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ABSTRACT
Sympiler is a domain-speci�c code generator that optimizes sparse
matrix computations by decoupling the symbolic analysis phase
from the numerical manipulation stage in sparse codes. The com-
putation patterns in sparse numerical methods are guided by the
input sparsity structure and the sparse algorithm itself. In many
real-world simulations, the sparsity pattern changes little or not at
all. Sympiler takes advantage of these properties to symbolically
analyze sparse codes at compile-time and to apply inspector-guided
transformations that enable applying low-level transformations to
sparse codes. As a result, the Sympiler-generated code outperforms
highly-optimized matrix factorization codes from commonly-used
specialized libraries, obtaining average speedups over Eigen and
CHOLMOD of 3.8× and 1.5× respectively.

KEYWORDS
Matrix computations, sparse methods, loop transformations, domain-
speci�c compilation

1 INTRODUCTION
Sparse matrix computations are at the heart of many scienti�c ap-
plications and data analytics codes. The performance and e�cient
memory usage of these codes depends heavily on their use of spe-
cialized sparse matrix data structures that only store the nonzero
entries. However, such compaction is done using index arrays that
result in indirect array accesses. Due to these indirect array accesses,
it is di�cult to apply conventional compiler optimizations such as
tiling and vectorization even for static index array operations like
sparse matrix vector multiply. A static index array does not change
during the algorithm; for more complex operations with dynamic
index arrays such as matrix factorization and decomposition, the
nonzero structure is modi�ed during the computation, making con-
ventional compiler optimization approaches even more di�cult to
apply.

The most common approach to accelerating sparse matrix com-
putations is to identify a specialized library that provides a manually-
tuned implementation of the speci�c sparse matrix routine. A large
number of sparse libraries are available (e.g., SuperLU [22], MUMPS
[2], CHOLMOD [11], KLU [20], UMFPACK [15]) for di�erent numer-
ical kernels, supported architectures, and speci�c kinds of matrices.

While hand-written specialized libraries can provide high perfor-
mance, they must be manually ported to new architectures and may
stagnate as architectural advances continue. Alternatively, com-
pilers can be used to optimize code while providing architecture
portability. However, indirect accesses and the resulting complex
dependence structure run into compile-time loop transformation
framework limitations.

Compiler loop transformation frameworks such as those based
on the polyhedral model use algebraic representations of loop nests
to transform code and successfully generate highly-e�cient dense
matrix kernels [5, 10, 41, 54, 65, 67]. However, such frameworks
are limited when dealing with non-a�ne loop bounds and/or array
subscripts, both of which arise in sparse codes. Recent work has
extended polyhedral methods to e�ectively operate on kernels with
static index arrays by building run-time inspectors that examine the
nonzero structure and executors that use this knowledge to trans-
form code execution [63, 66, 68–70]. However, these techniques
are limited to transforming sparse kernels with static index arrays.
Sympiler addresses these limitations by performing symbolic anal-
ysis at compile-time to compute �ll-in structure and to remove
dynamic index arrays from sparse matrix computations. Symbolic
analysis is a term from the numerical computing community. It
refers to phases that determine the computational patterns that
only depend on the nonzero pattern and not on numerical values.
Information from symbolic analysis can be used to make subse-
quent numeric manipulation faster, and the information can be
reused as long as the matrix nonzero structure remains constant.

For a number of sparse matrix methods such as LU and Cholesky,
it is well known that viewing their computations as a graph (e.g.,
elimination tree, dependence graph, and quotient graph) and apply-
ing a method-dependent graph algorithm yields information about
dependences that can then be used to more e�ciently compute
the numerical method [14]. Most high-performance sparse matrix
computation libraries utilize symbolic information, but couple this
symbolic analysis with numeric computation, further making it
di�cult for compilers to optimize such codes.

This work presents Sympiler, which generates high-performance
sparse matrix code by fully decoupling the symbolic analysis from
numeric computation and transforming code to utilize the symbolic
information. After obtaining symbolic information by running a
symbolic inspector, Sympiler applies inspector-guided transforma-
tions, such as variable-sized blocking, resulting in performance
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1
(a)

x=b; // copy RHS to x

for(j=0;j<n;j++){

x[j]/=Lx[Lp[j]];

for(p=Lp[j]+1;p<Lp[j+1];p++){

x[Li[p]]-=Lx[p]*x[j];}}

(b) Forward substitution

x=b;

x[0] /= Lx[0]; // Peel col 0

for(p = 1; p < 3; p++)

x[Li[p]] -= Lx[p] * x[0];

for(px=1;px<3;px++){

j=reachSet[px];x[j]/=Lx[Lp[j]];

for(p=Lp[j]+1;p<Lp[j+1];p++)

x[Li[p]]-=Lx[p]*x[j];}

x[7] /= Lx[20]; // Peel col 7

for(p = 21; p < 23; p++)

x[Li[p]] -= Lx[p] * x[7];

for(px=4;px<reachSetSize;px++){

j=reachSet[px];x[j]/=Lx[Lp[j]];

for(p=Lp[j]+1;p<Lp[j+1];p++)

x[Li[p]]-=Lx[p]*x[j];}

(e) Sympiler-generated

x=b;

for(j=0;j<n;j++){

if(x[j] != 0){

x[j]/=Lx[Lp[j]];

for(p=Lp[j]+1;p<Lp[j+1];p++)

x[Li[p]]-=Lx[p]*x[j];}}

(c) Library implementation

x=b;

for(px=0;px<reachSetSize;px++){

j=reachSet[px];

x[j]/=Lx[Lp[j]];

for(p=Lp[j]+1;p<Lp[j+1];p++){

x[Li[p]]-=Lx[p]*x[j];}}

(d) Decoupled code

Figure 1: Four di�erent codes for solving the linear system in (a). In all four code variants, thematrix L is stored in compressed
sparse column (CSC) format, with {n,Lp,Li,Lx} representing {matrix order, column pointer, row index, nonzeros} respectively.
The dependence graph DGL is the adjacency graph of matrix L; the vertices of DGL correspond to columns of L and its edges
show dependencies between columns in triangular solve. Vertices corresponding to nonzero columns are colored blue, and
columns that must participate in the computation due to dependence structure are colored red; the white vertices can be
skipped during computation. The boxes around columns show supernodes of di�erent sizes. (b) is a forward substitution algo-
rithm. (c) is a library implementation that skips iterations when the corresponding entry in the x is zero. (d) is the decoupled
code that uses symbolic information given in reachSet, which is computed by performing a depth-�rst search on DGL . (e) is the
Sympiler-generated code which peels iterations corresponding to columns within the reach-set with more than 2 nonzeros.

