up their pro-
cesses and software platforms to external devedogued third parties in order to use
external ideas and paths to market (as well amteenal ones) to advance their tech-
nology[2]. External developers become part of a softwareystes offering comple-
mentary applications and services for the operfgutat [3, 4, 5]. Google Android,
Apple iOS, and Windows Mobile are a few examplespen software platforms.

REFSQ, p. 1- 17, 2017.
© Springer-Verlag Berlin Heidelberg 2017

However, developing open software platforms thattachnically sound, socially
sustainable and economically viable is a challepgioblem in software development.
First, critical decisions need to be taken in opgnip software platforms to third-party
products that raise serious concerns about prapyietvnership and confidentiality of
a platform and its complementary applications. Eplas of such decisions include:
deciding between the core features and functidealihat build the core competencies
of a platform, and those that can be opened ubirtd-party developerfs,7]; or iden-
tifying the appropriatelegree of opennedsr engaging different third-party develop-
ers, some of whom are also competitors in the maleee[7, 8]. Second, openness
introduces a specific set of requirements on tieggaeof a platform which are in com-
petition with crucial requirements such as secupgrformance, maintainability, and
controllability. For example, opening up a platfommay urge the need for transparency
and visibility of platform functionalities and data third-party applications. These re-
quirements pose serious risks to the security efthtform. Another example is that
distributing platform features among applicatiorent different parties threatens the
controllability and maintainability of the overallatform[4], [9].

A successful example of an open software platfarm@dogle Android. Lowering
the entry barriers and providing easy access tenexthe platform has significantly
increased the adoption of Google Android among feabianufacturers and applica-
tion developers, introducing this operating syss=sna leader mobile software platform
in the markef10]. However, Google Android and its complementary aggpions suf-
fer from performance and security iss{ES].

It is crucial to clearly understand and analyzertdgplirements that openness intro-
duces on the design and evolution of a platfornd, tancarefully assess the related
trade-offs before opening up a platform to thirdtpapplications. To model and rea-
son about openness requirements and related tfegjea® propose a goal-oriented
approach. The proposed approach reduces the pratbl@esigning open software plat-
forms to a decision making problem, treats openregpsirements as a distinct class of
non-functional requirements, refines them in patallith other important design con-
cerns, and uses the refined requirements as selectieria to determine an appropriate
design strategy from among alternative optionofmening up a platform.

In Section 2 we identify some requirements and concerns tae¢ fbeen raised in
the design of open software platforms. We brieflyiew the main steps of the Non-
Functional Requirement (NFR) engineering approacheiction 3 We illustrate how
to model and analyze openness requirements usifiy INFSection 4We review the
related research iBection 5and conclude the paper $ection 6.

2 Requirements and Concernsn Open Software Platforms

An open software platform is a platform on top dfieh third-party applications can
be built[3, 4, 5], [12].Unlike in Free and Open-Source Software (FO&S) 14] the
source code of an open software platform is usuntymade available to third parties.
Instead, there are extension mechanisms, such @gagion Programming Interfaces
(APIs) or development environments that allow sigfit access to the services and

functionalities of the open platform. Moreoverpipen software platforms, major play-
ers develop purposive strategies attempting to gainpetitive advantadg], [15].

The requirements that need to be considered iniogerp software platforms to
third-party applications can be categorized into tmain groups: (1Ppenness design
requirementsThe specific concerns and quality requiremeras dipenness introduces
on the design; and (Beneral concerns in designing software platfariitse require-
ments that are possibly violated or at risk wheanipg up platforms to external appli-
cations. Often, these requirements cannot be fulfijled simultaneously in the design
of a platform. A designer may need to compromigeveen these two types of require-
ments. In the following, we identify several of eerequirements and concerns.

Table 1.Business-Level Openness Requirements

Market-Related Objectives — Market Reach, Market Pesence, New MarketsStandardized Market,
Adoptability, and Time to Market. A main reason for opening up software platforsmy®iexpad marke
reach, open up new markets and communities foatiopn, increase the adoption of a platfoamon
various users and developers communities, inctbasaeumber and variety of innovative and complelag
features, and reduce time to market of new andviatnee feature§l5, 16, 17].

Customer-Related Objectives — Attracting New Customrs and Developing New Customer Communi-
ties, Stickiness of the Platform, and Customer Retgion. Growing the network size afomplemental
applications hardens switching to a different platf, thus increases the stickinesa @flatform. Moreove
growing the variety of platform offerings increasgactiveness of the platform for new andgmtial user:
and increases value of the core product to theiegiaserd15, 16].

Product-Related Objectives — Co-Innovation and Opetinnovation, and Variety of Software Vendor's
Offerings. Innovative features play an important role inshecess of a platformapecifically in knowledg
intensive domains. Via growing the network sizel@felopers, the platform owners can benefit frorergm
ing external innovationg 5].

Financial-Related Objectives — Revenue Stream, Shiag the Costs of Innovation, and Decreasing To-
tal Costs of Ownership Collaborating with partners in ecosystems sh#rescost of innovation and de-
creases the total cost of ownership for commodityianovative functionality15, 16].
Network-Effect-Related Objectives — Customer and Péner Ecosystem Gravity, and Community
Building. Third-party developers play an important role in the sascof an open platform through tl
contributions and innovations. A larger pool of iepers will provide more innovative output. Thpkt-
form developers aim to attract and engage a langeber of developers to contribute and develop eppli
tions to their platforms. Factors, such as the éegfopenness, low entry barriers of both monetary
technical nature, and the network size gfl@form influence the choice of external develspter join
platform[10], [15, 16].

