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ABSTRACT

Let G be a regular graph of degree d on n points which contains no K, (r = 4). Let a be
the independence number of G. Then we show for large d that & =c(rn 24, © 1995

John Wiley & Sons, Inc.

Let G be a regular graph of degree d on n points which contains no K, (r =4).
Let a [or a(G)] be the independence number of G. We wili show for large d that
a =c(r)n 22, This improves the bound a =c'(r)n 222 proved in [1]; how-
ever, it does not settle the question (asked in [1]) of whether a =c'(r)n 124
(which holds for triangle-free graphs).

We will actually establish a lower bound for a the average size of an
independent set in G. Clearly a = a. The basic idea of the proof is to balance the
probability that a vertex v of G is contained in a random independent set of G
with the average number of neighbors of v which are contained in a random
independent set of G. In what follov's we will only concern ourselves with leading
order terms for large d. We will need the following lemma.

Lemma 1. Let S be a K, -free graph (r =3). Let I(S) be the number of independent
sets in S. Let a(S) be the average size of an independent set in S. Then, as
1(S)— o, &(S) = c(r) 715 -

Proof. Let m be the size of §. Let k = a(S). Let ¢ = a(S)/m. Then we have the
following inequalities:
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1. I(S)=2m"@),
2. a(S) = mo,
3. I(S)=2*,

where H is the log 2 entropy function. 1 follows by considering the random
probability distribution on the family of independent sets of S, which takes on
each independent set with equal probability. The entropy of the distribution is
log I(S), which must not exceed the sum of the entropies on each vertex which by
the convexity of H is less than or equal to mH(¢). This is a standard method; see,
for example, [2]. The inequality follows. 2 holds by definition and 3 by
considering all the subsets of the maximum independent set.

Now by 2 and 1, a(S) = mé¢ = 3z&; mH(¢) =585 Inlg) Ty is an increasing
function of ¢ so a lower bound on ¢ yields a lower bound on ¢/H(¢). By 1 and
3, mH(¢)=k or H(¢p)=k/m. Now it is easy to show by induction on r that
k=m"¢™D ~1. Since we are only considering leading order terms we have
H(¢p)=1/mb- 7. Since H(0) =0, this bounds ¢ away from 0. More prec1sely, to
leading order ¢ = ____an____Z) and ¢/H(q5)>——'“)21—— From 3, I(S)=2"=
1 —1n
2’"(’ ! Therefore In I(8)= (m' T—1)In2 or to leading order In I(S) = m'- ~TIn2
or InlnI(S)=—L;Inm or Inm=(r—1)InlnI(S). Thus ¢/H(¢) >(—,—‘“2—— =

r:‘)lnm

In2 4 v In I(S) 1 In I(S)
oo - Henee to leading order, a(S) = 55 8 = 15 vy -

We are now ready to prove our main theorem:

Theorem 1. Let G be a regular graph of degree d on n points which contains no
K.(r=4). Let & be the average size of an independent set of G. Then for large d,

a=c(n giiea-

Proof. Let F be the family of independent sets of G. For any vertex x of G, let p,
be the probability that x is contained in a random element of F. Let dp, be the
average number of neighbors of x that are contained in a random member of F.
Let T be the set of neighbors of x. Let H be G with x and T deleted. Let f(S),
S C T, be the probability that a random independent set of H is not adjacent to
any vertices in S but is adjacent to all vertices in T — S. Since the independent sets
of G can be built up by adding vertices in x U T to independent sets in H, we
have the following expressions for p, and p_:

1
P15 Sy, O M
 Eeer FSIS)S) ,
Pr= M+ S, JONG)] 2

where [(S) is the number of independent sets in S and a(§) is the average size of
an independent set in §. Note since G is K,-free T, § must be K,_,-free.
Therefore, Lemma 1 applies, and we have &(S) = c(r — 1) 3I0L. Now let A be a
parameter to be set later. Let gy y5)=a f(S)I(S) = w. Let c(r — 1) {525 = y.

Then we may obtain the following inequalities from (1) and (2):
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1
Px=Txa+w’ G)

_ wy

- —
P =TT A+ w] )
Now (3) is a decreasing function of w and (4) is an increasing function of w.
hence px + ﬁx = max(px’ ﬁx) = max( 1 +/\ +w? LVEK 1+)}+ w = 1 +A1+ dly* NOW ChOOSC
A = d/Ind. Then, to leading order, we have A + ¢ = 5 + _dlainds and 31—
= Sty Now @ = I, p, = I, j,. Hence, 26 = T, p,+ p,=n Grhind or
az=<l p lod completmg the proof of Theorem 1

The regularity condition in Theorem 1 may be removed if we look at « instead
of a as shown by the following corollaries.

Corollary 1. Let G be a graph on n points with maximum degree d and which
contains no K_(r=4). Let a be the maximum size of an independent set of G.
Then, for large d, a = c(r)n {24

Proof. Suppose G is not regular. Consider the graph consisting of two copies of
G with corresponding vertices connected iff they have degree less than d. Clearly,
by repeating this construction as many times as necessary, we can produce a
regular graph G* of degree d consisting of many copies of G with some additional
edges connecting corresponding vertices. If G is K,-free, G* will be also hence we
may apply Theorem 1 to G*. The corollary follows immediately since if an
independent set in G* contains at least the fraction c(r) 24— of the points of
G*, it must also contain at least this fraction of the points of some copy of G
within G*.

Corollary 2. Let G be a graph on n points with average degree d and which
contains no K.(r=4). Let a be the maximum size of an independent set of G.
Then, for large d, a = c'(r)n 2&.

Proof. Let G be a graph on n points with average degree d and which contains no
K, (r =4). Note at most half the points of G have degree greater than 2d. Let G’
be G with these points deleted. G’ has at least n/2 points and maximum degree
=2d. Hence, by Corollary 1, a(G)=a(G')=c(r) 2 ;7234 = c'(Nn 4245,
completing the proof.
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