equivalent to hand-tuned libraries. But Sympiler goes further than
existing numerical libraries by generating code for a speci�c ma-
trix nonzero structure. Because matrix structure often arises from
properties of the underlying physical system that the matrix rep-
resents, in many cases the same structure reoccurs multiple times,
with di�erent values of nonzeros. Thus, Sympiler-generated code
can combine inspector-guided and low-level transformations to
produce even more e�cient code. The transformations applied by
Sympiler improves the performance of sparse matrix codes through
applying optimizations for a single-core such as vectorization and
increased data locality which should extend to improve perfor-
mance on shared and distributed memory systems.

1.1 Motivating Scenario
Sparse triangular solve takes a lower triangular matrix L and a right-
hand side (RHS) vector b and solves the linear equation Lx = b for
x . It is a fundamental building block in many numerical algorithms
such as factorization [14, 44], direct system solvers [13], and rank
update methods [18], where the RHS vector is often sparse. A naïve
implementation visits every column of matrix L to propagate the
contributions of its corresponding x value to the rest of x (see
Figure 1b). However, with a sparse b, the solution vector is also
sparse, reducing the required iteration space of sparse triangular
solve to be proportional to the number of nonzero values in x .

Taking advantage of this property requires �rst determining the
nonzero pattern of x . Based on a theorem from Gilbert and Peierls
[34], the dependence graph DGL = (V ,E) for matrix L with nodes
V = {1, ...,n} and edges E = {(j, i)|Li j , 0} can be used to compute
the nonzero pattern of x , where n is the matrix rank and numerical
cancellation is neglected. The nonzero indices in x are given by
ReachL(β) which is the set of all nodes reachable from any node in
β = {i |bi , 0}, and can be computed with a depth-�rst search of
the directed graph DGL staring with β . An example dependence
graph is illustrated in Figure 1a. The blue colored nodes correspond
to set β and the �nal reach-set ReachL(β) contains all the colored
nodes in the graph.

Figure 1 shows four di�erent implementations of sparse trian-
gular solve. Most solvers assume the input matrix L is stored in a
compressed sparse column (CSC) storage format. While the naïve
implementation in Figure 1b traverses all columns, the typical li-
brary implementation shown in Figure 1c skips iterations when the
corresponding value in x is zero.

The implementation in Figure 1d shows a decoupled code that
uses the symbolic information provided by the pre-computed reach-
set. This decoupling simpli�es numerical manipulation and reduces
the run-time complexity fromO(|b |+n+ f ) in Figure 1c toO(|b |+ f )
in Figure 1d, where f is the number of �oating point operations
and |b | is the number of nonzeros in b. Sympiler goes further by
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building the reach-set at compile-time and leveraging it to generate
code specialized for the speci�c matrix structure and RHS. The
Sympiler-generated code is shown in Figure 1e, where the code
only iterates over reached columns and peels iterations where the
number of nonzeros in a column is greater than some threshold (in
the case of the �gure, this threshold is 2). These peeled loops can
be further transformed with vectorization to speed up execution.
This shows the power of fully decoupling the symbolic analysis
phase from the code that manipulates numeric values: the compiler
can aggressively apply conventional optimizations, using the reach-
set to guide the transformation. On matrices from the SuiteSparse
Matrix Collection, the Sympiler-generated code shows speedups
between 8.4× to 19× with an average of 13.6× compared to the for-
ward solve code (Figure 1b) and from 1.2× to 1.7× with an average
of 1.3× compared to the library-equivalent code (Figure 1c).

1.2 Static Sparsity Patterns
A fundamental concept that Sympiler is built on is that the structure
of sparse matrices in scienti�c codes is dictated by the physical
domain and as such does not change in many applications. For
example, in power system modeling and circuit simulation prob-
lems the sparse matrix used in the matrix computations is often
a Jacobian matrix, where the structure is derived from intercon-
nections among the power system and circuit components such
as generation, transmission, and distribution resources. While the
numerical values in the sparse input matrix change often, a change
in the sparsity structure occurs on rare occasions with a change
in circuit breakers, transmission lines, or one of the physical com-
ponents. The sparse systems in simulations in domains such as
electromagentics [24, 28, 29, 47], computer graphics [33], and �uid
mechanics [6] are assembled by discretizing a physical domain and
approximating a partial di�erential equation on the mesh elements.
A sparse matrix method is then used to solve the assembled systems.
The sparse structure originates from the physical discretization and
therefore the sparsity pattern remains the same except where there
are deformations or if adaptive mesh re�nement is used. Sparse
matrices in many other physical domains exhibit the same behavior
and bene�t from Sympiler.

1.3 Contributions
This work describes Sympiler, a sparsity-aware code generator
for sparse matrix algorithms that leverages symbolic information
to generate fast code for a speci�c matrix structure. The major
contributions of this paper are:

• A novel approach for building compile-time symbolic in-
spectors that obtain information about a sparse matrix, to
be used during compilation.

• Inspector-guided transformations that leverage compile-time
information to transform sparse matrix code for speci�c
algorithms.

• Implementations of symbolic inspectors and inspector-
guided transformations for two algorithms: sparse trian-
gular solve and sparse Cholesky factorization.

• A demonstration of the performance impact of our code
generator, showing that Sympiler-generated code can out-
perform state-of-the-art libraries for triangular solve and
Cholesky factorization by up to 1.7× and 6.3× respectively.

2 SYMPILER: A SYMBOLIC-ENABLED CODE
GENERATOR

Sympiler generates e�cient sparse kernels by tailoring sparse code
to speci�c matrix sparsity structures. By decoupling the symbolic
analysis phase, Sympiler uses information from symbolic analysis
to guide code generation for the numerical manipulation phase
of the kernel. In this section, we describe the overall structure of
the Sympiler code generator, as well as the domain-speci�c trans-
formations enabled by leveraging information from the symbolic
inspector.