2.1 Openness Design Requirements

Openness introduces two types of requirements erdésign of software platforms:
(1) Business-level openness requirement®se requirements are the main motivations
for opening up a software platform to third-panbphcations. Business-level openness
requirements are non-technical, related to theagdmiisiness, and organizational envi-
ronment of a software platform, and may indiredtiffuence the design of an open
platform. These requirements often compete oragtewith technical quality require-
ments in the design of open software platforms sThpecific attention should be given
to this group in choosing effective design stratedor opening up a software platform.
These requirements can be categorized into fiven gpaiups described ifable 1 (2)
System-level openness requiremenitsese requirements are technical, related to the
quality of software design, and directly influertbe design decisions. The technical

quality requirements that need to be considerezpaning up software platforms can
be classified into seven groups describetldble 2

Table 2. System-Level Openness Requirements

Accessibility. An open software platform needs to be accessibileitd-party applications artthve acce:
to the features and services of third-party appboa. The ease of access to and from a software platf
an important quality requirement for opening uedfprm. The accessibility of a platform can beeggatrize:
into four levels: (1) accessibility of functionédis and services; (2) accessibility of data; (Zeaibility of
platform structure (i.e., access to features amapoments); (4) accessibility of source cddé]
Extensibility — Composability, Deployability, Stabiity, Configurability, and Evolvability. An oper
software platbrm needs to be extended and complemented by sifierare applications and compont
over time. Extensibility quality attribute ideng8 how easy a new application or feature can becdatid:
platform. Various quality criteria contribute tcetlextensibility of a platform, includingl) Composability
Open and seamless integration of external modslas importantequirement for a platform. Factors s
as decoupling third-party applications from each otheeliminating the need for developme
synchronization and independent development, integration, and validetid third-party applicatior
contribute to the composability of an open platfojh2], [19]. Carefully decoupled components with well-
defined interfaces enable third-party developemnadlify their applications without disrupting theeval
correctness. Platform interfaces should decougl@form organization from the thipghrty application
Achieving this objective, allows the platform owner releasenew version of the platform or n
components without disabling the externally devetbppplications operating on top of the platfgir],
[20]. (2) Deployability Third-party applications must be possible to be deplayaependently of each oth
and the platform behavior must not depend on theran which applications are deploy@d]. (3) Stability:
Open software platforms and their APIs need to bifictently stable over time to provide a st:
infrastructure for third-party applicatioj49]. Backwards compatibilitys an important quality attribt
contributing to the stability of the platforn4) Configurability. Open software platforms must sup
variability in configuring the platform and thirdaly applications to enable customized product
developed19]. (5) Evolvability.In open software platforms, new functionality aomtinuously added a
the size of the platforms continuously grow. Toldeith the growth, it is required to proactivelyfaetol
platform architecture and standardize platformrfatees[20].

Decentralizability and Distributability . The functionalities of an open software platforeed to b
distributed among several applicatiormnd platform components need to operate in a dedizet
environment. Thus, the ease to opemta decentralized environment is an important iuaéquiremer
for an open software platforrfiL3].

Interoperability. An open software platform requires to easily coafee and interact with thirgarty
applications. Mechanisms are required to coordiaatkfacilitate the interactions between the ptatfanc
third-party applications and to resolve confli¢tattarise in coordinatioid], [13], [20].

Reusability. An open software platform and its components neds used and nesed in the developme
of other software features and applications. Treeda do so is an important design qualityam ope
platform.

Modifiability. To use the platform in the development of othepliaptions and software faaes, th
platform or some parts of its functionalities austures may need to be modified and customZieds, th
platform should provide mechanisms that enableg maslification of some features.

Visibility or Transparency. To be complemented and extended by thady applications, the platfo
structure, functionalities, and behavior need twibible and transparent to external applicatitmngariou:
degreeg21].

2.2 General Concerns in Designing Software Platforms

Aside from openness requirements, there are otheiaderations applicable to the de-
sign of software platformhat are potentially impacted by openness requintst®ev-
eral instances of these requirements are ideniifidéble 3

Table 3. General Design Concerns in Open Software Platforms

Security — Operational Security, Integrity, Confidentiality, and Privacy. The end-users use a composi-
tion of the core of platform and various externaplecations developed on top of it. Security conseaiise

as possible defective or malicious code in extempalications may disable the overall sysféfj, [22, 23].
Mechanisms are required: (1) to guarantee therityeyf platform services and data in the presesfeeces

by third-party applicationfl9]; (2) to preserve the confidentiality and privacyttid endusers’ informatio
and platform data when opening up a platform taltparty developer$7], [20]; and (3) to ensursafe an
correct operation of features and services devdlbgeamultiple parties.

Controllability, Maintainability, and Centralizability. The development and maintenance of an open plat-
form and its complementary applications is shamdrey various parties. In this settingechanisms a
required to manage software enhancements, extensiod architectural revisions in decentraligegjects
Moreover, rules are required to govern and cont@lapplications network4], [9], [13].

Reliability, Trust and Accountability. In open software platforms, parties providing andsuming a soft-
ware service are easily exposed to cheaters. Trerehechanisms are required to guarantee trustines:
and accountability of third-party services and tioalities[13], [23].