2.1 Sympiler Overview
Sparse triangular solve and Cholesky factorization are currently
implemented in Sympiler. Given one of these numerical methods
and an input matrix stored using compressed sparse column (CSC)
format, Sympiler utilizes a method-speci�c symbolic inspector to
obtain information about the matrix. This information is used to
apply domain-speci�c optimizations while lowering the code for
the numerical method. In addition, the lowered code is annotated
with additional low-level transformations (such as unrolling) when
applicable based on domain- and matrix-speci�c information. Fi-
nally, the annotated code is further lowered to apply low-level
optimizations and output to C source code.

Code implementing the numerical solver is represented in a
domain-speci�c abstract syntax tree (AST). Sympiler produces the
�nal code by applying a series of phases to this AST, transforming
the code in each phase. An overview of the process is shown in
Figure 2. The initial AST for triangular solve is shown in Figure 2a
prior to any transformations.

2.2 Symbolic Inspector
Di�erent numerical algorithms can make use of symbolic informa-
tion in di�erent ways, and prior work has described run-time graph
traversal strategies for various numerical methods [12, 14, 45, 52].
The compile-time inspectors in Sympiler are based on these strate-
gies. For each class of numerical algorithms with the same symbolic
analysis approach, Sympiler uses a speci�c symbolic inspector to
obtain information about the sparsity structure of the input ma-
trix and stores it in an algorithm-speci�c way for use during later
transformation stages.

We classify the used symbolic inspectors based on the numerical
method as well as the transformations enabled by the obtained
information. For each combination of algorithm and transformation,
the symbolic inspector creates an inspection graph from the given
sparsity pattern and traverses it during inspection using a speci�c
inspection strategy. The result of the inspection is the inspection set,
which contains the result of running the inspector on the inspection
graph. Inspection sets are used to guide the transformations in
Sympiler. Additional numerical algorithms and transformations
can be added to Sympiler, as long as the required inspectors can be
described in this manner as well.
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Symbolic Inspector
Sparsity
Pattern

Numerical
Method

Inspector-Guided Transformations

VS-Block VI-Prune
Low-Level

Transformations
Code

Generation

VI-Prune

for sol.j0 in 0..Lsp.n

VS-Block

x[bspj0]/=Lx[Lsp.diag(j0)];
VS-Block

for sol.j1 in Lsp.colj0..Lsp.colj0+1
x[Lsp.rowj1]-=Lx[j1]*x[bspj0];

(a) Initial AST

peel(0,3)

for sol.p0 in 0..pruneSetSize

j0=pruneSetp0
;

x[bspj0]/=Lx[Lsp.diag(j0)];
vec(0)

for sol.j1 in Lsp.colj0..Lsp.colj0+1
x[Lsp.rowj1]-=Lx[j1]*x[bspj0];

(b) After VI-Prune

s0=pruneSet0;
x[bsps0]/=Lx[Lsp.diag(s0)];
for sol.j1 in Lsp.cols0..Lsp.cols0+1
x[Lsp.rowj1]-=Lx[j1]*x[bsps0];

for sol.p0 in 0..pruneSetSize

j0=pruneSetp0;

x[bspj0]/=Lx[Lsp.diag(j0)];
for sol.j1 in Lsp.colj0..Lsp.colj0+1
x[Lsp.rowj1]-=Lx[j1]*x[bspj0];

(c) After Low-Level Transformations

1

Figure 2: Sympiler lowers a functional representation of a sparse kernel to imperative code using the inspection sets. Sympiler
constructs a set of loop nests and annotates them with some domain-speci�c information that is later used in inspector-
guided transformations. The inspector-guided transformations use the lowered code and inspection sets as input and apply
transformations. Inspector-guided transformations also provide hints for further low-level transformations by annotating the
code. For instance, the transformation steps for the code in Figure 1 are: (a) Initial AST with annotated information showing
where the VI-Prune and VS-Block transformations apply. (b) The symbolic inspector sends the reach-set as pruneSet, which
VI-Prune uses to add hints to further steps— in this case, peeling iterations 0 and 3. (c). The hinted low-level transformations
are applied and �nal code generated (peeling is only shown for the iteration zero).

1 for(I1){
2 .

3 .

4 for(Ik < m) {

5 .

6 .

7 for(In(Ik , ..., In−1)) {

8 a[idx(I1,...,Ik ,...,In)];
9 }

10 }

11 }

1 for(I1) {

2 .

3 .

4 for(Ip < pruneSetSize) {

5 I ′k = pruneSet[Ip];
6 .

7 .

8 for(In(I ′k , ..., In−1)) {

9 a[idx(I1,...,I ′k ,...,In)];
10 }

11 }

12 }

(a) Before (b) After

Variable Iteration Space Pruning, loop[k].VI-Prune(pruneSet,pruneSetSize)

1 for(I) {

2 for(J) {

3 B[idx1(I,J)] op1= a[idx2(I,J)];

4 }

5 }

1 for(b < blockSetSize) {

2 for(J1 < blockSet[b].x) {

3 for(J2 < blockSet [b].y) {

4 B[idx1(b,J1,J2)] op1 = A[idx2(b, J1, J2)];
5 }

6 }

7 }

(c) Before (d) After

2D Variable-Sized Blocking, loop[I].VS-Block(blockSet,blockSetSize)

Figure 3: The inspector-guided transformations. Top: The loop over Ik with iteration spacem in (a) transforms to a loop over
Ip with iteration space pruneSetSize in (b). Any use of the original loop index Ik is replaced with its corresponding value from
pruneSet i.e., I ′k . Bottom: The two nested loops in (c) are transformed into loops over variable-sized blocks in (d).
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For our motivating example, triangular solve, the reach-set can be
used to prune loop iterations that perform work that is unnecessary
due to the sparseness of matrix or the right hand side. In this case,
the inspection set is the reach-set, and the inspection strategy is to
perform a depth-�rst search over the inspection graph, which is the
directed dependency graph DGL of the triangular matrix. For the
example linear system shown in Figure 1, the symbolic inspector
generates the reach-set {6, 1, 7, 8, 9, 10}.

2.3 Inspector-guided Transformations
The initial lowered code along with the inspection sets obtained by
the symbolic inspector are passed to a series of passes that further
transform the code. Sympiler currently supports two transforma-
tions guided by the inspection sets: Variable Iteration Space Pruning
and 2D Variable-Sized Blocking, which can be applied independently
or jointly depending on the input sparsity. As shown in Figure 2a,
the code is annotated with information showing where inspector-
guided transformations may be applied. The symbolic inspector
provides the required information to the transformation phases,
which decide whether to transform the code based on the inspection
sets. Given the inspection set and annotated code, transformations
occur as illustrated in Figure 3.

2.3.1 Variable Iteration Space Pruning. Variable Iteration Space
Pruning (VI-Prune) prunes the iteration space of a loop using infor-
mation about the sparse computation. The iteration space for sparse
codes can be considerably smaller than that for dense codes, since
the computation needs to only consider iterations with nonzeros.
The inspection stage of Sympiler generates an inspection set that
enables transforming the unoptimized sparse code to a code with a
reduced iteration space.

Given this inspection set, the VI-Prune transformation can be
applied at a particular loop-level to the sparse code to transform
it from Figure 3a to Figure 3b. In the �gure, the transformation is
applied to the kth loop nest in line 4. In the transformed code the
iteration space is pruned to pruneSetSize, which is the inspec-
tion set size. In addition to the new loop, all references to Ik (the
loop index before transformation) are replaced by its correspond-
ing value from the inspection set, pruneSet[Ip]. Furthermore, the
transformation phase utilizes inspection set information to anno-
tate speci�c loops with further low-level optimizations to be applied
by later stages of code generation. These annotations are guided by
thresholds that decide when speci�c low-level optimizations result
in faster code.

In our running example of triangular solve, the generated inspec-
tion set from the symbolic inspector enables reducing the iteration
space of the code. The VI-Prune transformation elides unnecessary
iterations due to zeros in the right hand side. In addition, depending
on the number of iterations the loops will run (which is known
thanks to the symbolic inspector), loops are annotated with direc-
tives to unroll and/or vectorize during code generation.

2.3.2 2D Variable-Sized Blocking. 2D Variable-Sized Blocking
(VS-Block) converts a sparse code to a set of non-uniform dense sub-
kernels. In contrast to the conventional approach of blocking/tiling
dense codes, where the input and computations are blocked into
smaller uniform sub-kernels, the unstructured computations and

inputs in sparse kernels make blocking optimizations challenging.
The symbolic inspector identi�es sub-kernels with similar structure
in the sparse matrix methods and the sparse inputs to provide the
VS-Block stage with “blockable” sets that are not necessarily of the
same size or consecutively located. These blocks are similar to the
concept of supernodes [44] in sparse libraries. VS-Block must deal
with a number of challenges:

• The block sizes are variable in a sparse kernel.
• Due to using compressed storage formats, the block ele-

ments may not be in consecutive memory locations.
• The type of numerical method used may need to change af-

ter applying this transformation. For example, applying VS-
Block to Cholesky factorization requires dense Cholesky
factorization on the diagonal segment of the blocks, and
the o�-diagonal segments of the blocks must be updated
using a set of dense triangular solves.

To address the �rst challenge, the symbolic inspector uses an
inspection strategy that provides an inspection set specifying the
size of each block. For the second challenge, the transformed code
allocates temporary block storage and copies data as needed prior
to operating on the block. Finally, to deal with the last challenge,
the synthesized loops/instructions in the lowering phase contain
information about the block location in the matrix, and when ap-
plying this transformation, the correct operation is chosen for each
loop/instruction. As with the VI-Prune transformation, VS-Block
also annotates loops with further low-level transformations such as
tiling to be applied during code generation. By leveraging speci�c
information about the matrix when applying the transformation,
Sympiler is able to mitigate all of the di�culties of applying VS-
Block to sparse numerical methods.

An o�-diagonal version of the VS-Block transformation is shown
in Figures 3c and 3d. As shown, a new outer loop is made that pro-
vides the block information to the inner loops using the given
blockSet. The inner loop in Figure 3c transforms to two nested
loops (lines 2–6) that iterate over the block speci�ed by the outer
loop. The diagonal version VS-Block heavily depends on domain
information. More detailed examples of applying this transforma-
tion to triangular solve and Cholesky factorization is described in
Section 3.

2.4 Enabled Conventional Low-level
Transformations

While applying inspector-guided transformations, the original loop
nests are transformed into new loops with potentially di�erent
iteration spaces, enabling the application of conventional low-level
transformations. Based on the applied inspector-guided transfor-
mations as well as the properties of the input matrix and right-hand
side vectors, the code is annotated with some transformation di-
rectives. An example of these annotations are shown in Figure 2b
where loop peeling is annotated within the VI-Pruned code. To
decide when to add these annotations, the inspector-guided trans-
formations use sparsity-related parameters such as the average
block size. The main sources of enabling low-level transformations
are:
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(1) Symbolic information provides dependency information
at compile-time, allowing Sympiler to apply more transfor-
mations such as peeling based on the reach-set in Figure 1;

(2) Inspector-guided transformations remove some of the indi-
rect memory accesses and annotate the code with potential
conventional transformations;

(3) Sparsity-speci�c code generation enables Sympiler to know
details such as loop boundaries at compile-time. Thus, sev-
eral customized transformations are applied such vectoriza-
tion of loops with iteration counts greater than a threshold;

Figure 1e shows how some of the iterations in the triangular
solve code after VI-Prune can be peeled. In this example, the inspec-
tion set used for VI-Prune is the reach-set {1, 6, 8, 9, 10}. Because
the reach-set is created in topological order, iteration ordering de-
pendencies are met and thus code correctness is guaranteed after
loop peeling. As shown in Figure 2b, the transformed code after VI-
Prune is annotated with the enabled peeling transformation based
on the number of nonzeros in the columns (the column count).
The two selected iterations with column count greater than 2 are
peeled to replace them with a specialized kernel or to apply another
transformation such as vectorization.

3 CASE STUDIES

1 for(column j = 0 to n){

2 f = A(:,j)

3 PruneSet = The sparsity pattern of row j

4 for(every row r in PruneSet){ // Update

5 f -= L(j:n,r) * L(j,r);

6 }

7 L(k,k) = sqrt(f(k)); // Diagonal

8 for(off-diagonal elements in f){ // Off-diagonal

9 L(k+1:n,k) = f(k+1:n) / L(k,k);

10 }

11 }

Figure 4: The pseudo-code of the left-looking Cholesky.