Proprietary Ownership. The ownership and intellectual property rightth&fapplications, components ¢
data produced by external developers is a criioatern in open software platforms. Mechanismsare
quired to ensure responsibility and commitmentgdating and supporting thigglarty modules. Moreove
the alignment of component licenses need to bekeldemn the usage and compositiohopen softwar
components and modules at build time and deployfi@gni20], [23].

3 Non-Functional Requirements Analysis Method

To deal with interacting and competing requiremewts use the Non-Functional Re-
quirements (NFR) engineering appro@2f]. NFR reduces the problem of designing a
software system into a decision making problem arsgarch for satisfactory design
options. To identify an appropriate design optifoyr main steps are performed in
NFR: (1) Characterizing and Prioritizing Design Requirements this step, the re-
quirements and constraints important to a spediéisign context are identified and
characterized in terms of a set of non-functioegjuirements; i.e., a set of technical
and non-technical quality objectives that a desigould meet. For this purpose, two
main activities are performed: The design requimrgshare first identified and refined,
then they are prioritized based on their importaincthe specific design context. (2)
Identifying Alternative Design OptionEhe second step is to identify the design objec-
tive (i.e., the specific functionality to be deséghor implemented) and to explore al-
ternative design options for achieving the spedifibjective. (3)Evaluating Design
Alternatives against Design Requiremefits choose an appropriate design option, the
design alternatives are evaluated based on théifiddrdesign requirements. ($e-
lecting Satisficing Design Option$he final step is to select the most appropiikgte
sign options from among the available alternatif@sselect an appropriate design op-
tion, it is required to formally describe and pitize the identified design requirements,
and to assess their fulfillment in each designasptior this purpose, NFR provides a
goal-oriented modeling and analysis proced@8. The modeling procedure has two
main steps oflescribing a design decisiamdmodeling the design decisi¢explained

in Table 4).To analyze the fulfilment of the identified desiggquirements in each
design option, NFR provides a semi-automatic go@nted forward evaluation proce-
dure. Using this approach, all the design alteveatiare evaluated against the design
requirements, and then the most satisfactory desigion is selected. To analyze the

impact of each design alternative on the desigairements, a labeling system is used,
which is explained ifTable 4.

Table 4. Modeling and Analyzing Design Decisions Using ié&-Oriented Language

Modeling. Each design decision is described using threeesitsn(a) a design objective(b) at least tw
atomic alternativadesign optiongwhich are non-overlapping and exclusive), §odat least onalesigr
requirementwhich discriminates between the alternative desjafions.

A design decision is modeled as follof) Thedesign objective is represented usi@pal’ element.(2)
Alternative design options are modeled usiiigsK element.(3) The relationship between a design
and design options are modeled usiMpans-Endslink. (4) If design requirements are atomic they
modeled using Soft Goal element. If design requirements are rainmic, they need to be refined
modeled using Soft Goal Interdependency Graphs (SIG) SIG graphs, refinement of a design require-
ment is modeled usindHelp’ contribution link.(5) Evaluation of design options against design requer:
are modeled usingHelp” and “Hurt” contribution links.(6) Priorities of design regrements are model
using three types of prioritieson-critical, critical, andvery critical

Analysis. (1) Label AssignmeniThe selection of a design option is describedguiai label assigned to
“Task element representing the chosen opti@) Label PropagationThe impact of an alternative on im-
mediate design requirements are described usimgdefined set of label propagation rules, which loe
redefined in a specific evaluatiof8) Label ResolutionAfter each step of performing label propagatiz
“Soft Goal might receive a set of labels from the underné&bft Godl or “TasK elements. A set
predefined label resolution rules determine thalfiabel of the Soft Goal element,representing a desi
requirement. Label resolution step requires humpatiand is semi-automatic.

4 Example Modeling and Analysis

To demonstrate our proposed approach, we use the stady of designing the
AUTOSAR platform for embedded automotive softwagearted if19]. We have cho-
sen this case study for two reasons. First, AUTOS#R real-world industrial open
platform and its design process is explained iraitlét [19]. The design process is
explained in terms ahe design requirements, the decisions taken irdésign, and
the final strategies adopted to design the platfarhus, we add no hypothetical data
or assumption to the requirements of this caseowle extract the explanations about
platform functionalities$ection 4.1 and the related design requiremeifiiate 5, and
then apply our proposed approach. Second, the rdesidnave adopted a structured
approach in identifying requirements and decisisig)out using modeling for analy-
sis. Using this study, we can show how the propesedeling and analysis approach
might be effective for designing a real-world inttigd-scale open platform.

4.1 System Description: An Open Embedded Automotive Ptéorm

The AUTOSAR platform manages the electronic unfta @ehicle. Some electronic
units control vehicle steering sensors and actsatord some are responsible for ac-
cessory functions such as infotainment modulesefint electronic units communi-
cate via data buses. The platform shares the dasfttbe electronic units with third-
party applications. The platform controls most ofical electronic units in charge of
basic operations of a vehicle (such as the enbinadées and forward sensing modules).
Less critical functions (such as displaying vehipeed in the cluster display, locking

the doors or infotainment modules) can be conuladi¢gher by certified third-party ap-
plications or by third-party applications develogBdundirected developers. The core
of the platform, including the set of software mieduproviding necessary services to
use a vehicle, will be deployed on a car beforéveegf to the end-user. Less critical
functions and accessories can be updated or dep#dter delivery on an ongoing ba-
sis. The platform should be designed in a way tlaat accommodate these kinds of
extensions and completion.