Sympiler currently supports two important sparse matrix com-
putations: triangular solve and Cholesky factorization. This sec-
tion discusses some of the graph theory and algorithms used in
Sympiler’s symbolic inspector to extract inspections sets for these
two matrix methods. The run-time complexity of the Symbolic in-
spector is also presented to evaluate inspection overheads. Finally,
we demonstrate how the VI-Prune and VS-Block transformations
are applied using the inspection sets. Table 1 shows a classi�cation
of the inspection graphs, strategies, and resulting inspection sets
for the two studied numerical algorithms in Sympiler. As shown in
Table 1, the symbolic inspector performs a set of known inspection
methods and generates some sets which includes symbolic informa-
tion. The last column of Table 1 shows the list of transformations
enabled by each inspector-guided transformation. We also discuss
extending Sympiler to other matrix methods.

3.1 Sparse Triangular Solve
Theory: In the symbolic inspector, the dependency graph DGL is
traversed using depth �rst search (DFS) to determine the inspection
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Figure 5: An example matrix A and its L factor from
Cholesky factorization. The corresponding elimination tree
(T ) of A is also shown. Nodes in T and columns in L high-
lighted with the same color belong to the same supernode.
The red nonzeros in L are �ll-ins.

set for the VI-Prune transformation, which in this case is the reach-
set from DGL and the right-hand side vector. The graph DGL can
also be used to detect blocks with similar sparsity patterns, also
known as supernodes, in sparse triangular solve. The block-set,
which contains columns of L grouped into supernodes, are identi�ed
by inspecting DGL using a node equivalence method. The node
equivalence algorithm �rst assumes nodes vi and vj are equivalent
and then compares their outgoing edges. If the outgoing edges go
to the same destination nodes then the two nodes are equal and are
merged.

Inspector-guided Transformations: Using the reach-set,VI-
Prune limits the iteration spaces of the loops in triangular solve to
only those that operate on the necessary nonzeros. The VS-Block
transformation changes the loops to apply blocking as shown in
Figure 2a in triangular solve. The diagonal block of each column-
block, which is a small triangular solve, is solved �rst. The solution
of the diagonal components is then substituted in the o�-diagonal
segment of the matrix.

Symbolic Inspection: The time complexity of DFS on graph
DGL is proportional to the number of edges traversed and the
number of nonzeros in the RHS of the system. The time complexity
for the node equivalence algorithm is proportional to the number
of nonzeros in L. We provide overheads for these methods for the
tested matrices in Section 4.3.

3.2 Cholesky Factorization
Cholesky factorization is commonly used in direct solvers and
is used to precondition iterative solvers. The algorithm factors a
Hermitian positive de�nite matrix A into LLT , where matrix L is a
lower triangular matrix. Figure 5 shows an example matrix A and
the corresponding L matrix after factorization.

Theory: The elimination tree (etree) [17] is one of the most
important graph structures used in the symbolic analysis of sparse
factorization algorithms. Figure 5 shows the corresponding elimi-
nation tree for factorizing the example matrix A. The etree of A is a
spanning tree of G+(A) satisfying parent[j] =min{i > j : Li j , 0}
where G+(A) is the graph of L + LT . The �lled graph or G+(A)
results at the end of the elimination process and includes all edges
of the original matrix A as well as �ll-in edges. In-depth discussions
of the theory behind the elimination tree, the elimination process,
and the �lled graph can be found in [14, 52].
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Table 1: Inspection and transformation elements in Sympiler for triangular solve and Cholesky. DG: dependency graph, SP
(RHS): sparsity patterns of the right-hand side vector, DFS: depth-�rst search, SP(A): sparsity patterns of the coe�cient A, SP
(Lj ): sparsity patterns of the jthrow of L, unroll: loop unrolling, peel: loop peeling, dist: loop distribution, tile: loop tiling.

Transformations Triangular Solve Cholesky
Inspection
Graph

Inspection
Strategy

Inspection Set Inspection
Graph

Inspection
Strategy

Inspection Set Enabled
Low-level

VI-Prune DG + DFS Prune-set etree + Single-node Prune-set dist, unroll, peel,
SP(RHS) (reach-set) SP(A) up-traversal (SP(Lj )) vectorization

VS-Block DG Node
equivalence

Block-set
(supernodes)

etree +
ColCount(A)

Up-traversal Block-set
(supernodes)

tile, unroll, peel,
vectorization

Figure 4 shows the pseudo-code of the left-looking sparse Cholesky,
which is performed in two phases of update (lines 3–6) and column
factorization (lines 7–10). The update phase gathers the contribu-
tions from the already factorized columns on the left. The column
factorization phase calculates the square root of the diagonal ele-
ment and applies it to the o�-diagonal elements.

To �nd the prune-set that enables the VI-Prune transformation,
the row sparsity pattern of L has to be computed; Figure 4 shows
how this information is used to prune the iteration space of the
update phase in the Cholesky algorithm. Since L is stored in column
compressed format, the etree and the sparsity pattern of A are used
to determine the L row sparsity pattern. A non-optimal method
for �nding the row sparsity pattern of row i in L is that for each
nonzero Ai j the etree of A is traversed upwards from node j until
node i is reached or a marked node is found. The row-count of i is
the visited nodes in this subtree. Sympiler uses a similar but more
optimized approach from [14] to �nd row sparsity patterns.

Supernodes used in VS-Block for Cholesky are found with the L
sparsity pattern and the etree. The sparsity pattern of L is di�erent
from A because of �ll-ins created during factorization. However,
the elimination treeT along with the sparsity pattern of A are used
to �nd the sparsity pattern of L prior to factorization. As a result,
memory for L can be allocated ahead of time to eliminate the need
for dynamic memory allocation. To create the supernodes, the �ll-
in pattern should be �rst determined. Equation (1) is based on a
theorem from [31] and computes the sparsity pattern of column
j in L, Lj , where T (s) is the parent of node s in T and “\" means
exclusion. The theorem states that the nonzero pattern of Lj is the
union of the nonzero patterns of the children of j in the etree and
the nonzero pattern of column j in A.

Lj = Aj
⋃
{j}

⋃©«
⋃

j=T (s)
Ls\{s}

ª®¬ (1)

When the sparsity pattern of L is obtained, the following rule is used
to merge columns to create basic supernodes: when the number
of nonzeros in two adjacent columns j and j − 1, regardless of the
diagonal entry in j − 1, is equal, and j − 1 is the only child of j in T ,
the two columns can be merged.

Inspector-guided transformations: The VI-Prune transforma-
tion applies to the update phase of Cholesky. With the row sparsity
pattern information, when factorizing column i Sympiler only iter-
ates over dependent columns instead of all columns smaller than i .
The VS-Block transformation applies to both update and column

factorization phases. Therefore, the outer loop in the Cholesky al-
gorithm in Figure 4 is converted to a new loop that iterates over
the provided block-set. All references to the columns j in the inner
loops will be changed to the blockSet[j]. For the diagonal part of
the column factorization, a dense Cholesky needs to be computed
instead of the square root in the non-supernodal version. The result-
ing factor from the diagonal elements applies to the o�-diagonal
rows through a sequence of dense triangular solves. VS-Block also
converts the update phase from vector operations to matrix opera-
tions.

Symbolic Inspection: The computational complexity for build-
ing the etree in sympiler is nearly O(|A|). The run-time complexity
for �nding the sparsity pattern of row i is proportional to the num-
ber of nonzeros in row i ofA. The method is executed for all columns
which results in a run-time of nearly O(|A|).The inspection over-
head for �nding the block-set for VS-Block includes the sparsity
detection which is done in nearly O(|A| + 2n) and the supernode
detection which has a run-time complexity of O(n) [14].

3.3 Other Matrix Methods
The inspection graphs and inspection strategies supported in the
current version of Sympiler can support a large class of commonly-
used sparse matrix computations. The applications of the elimina-
tion tree go beyond the Cholesky factorization method and extend
to some of the most commonly used sparse matrix routines in
scienti�c applications such as LU, QR, orthogonal factorization
methods [46], and incomplete and factorized sparse approximate
inverse preconditioner computations [40]. Inspection of the de-
pendency graph and proposed inspection strategies that extract
reach-sets and supernodes from the dependency graph are the fun-
damental symbolic analyses required to optimize algorithms such
as rank update and rank increase methods [18], incomplete LU(0)
[49], incomplete Cholesky preconditioners, and up-looking imple-
mentations of factorization algorithms. Thus, Sympiler with the
current set of symbolic inspectors can be made to support many of
these matrix methods. We plan to extend to an even larger class of
matrix methods and to support more optimization methods.

4 EXPERIMENTAL RESULTS
We evaluate Sympiler by comparing the performance to two state-
of-the-art libraries, namely Eigen [36] and CHOLMOD [11], for
the Cholesky factorization method and the sparse triangular solve
algorithm. Section 4.1 discusses the experimental setup and ex-
perimental methodology. In Section 4.2 we demonstrate that the
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Table 2: Matrix set: The matrices are sorted based on the
number of nonzeros in the original matrix; nnz refers to
number of nonzeros, n is the rank of the matrix.

Problem
ID

Name n (103) nnz (A)
(106)

1 cbuckle 13.7 0.677
2 Pres_Poisson 14.8 0.716
3 gyro 17.4 1.02
4 gyro_k 17.4 1.02
5 Dubcova2 65.0 1.03
6 msc23052 23.1 1.14
7 thermomech_dM 204 1.42
8 Dubcova3 147 3.64
9 parabolic_fem 526 3.67
10 ecology2 1000 5.00
11 tmt_sym 727 5.08

transformations enabled by Sympiler generate highly-optimized
codes for sparse matrix algorithms compared to state-of-the-art
libraries. Although symbolic analysis is performed only once at
compile-time for a �xed sparsity pattern in Sympiler, we analyze
the cost of the symbolic inspector in Section 4.3 and compare it
with symbolic costs in Eigen and CHOLMOD.

4.1 Methodology
We selected a set of symmetric positive de�nite matrices from [19],
which are listed in Table 2. The matrices originate from di�erent
domains and vary in size. All matrices have real numbers and
are in double precision. The testbed architecture is a 3.30GHz
Intel®Core™i7-5820K processor with L1, L2, and L3 cache sizes
of 32KB, 256KB, and 15MB respectively and turbo-boost disabled.
We use OpenBLAS.0.2.19 [71] for dense BLAS (Basic Linear Alge-
bra Subprogram) routines when needed. All Sympiler-generated
codes are compiled with GCC v.5.4.0 using the -O3 option. Each
experiment is executed 5 times and the median is reported.

We compare the performance of the Sympiler-generated code
with CHOLMOD [11] as a specialized library for Cholesky factoriza-
tion and with Eigen [36] as a general numerical library. CHOLMOD
provides one of the fastest implementations of Cholesky factoriza-
tion on single-core architectures [35]. Eigen supports a wide range
of sparse and dense operations including sparse triangular solve
and Cholesky. Thus, for Cholesky factorization we compare with
both Eigen and CHOLMOD while results for triangular solve are
compared to Eigen. Both libraries are installed and executed using
the recommended default con�guration. Since Sympiler’s current
version does not support node amalgamation [26], this setting is
not enabled in CHOLMOD. For the Cholesky factorization both
libraries support the more commonly used left-looking (supernodal)
algorithm which is also the algorithm used by Sympiler. Sympiler
applies either both or one of the inspector-guided transformations
as well as some of the enabled low-level transformations; currently,
Sympiler implements unrolling, scalar replacement, and loop disti-
bution from among the possible low-level transformations.
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Figure 6: Sympiler’s performance compared to Eigen for tri-
angular solve. The stacked-bars show the performance of
the Sympiler (numeric) code with VS-Block and VI-Prune.
The e�ects of VS-Block, VI-Prune, and low-level transforma-
tions on Sympiler performance are shown separately.

4.2 Performance of Generated Code
This section shows how the combination of the introduced transfor-
mations and the decoupling strategy enable Sympiler to outperform
two state-of-the-art libraries for sparse Cholesky and sparse trian-
gular solve.
Triangular solve: Figure 6 shows the performance of Sympiler-
generated code compared to the Eigen library for a sparse triangular
solve with a sparse RHS. The nonzero �ll-in of the RHS in our
experiments is selected to be less than 5%. The sparse triangular
system solver is often used as a sub-kernel in algorithms such as
left-looking LU [14] and Cholesky rank update methods [18] or as
a solver after matrix factorizations. Thus, typically the sparsity of
the RHS in sparse triangular systems is close to the sparsity of the
columns of a sparse matrix. For the tested problems, the number of
nonzeros for all columns of L was less than 5%.