In the following, we focus on the scenario of dasig data provision service to
third-party applications from the platform. Thirdspy applications may require to ac-
cess to and operate on platform data or data fibwer dhird-party applications. Exam-
ples of these data include: the speed and latecaleration of the vehicle or the speed
of nearby cars. These data are aggregated fronorseinsthe wheels. Third-party ap-
plications may require access to platform data sischpeed data to simply display it
in the speed display or to automatically adjustspeed of a vehicle with respect to
nearby cars. It is possible that several thirdypapiplications require access to the same
data at the same time. For example, auto-cruigersyand direct brake control system
may want to adjust the speed at the same time eldrer generic mechanisms should
be designed in the platform to provide data sertacpresent and future third-party
applications. In the following, we demonstrate htmwdetermine an optimal design
strategy for opening up AUTOSAR platform data twd¥party applications, treating
openness requirements as a class of non-functiegairements.

4.2 Modeling and Analysis

Determining the most appropriate design strategypfoviding data service to third-
party applications consists of four main stepsctigracterizing and prioritizing design
requirements, includingomain-specific requiremen{general design concerns) and
therequirements that openness introduces on the de@yidentifying alternative de-
sign options for opening up platform data to thatty applications; (3) evaluating the
design options against the identified design regments; and (4) selecting an appro-
priate design option. To select an appropriategtlesption, the identified design op-
tions are modeled, prioritized and analyzed usifgRNyjoal-oriented modeling and
analysis as described Trable 4

Characterizing domain-specific design requirememtse embedded platform is in
charge of controlling automotive electronic unitsany of which have safety-critical
functionalities such as automatic control of thhigle speed and brakes. Therefore, the
design has to meet stringelgpendability requirementsith high priority. The depend-
ability requirements are of two types: ®grformance requirementsPlatform and
individual third-party applications must operateréal-time. Thereforehe response-
time of the platform must be minimized and undesirahteractions between applica-
tions should be eliminated. (Security requirementsncluding integrity andavaila-
bility of services to assure operational security optaform. Relevant aspects of these
requirements need to be fulfilled in the designlata provision service. The details of
domain design requirements and their prioritiesprozrided inTable 5.

Characterizing openness design requiremefite platform shares control of the
electronic units with third-party applications. @jgg up the platform imposes high-
priority extensibility requirementsn the platform including: (1¢omposability The
automotive platform needs to accommodate and ictteviih third-party applications.
Therefore, the open platform should enable opensaadhless integration of external
modules. (2Deployability Third-party applications must be deployed indejgsrly
of each other. Openness requirements also need tefined and considered in the
design of data provision service. The details @&ropess design requirements and their
priorities are described ifiable 5.

Identifying alternative design optionEhree alternative design options can be con-
sidered to provide data service to third-party dgwers, including: (1¢entralized data
provision (2) semi-centralized data provisiand (3)decentralized data provisiomn
centralized data provision, all data exchange dipgrabetween the platform and third-
party applications are controlled by the platfofithird-party applications cannot com-
municate directly with each other. In semi-centedi data provision, third-party appli-
cations are allowed to exchange data directly. H@nea supervisor (either the plat-
form or the end user) mediate the data interacti@tween third-party applications. In
decentralized data provision, the third-party aggilons can independently exchange
data with each other. Further details about thegdesptions is provided ifiable 6.

Table 5. Design Requirements Important for Providing Datevi8e to Third-party Apps

Design Requirement Description

Domain Design Requirements : Security | Priority: Hgh

Integrity [Platform Data] [Many of platform data are safety critical (suctspsed data). The platform m
implement necessary mechanisms to ensure the ilgtegccuracy and con-
sistency of all the operations performed on safeitycal data.

Availability IThe platform services should correctly operatergt tame. Mechanism are re-
[Platform] and quired to guarantee high-availability and fastuial recovery of platform opera-
[Third-Party Applicationstions.

Domain Design Requirements : Performanc | Priority: High

** Response Time [PlatiAccess-Time [Data]: Platform and third-party apations should operate in real-
form] time. Thus, response-time of the platform and actiese of third-party applica-
tions to the required data should be minimized@atform should respond the
data access requests in real-time.

Openness Design Requirements: Composability [Platfim] | Priority: High

Decoupling (1) [Third-Party Applications]: Thirgharty applications must be decoupled f
each other and work independently.

(2) [Platform]: Platform and thirgiarty applications development and evolu
should be decoupled.

Development 'The design must eliminate the need for developregmthronization and enal
Asynchronization third-party applications to be developed, integrated\aidated independen
[Third-Party Applicationspf other applications. Since non-technical useregintegrate and validate 1
composition themselves, this requirement must ppatied by the platform.
Openness Design Requirements: Deployability [Platfan] | Priority: High

Independent DeploymeI;SThird—party applications must be deployed indepatigérom each other.
[Third-Party Application

Independent Behavioursl]PIatform behaviour must not depend on the orderhich the applications &
[Third-Party Applicationsinstalled and deployed.

*** Response time and access time design requirésneare not explicitly mentioned [49]. We inferred these require-
ments from the real-time operations that the autorglatform must perform.

Table 6.Providing Data Service To Third-Party Apps: ThAdernative Design Options

DesignObjective: To provide data service to third-party applications

Design Option 1: Centralized Data Provision

The platform controls all data interactions betwd@rd-party applications and the platform, and betv
one thirdparty application and another. In this design ative, all data is stored and exchanged thr
the platform, but most data is isolated to a siaglelication through a singlePA. Data and provided servit
are accessed through the platform API by eithereaapdicit get/set and/or subscribe, both at ruretifthere
is also and API to determine the available dataserintime.