The average improvement of Sympiler-generated code, which we
refer to as Sympiler (numeric), over the Eigen library is 1.49×. Eigen
implements the approach demonstrated in Figure 1c, where sym-
bolic analysis is not decoupled from the numerical code. However,
the Sympiler-generated code only manipulates numerical values
which leads to higher performance. Figure 6 also shows the e�ect
of each transformation on the overall performance of the Sympiler-
generated code. In the current version of Sympiler the symbolic
inspector is designed to generate sets so that VS-Block can be ap-
plied before VI-Prune. Our experiments show that this ordering
often leads to better performance mainly because Sympiler supports
supernodes with a full diagonal block. As support for more trans-
formations are added to Sympiler, we will enable it to automatically
decide the best transformation ordering. Whenever applicable, the
vectorization and peeling low-level transformations are also applied
after VS-Block and VI-Prune. Peeling leads to higher performance if
applied after VS-Block where iterations related to single-column su-
pernodes are peeled. Vectorization is always applied after VS-Block
and does not lead to performance if only VI-Prune is applied.
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Figure 7: The performance of Sympiler (numeric) for
Cholesky compared to CHOLMOD (numeric) and Eigen
(numeric). The stacked-bar shows the performance of the
Sympiler-generated code. The e�ect of VS-Block and low-
level transformations are shown separately. The VI-Prune
transformation is already applied to the baseline code so it
is not shown here.

Matrices 3, 4, 5, and 7 do not bene�t from the VS-Block transfor-
mation so their Sympiler run-times in Figure 6 are only for VI-Prune.
Since small supernodes often do not lead to better performance,
Sympiler does not apply the VS-Block transformation if the average
size of the participating supernodes is smaller than a threshold.This
parameter is currently hand-tuned and is set to 160. VS-Block is not
applied to matrices 3, 4, 5, and 7 since the average supernode size is
too small and thus does not improve performance. Also, since these
matrices have a small column count vectorization does not payo�.
Cholesky: We compare the numerical manipulation code of Eigen
and CHOLMOD for Cholesky factorization with the Sympiler-
generated code. The results for CHOLMOD and Eigen in Figure 7
refer to the numerical code performance in �oating point operations
per second (FLOP/s). Eigen and CHOLMOD both execute parts of
the symbolic analysis only once if the user explicitly indicates that
the same sparse matrix is used for subsequent executions. However,
even with such an input from the user, none of the libraries fully
decouple the symbolic information from the numerical code. This is
because they can not a�ord to have a separate implementation for
each sparsity pattern and also do not implement sparsity-speci�c
optimizations. For fairness, when using Eigen and CHOLMOD we
explicitly tell the library that the sparsity is �xed and thus report
only the time related to the the library’s numerical code (which
still contains some symbolic analysis).

As shown in Figure 7, for Cholesky factorization Sympiler per-
forms up to 2.4× and 6.3× better than CHOLMOD and Eigen re-
spectively. Eigen uses the left-looking non-supernodal approach
therefore, its performance does not scale well for large matrices.
CHOLMOD bene�ts from supernodes and thus performs well for
large matrices with large supernodes. However, CHOLMOD does
not perform well for some small matrices and large matrices with
small supernodes. Sympiler provides the highest performance for
almost all tested matrix types which demonstrates the power of
sparsity-speci�c code generation.

Sympiler (Numeric)

Eigen
Sympiler (Symbolic)
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Figure 8: The �gure shows the sparse triangular solve sym-
bolic+numeric time for Sympiler and Eigen’s runtime nor-
malized over the Eigen time (lower is better).

The application of kernel-speci�c and aggressive optimizations
when generating code for dense sub-kernels enables Sympiler to
generate fast code for any sparsity pattern. Since BLAS routines
are not well-optimized for small dense kernels they often do not
perform well for the small blocks produced when applying VS-
Block to sparse codes [61]. Therefore, libraries such as CHOLMOD
do not perform well for matrices with small supernodes. Sympiler
has the luxury to generate code for its dense sub-kernels; instead
of being handicapped by the performance of BLAS routines, it
generates specialized and highly-e�cient codes for small dense
sub-kernels. If the average column-count for a matrix is below a
tuned threshold, Sympiler will call BLAS routines [71] instead. Since
the column-count directly speci�es the number of dense triangular
solves, which is the most important dense sub-kernel in Cholesky,
the average column-count is used to decide when to switch to BLAS
routines [71]. For example, the average column-count of matrices
3, 4, 6, and 8 are less than the column-count threshold.

Decoupling the prune-set calculation from the numerical ma-
nipulation phase also improves the performance of the Sympiler-
generated code. As discussed in subsection 3.2, the sparse Cholesky
implementation needs to obtain the row sparsity pattern of L. The
elimination tree of A and the upper triangular part of A are both
used in CHOLMOD and Eigen to �nd the row sparsity pattern.
Since A is symmetric and only its lower part is stored, both libraries
compute the transpose ofA in the numerical code to access its upper
triangular elements. Through fully decoupling symbolic analysis
from the numerical code, Sympiler has the L row sparsity informa-
tion in the prune-set ahead of time and therefore, both the reach
function and the matrix transpose operations are removed from
the numeric code.

4.3 Symbolic Analysis Time
All symbolic analysis is performed at compile-time in Sympiler
and its generated code only manipulates numerical values. Since
symbolic analysis is performed once for a speci�c sparsity pattern,
its overheads amortize with repeat executions of the numerical
code. However, as demonstrated in Figures 8 and 9 even if the
numerical code is executed only once, which is not common in
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scienti�c applications, the accumulated symbolic+numeric time of
Sympiler is close to Eigen for the triangular solve and faster than
both Eigen and CHOLMOD for Cholesky.

Triangular solve: Figure 8 shows the time Sympiler spends
to do symbolic analysis at compile-time, Sympiler (symbolic), for
the sparse triangular solve. No symbolic time is available for Eigen
since as discussed, Eigen uses the code in Figure 1c for its triangular
solve implementation. Figure 8 shows the symbolic analysis and
numerical manipulation time of Sympiler normalized over Eigen’s
run-time. Sympiler’s numeric plus symbolic time is on average
1.27× slower than the Eigen code. In addition, code generation and
compilation in Sympiler costs between 6–197× the cost of the nu-
meric solve, depending on the matrix. It is important to note that
since the sparsity structure of the matrix in triangular solve does
not change in many applications, the overhead of the symbolic
inspector and compilation is only paid once. For example, in pre-
conditioned iterative solvers a triangular system must be solved per
iteration, and often the iterative solver must execute thousands of it-
erations [8, 42, 50] until convergence since the systems in scienti�c
applications are not necessarily well-conditioned.

Cholesky: Sparse libraries perform symbolic analysis ahead of
time which can be re-used for same sparsity patterns and improves
the performance of their numerical executions. We compare the
analysis time of the libraries with Sympiler’s symbolic inspection
time. Figure 9 provides the symbolic analysis and numeric manipu-
lation times for both libraries normalized to Eigen time. The time
spent by Sympiler to perform symbolic analysis is referred to as
Sympiler symbolic. CHOLMOD (symbolic) and Eigen (symbolic)
refer to the partially decoupled symbolic code that is only run once
if the user indicates that sparsity remains static. In nearly all cases
Sympiler’s accumulated time is better than the other two libraries.
Code generation and compilation, which are not shown in the chart,
add a very small amount of time, costing at most 0.3× the cost of
numeric factorization. Also, like the triangular solve example, the
matrix with a �xed sparsity pattern must be factorized many times
in scienti�c applications. For example, in Newton-Raphson (NR)
solvers for nonlinear systems of equations, a Jacobian matrix is fac-
torized in each iteration and the NR solvers require tens or hundreds
of iterations to converge [21, 51].

5 RELATEDWORK
Compilers for general languages are hampered by optimization
methods that either give up on optimizing sparse codes or only
apply conservative transformations that do not lead to high per-
formance. This is due to the indirection required to index and loop
over the nonzero elements of sparse data structures. Polyhedral
methods are limited when dealing with non-a�ne loop nests or
subscripts [5, 10, 41, 54, 65, 67] which are common in sparse com-
putations.

To make it possible for compilers to apply more aggressive loop
and data transformations to sparse codes, recent work [63, 66, 68–
70] has developed compile-time techniques for automatically creat-
ing inspectors and executors for use at run-time. These techniques
use an inspector to analyze index arrays in sparse codes at run-time
and an executor that uses this run-time information to execute code
with speci�c optimizations. These inspector-executor techniques
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Figure 9: The �gure shows the symbolic+numeric time for
Sympiler, CHOLMOD, and Eigen for the Cholesky algo-
rithm. All times are normalized over the Eigen’s accumu-
lated symbolic+numeric time (lower is better).

are limited in that they only apply to sparse codes with static index
arrays; such codes require the matrix structure to not change during
the computation. The aforementioned approach performs well for
methods such as sparse incomplete LU(0) and Gauss-Seidel meth-
ods where additional nonzeros/�ll-ins are not introduced during
computation. However, in a large class of sparse matrix methods,
such as direct solvers including Cholesky, LU, and QR decomposi-
tions, index arrays dynamically change during computation since
the algorithm itself introduces �ll-ins. In addition, the indirections
and dependencies in sparse direct solvers are tightly coupled with
the algorithm, making it di�cult to apply inspector-executor tech-
niques.

Domain-speci�c compilers integrate domain knowledge into
the compilation process, improving the compiler’s ability to trans-
form and optimize speci�c kinds of computations. Such an approach
has been used successfully for stencil computations [39, 55, 64], sig-
nal processing [53], dense linear algebra [37, 62], matrix assembly
and mesh analysis [1, 48], simulation [9, 43], and sparse opera-
tions [16, 56]. Though the simulations and sparse compilers use
some knowledge of matrix structure to optimize operations, they
do not build specialized matrix solvers.

Specialized Libraries are the typical approach for sparse direct
solvers. These libraries di�er in (1) which numerical methods are
implemented, (2) the implementation strategy or variant of the
solver, (3) the type of the platform supported, and (4) whether the
algorithm is specialized for speci�c applications.

Each numerical method is suitable for di�erent classes of ma-
trices; for example, Cholesky factorization requires the matrix
be symmetric (or Hermitian) positive de�nite. Libraries such as
SuperLU [22], KLU [20], UMFPACK [12], and Eigen [36] provide
optimized implementations for LU decomposition methods. The
Cholesky factorization is available through libraries such as Eigen [36],
CSparse [14], CHOLMOD [11], MUMPS [2–4], and PARDISO [57,
58]. QR factorization is implemented in SPARSPAK[30, 32], SPLOOES
[7], Eigen [36], and CSparse [14]. The optimizations and algorithm
variants used to implement sparse matrix methods di�er between
libraries. For example LU decomposition can be implemented using
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multifrontal methods [12, 15, 38], left-looking [20, 22, 27, 30], right-
looking [25, 45, 59], and up-looking [13, 60] methods. Libraries are
developed to support di�erent platforms such as sequential imple-
mentations [11, 14, 20], shared memory [15, 23, 57], and distributed
memory [3, 23]. Finally, some libraries are designed to perform well
on matrices arising from a speci�c domain. For example, KLU [20]
works best for circuit simulation problems. In contrast, SuperLU-
MT applies optimizations with the assumption that the input matrix
structure leads to large supernodes; such a strategy is a poor �t for
circuit simulation problems.

6 CONCLUSION
In this paper we demonstrated how decoupling symbolic analysis
from numerical manipulation can enable the generation of domain-
speci�c highly-optimized sparse codes with static sparsity patterns.
Sympiler, the proposed domain-speci�c code generator, takes the
sparse matrix pattern and the sparse matrix algorithm as inputs to
perform symbolic analysis at compile-time. It then uses the informa-
tion from symbolic analysis to apply a number of inspector-guided
and low-level transformations to the sparse code. The Sympiler-
generated code outperforms two state-of-the-art sparse libraries,
Eigen and CHOLMOD, for the sparse Cholesky and the sparse
triangular solve algorithms.
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