*** Design Option 2: Semi-Centralized Data Provision

Third-party applications can communicate directlysome cases. Any data access request is inisably
mitted to a mediator (end-user or the platform}eA€hecking and allowing the request, third-pagplica-
tions can communicate directly. For this purp@gmlications declare what data and information test
at install-time. The platform decides to contraladarite operations, data read operations or both.

*** Design Option 3: Decentralized Data Provision

Third-party applications can directly exchange datd information with each other. faaand informatio
exchange between one third-party application araihan is controlled and supervised by the tipeaity
application that provides the requested data.ithdésign, data access requests are declared-titreianc
third-party applications are responsible for mangdhe data access requests from other third-paglica-
tions. Data provider application is in charge afitcolling the consistency of data write operations.

*** Design options 2 and 3 did not exist in the origgiady. They are generated as alternative opfanthe design strate
that the original designers have adopted (as aopéne proposed analysis approach).

Evaluating design options against the design rezpints The fulfilment of each
domain-specific and openness design requireniatti¢ 5 should be evaluated in each
data provision design option. The details of thialuation is presented irable 7 In
Table 7 the contribution of design options to the refimksign requirements are rep-
resented by a (+) or (-) label. A (+) indicatest thaesign option has a positive impact
on the fulfilment of a design requirement. A (Jlicates that the design option violates
or is negatively co-related with a design requiremBEach evaluation is accompanied
with reasons explaining why a positive or negalaeel has been assigned.

Selecting an appropriate design optids shown inTable 7 each design option has
received a set @) and(-) labels in the evaluation against the requiremdrits means
that in choosing each design option, trade-offsikhbe made between a set of com-
peting requirements. For example, choosing cemédlidata provision helps achieve
“Decoupling[TP App] (an important design requirement for opening lup platform)
but as a resultAccess Time[Data]"is violated. However, access time is also an im-
portant requirement for real-time operations ofdbomotive platform. To take a final
decision between the design options, all the tftiebetween the requirements need
to be carefully examined. For this purpose, thatified requirements, their priorities
and their trade-offs need to be formally modeled analyzed. We have modeled the
information presented iffable 5, § and 7, and analyzed the impact of each design
option on the design requirements using goal-cedrmodeling and analysis (ex-
plained inTable 4. The results are presentedHig 1

In Fig 1, the design requirements and their refinementstaogn in the upper part,
the design options and their evaluation againsirtimediate refined requirements are
shown at the bottom, and the degree of fulfillmafiheach design requirement in each
design option is shown by the colored labels baside requirements. Moreover, trade-
offs points can be recognized in two ways: (1) clyefrom the ‘tonflict’ label beside
a design requirement. For exampl€omposability [Platform] has received acon-
flict” label from two options. The reason for the cantfcan be traced back to the

fulfillment of its refinement; i.e.,Decoupling[Platform] and “Decoupling[TP App].
“Centralized data provisidndesign option helps decouple third-party applmad
from each other, but in return, it increases thgpting between the platform and third-
party applications. Similarly, Decentralized data provisidrdesign option has this
conflict in reverse order; (2) indirectly by comjpey the labels of the same color be-
tween different design requirements. For exampeténsibility [Platform] has re-
ceived a partially satisficed red label, and Performance[Platform] has received a
“partially denied red label. This difference indicates that by csing “Centralized
data provisiofi option, a designer has to sacrifice some degf@eidormance in order
to gain some degree of extensibility for openn€hs. fulfillment of the design require-
ments in each design option is summarized and coedpaFig 2.1n Fig 2, the nested
pentagons represent different degrees of desigrireagents satisfaction (from denied
to satisficed). The nodes of the pentagon depétnthin design requirements for the
automotive platformAs Fig 2shows, Centralized data provisidroutperforms other
options except in fulfilling Performance [Platformi].

4.3 Discussion

Our modeling and analysifig 1) detects two important trade-off points between th
requirements: One trade-off is between two openmesgirements of Decou-
pling[Platform]” and “Decoupling[TP Apg]. This means that in choosing each of the
design options, a designer has to comprise betinglependence of the platform from
third-party applications and independence of tipiadty applications from each other.
Both of the requirements are important for thefptat and their dissatisfaction may
have irreversible impacts. Another trade-off isvimdn the openness requirement of
“Extensibility[Platform] and “Performance[Platforni]. Performance requirement is
of particular importance for the real-time operati®f the automotive platform (e.g.
the real-time adjustment of speed or the real-tatigvation of brakes). On the other
hand, extensibility is also crucial to accommodhted-party applications. The impact
of this trade-off must be carefully assessed befwaking any final design decision.

In [19], the original designers have implementedritralized data provisidrstrat-
egy for designing the automotive platform, with@esknowledging the above trade-
offs. This decision may have two reasons: (1) Tésighers use an informal and de-
scriptive method for designing the open platforra;,ithey identify the requirements
and then explain a set of generic design pattéatsfulfill the requirements. Since the
design process is comprised of numerous decisigpieél in an industrial-scale design
project), it is possible that the designers hasgétloe track of some requirements in the
design. (2) It is also possible that the desigherse noticed the above trade-offs, and
have decided to sacrifice some degrees of perfarenemgain higher degrees of exten-
sibility (i.e. deployability and composability) fapenness. According to our analysis,
to alleviate the performance issue, a combinatfoceatralized and semi-centralized
data provision strategies could be considered foviding data to different types of
third-party applications in different layers of thiatform.

Table 7. Evaluating Design Options against Identified DedRgquirements

Decoupling

Option 1(1) [Platform](-): Centralized data provision increases the intemastbetween third-party applica-
tions and the platform since all data access opesashould pass through the platform. (2) [Third-
Party Applications)+): Central control by the platform eliminates anyedo-one interaction be-
tween third-party applications.

Option Z1) [Platform] (-): Platform is involved in data write operationsvbetn thirdparty application
This increases the interactions between the ptati@nd third-party application. (2) [Thirfdarty
Applications] (-): Since the applications can interact with eacleothirectly, the interactions be-
tween third-party applications increase.

Option 31) [Platform](+).Third-party applications can exchange data withpdatform control. Avplicatior
interactions are thus decoupled from the platfd@h[Third-Party Applications]-): Application:
can interact with each other directly. Thus theriattions between third-party applications increase
Development Asynchronization [Third-Party Applications]

Option 1(+): Prohibiting direct communications between thiattp applications separates timegratior
and validation of third-party application from eauther.

Option Z-): The correctness of the behavior of third-partpl@ations should bealidated in combinatic
with the related third-party applications.

Option 3-): This design is similar to Option 2.

Independent Behavior [Third-Party Applications]

Option 1(+): Since all the datmteractions are controlled by the platform, thedgor of the applications ¢
completely separated and independent from each. othe

Option Z-): The applications installed later can access #te df the applications that are installed earlier.

Option 3-): This design is similar to option 2.

Independent Deployment [Third-Party Applications]

Option 1(+): The platform prohibits direct communications beéw thirdparty applications. Therefo
third-party applications can be deployed indepetiderf each other.

Option Z-): Third-party applications can request accessdalttta of other third-party applications at install
time. This kind of requests violates the indepehdeployment of applications.

Option 3-): Third-party applications can send data requestéiter applications at any time (either at install
time or after that).

Availability [Third-Party Application Data]: Failur e Recovery

Option 1(+): The platform is informed if a third-party applicai becomes unavailable. Therefore, data re-
quests for unavailable data can be mitigated piragygt

Option Z+): The supervisor (either platform or end-user) istinfed of possible unavailability of thifgkarty
applications. Therefore, a data request for an aifeble thirdparty application can be mitiga
proactively.

Option 3-): In decentralized communications, the unavailabiityapplications is not known beforehe
Therefore, a data request for an unavailable théndy application lead to an unmitigated failure.
Integrity [Data] : Consistency [Data]

Option 1(+): Platform controls every data access and modifinatbetween thirgharty applications. Th
centralized access control reduces the chanceofsistency in data read and write operations.

Option Z+): Data write operation can Iseipervised by the platform. This supervised accestol reduce
the chance of inconsistency in data read and wpggations.

Option 3-): Third-party applications can interact with eathen without informing central control. This in-
creases the possibility of data inconsistenirieseveral data read and write operations by diff
third-party applications.

Response Time [Platform]: Access Time [Data]

Option X(-): All data operation requests should pass througen&ral gateway and queue controlled by
platform. Central checking increases the waitimgetiof third-party applications that require to ac-
cess data around the same time, even if the regaesfor different data from different thipawty
applications.

Option Z+): Many of unwanted waiting time for data requespgcifically data read operations, can be elim-
inated, because third-party applications can direetjuest data read from other third-party appli-
cations.

Option 3+): Data read operations are handled similar to ofioMoreover, there will be no central qu
for data write operations since the third-partylegagion that provides data is responsible for con-
sistency checking.

Openness Dependendability

[PIatfon:/m]X N [Platform]
o Security /R\ Performance
Extensibility HelP Deployability Operational [P|atf|0|"m] Help Hele_ [Platform]

c bil [Platform] chv x x [TPApp] Security v vx Integrity NSy
omposability 1y __ye\ Help. 1 [Platform] Help Help [Platform Data], T
[Platforml/ﬁf\g-‘Q Wx % CFJ/\/X HI~A~£>.< aﬁ?'/‘/

Accuracy FHelp esponse-Time
Help Help Help jelp Help Help [Platform Data]'fg’p“ X% H;lp [Platform]
XX ~/.>.<>.<\5:M>.<>.< X % v % x OvVx OV v % XLV

Decoupling DeCOUP“ngADeViOPWe?.t In;:::v?:j:t IS:;E) ?rf::tt Availability Consistency Access Time
Platform P A synchronization TP A Dat: Dat
[1 [TPApp] [TP App] (TP App] [TP App] [TP App Data] [Data] [Data]

Help Hury SSTpH ¢ a9 -

Hurt

T v v
Centralized Semi - centralized Decentralized
data provision data provision data provision

G1: Provide Data [To third-party applications]

i v v EN X x 1]
O O O —

H . Partially . Partially . Very
t Goal Task Soft Goal Means-Ends Satisficed o Conflict) Denied e

H Satisficed Denied Critical
i Option 1: Centralized Option 2: Semi-centralized Option 3: Decentralized

: data provision data provision data provision

i (Lest-most evaluation labels) (Middle evaluation labels) (Right-most evaluation labels)

Fig. 1. Modeling and Analyzing Trade-Offs between Openraess Other Requirements in Al-
ternative Data Provision Design Options Using i*aG@riented Language

Openness Requirement
Composability [Platform]
Priority: High

Performance Requirement Openness Requirement

Response Time Deployability
[Platform] [Third-Party Applications]
Priority: High Priority: High

Conflict
Partly Satsificed

Security Requirement > satsificed Security Requirement

Integrity [Platform Data] Availability [Third-Party Applications]
Priority: High Priority: High
O——O o — —— 0 o—0 i
Option 1: Centralized Option 2: Semi-centralized Option 3: Decentralized |
data provision data provision data provision

Fig. 2. Comparing Design Strategies for Opening up Platfbata to Third-Party Applications
Based on Important Design Requirements for the Autva®latform

The presented modeling and analysis is only oniguasenario among several oth-
ers that we have investigated in the design of ASAR platform. We aim to confirm
our findings with the original designers in a f@wase study.

5 Related Research

Three groups of research efforts relate to thiepgfl) Designing open software plat-
forms Various efforts have been dedicated to the demighdevelopment of software
platforms that can smoothly accommodate third-papplications. Most of these ef-
forts focus on providing best practices and teaheigfor developing APls that enable
seamless and secure communications with third-aoplications. (e.g21]). Little
attention has been given to model-based approdchegsigning open software plat-
forms. In a few research works, the need for syatenmodeling and analysis in open
platforms has been discussed (2%, 27, 28, 29] However, no validated modeling
method has been proposed for this purpose yeR€gliirements engineering in open
software platformsMany recent research efforts have investigatedthetice of re-
quirements engineering in open software platforeg.(7, 8], [30, 31, 32]. These
efforts either focus on identifying the challengésequirements engineering practices
in the presence of multiple development partiesharacterising the multi-faceted na-
ture of requirements in open software platform$ev research workalso emphasize
the need for rigorous modeling and checking ofétgiirements in open platforms (e.qg.
[22]). To support requirements modeling and analys@pien software platforms, sev-
eral attempts have been made (£6], [33, 34) which are in the early stages of de-
velopment. (3)Decision Support for open software platforrdsmother group of re-
search works discuss the need to support systedetision making of open platforms
owners and designers (e[@3]). However, these efforts mainly focus on adopting
open-source components rather than design reassuimgort for opening up plat-
forms.

6 Conclusions

We presented a goal-oriented method to model aalyzmopenness requirements and
related trade-offs in designing software platforiMedeling and analysis of openness
trade-offs allows to formally compare alternativesigin strategies for opening up a
platform to third-party applications. This systeimatomparison helps determine
“good-enough” and “open-enough” design strategiespening up a platform to third-
party applications. Adopting such balanced desitategies is essential to developing
open software platforms that are technically, dhcand economically balanced, thus
having a higher chance of sustainability.

The proposed approach allows to model the relda&gween business-level and sys-
tem-level openness requirements, and provides aatoimated support to assess alter-
native design options and to spot trade-off points.

To improve the applicability of the presented melttior modeling and analyzing
openness trade-offs, two issues need to be addrgdg&calability of modelingin

this work, we illustrated trade-off modeling iniagle design decision in an open soft-
ware platform. Applying trade-off modeling and bsés at the scale of a design pro-
cess comprised of numerous interrelated decisieesl o be further addressed. (2)
Scalability of analysisTo find appropriate design options, we used thal-griented
forward evaluation method, which exhaustively eatds all the possible options to
reach to the best alternative. To improve the igfficy of analysis, algorithms are re-
quired which eliminate this exhaustive search.

Moreover, future work is required to compare thepmsed method with existing
methods for analyzing trade-offs, including Architere Trade-off Analysis Method
(ATAM) [35], and to assess the applicability of the proposetioakin real-world open
software projects.

This research work is the first step to supporigiteand decision making in open
software platforms. The next steps towards thignalte objective aim to enrich the
proposed method in three ways: (1) to provide kedgé support via developing mod-
ules for refining openness design requirements elass of non-functional require-
ments and developing catalogues of options forgthésy open platforms; (2) to enrich
the analytical and reasoning capabilities of trespnted method for incorporating the
priorities and preferences of multiple partiesdtesting optimal design options in open
software platforms; and (3) to provide semi-autadabol support for modeling and
analyzing requirements in open software platforntsfanding optimal design options.

7 References

1. West, J. (2003). How open is open enough?: Meldmogrietary and open source platform
strategies. Research policy, 32(7), 1259-1285.

2. Chesbrough, H. W. (2006). Open innovation: The maperative for creating and profiting
from technology. Harvard Business Press.

3. Fitzgerald, B. (2006). The transformation of opeurse software. MIS Quarterly, 587-598.

4. Boudreau, K. (2010). Open platform strategies andvation: Granting access vs. devolv-
ing control. Management Science, 56(10), 1849-1872.

5. Jansen, S., Brinkkemper, S., Souer, J., & Luinenbur@2012). Shades of gray: Opening
up a software producing organization with the opefiware enterprise model. Journal of
Systems and Software, 85(7), 1495-1510.

6. Munir, H., Wnuk, K., & Runeson, P. (2015). Open imation in software engineering: a
systematic mapping study. Empirical Software Engjiimgy, 1-40.

7. Knauss, E., Yussuf, A., Blincoe, K., Damian, D., &&uss, A. (2016). Continuous clarifi-
cation and emergent requirements flows in open-ceruial software ecosystems. Require-
ments Engineering, 1-21.

8. Valenca, G., Alves, C. M., Heimann, V., Jansen&®Brinkkemper, S. (2014). Competition
and collaboration in requirements engineering: secstudy of an emerging software eco-
system. In IEEE 22nd International Requirements igwying Conference (384-393).

9. Ghazawneh, A., & Henfridsson, O. (2013). Balancitagfprm control and external contri-
bution in thirdparty development: the boundary resources modérriration Systems
Journal, 23(2), 173-192.

10. Koch, S., & Kerschbaum, M. (2014). Joining a smaote ecosystem: Application devel-
opers’ motivations and decision criteria. Inforroatiand Software Technology, 56(11).

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Shabtai, A., Fledel, Y., Kanonov, U., Elovici, Dplev, S., & Glezer, C. (2010). Google
android: A comprehensive security assessment. I&&dtirity & Privacy, (2), 35-44.

Bosch, J., & Bosch-Sijtsema, P. (2010). From intégnato composition: On the impact of
software product lines, global development and ystesns. Journal of Systems and Soft-
ware, 83(1), 67-76.

Scacchi, W. (2007). Free/open source software dpwetnt: Recent research results and
methods. Advances in Computers, 69, 243-295.

Feller, J., & Fitzgerald, B. (2000). A framework &sés of the open source software devel-
opment paradigm. In Proceedings of the twenty ifitgrnational conference on Information
systems (58-69).

Popp, K. M. (2010). Goals of Software Vendors fartRer Ecosystems—A Practitioner” s
View. In Software Business (181-186). Springer Ber@idelberg.

Bosch, J. (2012). Software ecosystems: Taking soéi\davelopment beyond the bounda-
ries of the organization. Journal of Systems arftivaoe, 85(7), 1453-1454.

Jarke, M., Loucopoulos, P., Lyytinen, K., Myloposid., & Robinson, W. (2011). The brave
new world of design requirements. Information Syste36(7), 992-1008.

Anvaari, M., & Jansen, S. (2010). Evaluating amttiiral openness in mobile software plat-
forms. In Proceedings of the Fourth European Cenfsg on Software Architecture: Com-
panion Volume (85-92).

Eklund, U., & Bosch, J. (2014). Architecture for eedded open software ecosystems. Jour-
nal of Systems and Software, 92, 128-142.

Bosch, J. (2010). Architecture challenges for safemecosystems. In Proceedings of the
Fourth European Conference on Software ArchitectDoepanion Volume (pp. 93-95).
Cataldo, M., & Herbsleb, J. D. (201@chitecting in software ecosystems: interface gran
lucence as an enabler for scalable collaboratioRréceedings of the Fourth European Con-
ference on Software Architecture: Companion Volu®72).

Scacchi, W., & Alspaugh, T. A. (2013). Processesdnuring open architecture software
systems. In Proceedings of International Conferemc8oftware and System Process.
Baresi, L., Di Nitto, E., & Ghezzi, C. (2006). Towasden-world software: Issue and chal-
lenges. Computer, 39(10), 36-43.

Chung, L., Nixon, B. A., Yu, E., & Mylopoulos, J. (22). Non-functional requirements in
software engineering (Vol. 5). Springer Science &iBass Media.

Horkoff, J., & Yu, E. (2013). Comparison and evaiomtof goal-oriented satisfaction anal-
ysis techniques. Requirements Engineering, 18(3)202.

Christensen, H. B., Hansen, K. M., Kyng, M., & Margk&. (2014). Analysis and design
of software ecosystem architectures—Towards theeé$edicine ecosystem. Information
and Software Technology, 56(11), 1476-1492.

Boucharas, V., Jansen, S., & Brinkkemper, S. (208@)malizing software ecosystem mod-
eling. In Proceedings of the 1st international vebidp on Open component ecosystems (41-
50).

Sadi, M. H., & Yu, E. (2015). Designing SoftwareoSgstems: How Can Modeling Tech-
nigues Help? In Enterprise, Business-Process dadnation Systems Modeling (360-375).
Sadi, M. H., Dai, J., & Yu, E. (2015). Designingf®mre Ecosystems: How to Develop
Sustainable Collaborations?. In Advanced InformaBystems Engineering Workshops
(161-173).

Whnuk, K., & Runeson, P. (2013). Engineering opamiration—-towards a framework for
fostering open innovation. In International Confeeiof Software Business (48-59).
Linaker, J., Rempel, P., Regnell, B., & Mader, P. @0How Firms Adapt and Interact in
Open Source Ecosystems: Analyzing Stakeholderdnfie and Collaboration Patterns. In

32.

33.

34.

35.

International Conference on Requirements Engineefogndation for Software Quality
(63-81).

Linaker, J., Regnell, B., & Munir, H. (2015). Requiremts engineering in open innovation:
a research agenda. In Proceedings of the 2015atienal Conference on Software and
System Process (208-212).

Franch, X., & Susi, A. (2016). Risk assessment ianogource systems. In Proceedings of
the 38th International Conference on Software Ereging Companion (896-897).

Sadi, M. H., & Yu, E. (2014). Analyzing the evoli of software development: from cre-
ative chaos to software ecosystems. In Researche@igab in Information Science (RCIS),
2014 IEEE Eighth International Conference on (1-11)

Kazman, R., Klein, M., Barbacci, M., Longstaff, Tipkon, H., & Carriere, J. (1998). The
architecture tradeoff analysis method. In Engimeedf Complex Computer Systems, 1998.
ICECCS'98. Proceedings. Fourth IEEE International Genfe on (68-78). IEEE.

