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On Brooks' Theorem for Sparse Graphs
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Let G be a graph with maximum degree A(G). In this paper we prove that if the girth g(G)
of G is greater than 4 then its chromatic number, x(G), satisfies

where o(l) goes to zero as A(G) goes to infinity. (Our logarithms are base e.) More generally,
we prove the same bound for the list-chromatic (or choice) number:

provided g(G) > 4.

1. Introduction

In this paper we focus on Vizing's [29] question concerning a possible 'Brooks' theorem
for sparse graphs' :

Find a best possible upper bound for the chromatic number #(G) of a graph G with girth
g(G) at least 4 in terms of the maximum degree A(G) of G,

where the girth g{G) is the length of the shortest cycles of G.
For general graphs G, A(G) + 1 is a trivial upper bound on #(G). Brooks' Theorem [7]

gives an exact description of the graphs achieving this bound (the connected ones are just
the complete graphs and odd cycles). It is natural to expect that Brooks' bound is very
weak for graphs without small cycles or large complete subgraphs, say for graphs of a
large degree without Ch or Xr-subgraphs (h,r fixed).

The first non-trivial result in this direction was discovered independently by Borodin
and Kostochka [5], Catlin [8] and Lawrence [18]: for K4-free G,

X(G) < (3/4)(A(G) + 2).
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98 J. H. Kim

For triangle-free G (i.e. K^-free), this was improved slightly (10 years later!) by Kostochka
[17], who gave the bound

*(G)<(2/3)A(G) + 2. (1)

This remains the best upper bound known for Vizing's problem, a rather remarkable
situation, since the bound (1) differs only by the factor 2/3 from the trivial upper bound.

On the other hand, it is now well-known [4] that there are graphs G of arbitrarily large
girth with

where C is a constant. The best constant to date is asymptotically 1/2 as A(G) goes to
infinity. (Our logarithms are base e.)

We may consider how close the lower bound in (2) is to the truth. The situation here
is analogous to that for the independence number. (Recall that the independence number
oc(G) of a graph G is the maximum size of a set of pairwise nonadjacent vertices.) The
independence and chromatic numbers are connected by the obvious relation

X(G)>|F(G)|/a(G). (3)

For the independence number, the classic result of Turan [28] may be stated as

<x(G)>\V(G)\/(t + l),

where t = t(G) is the average degree of G.
Turan's Theorem is sharp when G is the disjoint union of complete graphs of order f+1.

On the other hand, Ajtai, Komlos and Szemeredi [2] (see also [1]) proved for triangle-free

( ) ,4,

and Shearer [24] improved this to

. ( e ) a ( 1 o W )

(both bounds as t goes to infinity). These bounds are best possible up to the value of the
constant, since there are graphs G of arbitrarily large girth with

a ( G ) s ( 2 + o W ) .

While the inequality (3) is very weak in general, it is close to the truth in many natural
situations, suggesting again that the lower bound in (2) might give the correct order of
growth for %• (Note that one cannot bound the chromatic number in terms of average
degree.)

Provided g(G) > 5, we prove that the lower bound in (2) gives the correct order of
magnitude. In fact, our result is more general. Define the list-chromatic number (or choice
number) x,(G) of a graph G to be the minimum integer k, such that for every assignment
of a set S(v) of k colours to every vertex v of G, there is a legal colouring of G that assigns
to each vertex v a colour from S{v) [3, 10, 30].

Our main result is:
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Theorem 1.1. Let G be a graph. Ifg(G) > 5 then

'logA(G)

where o(l) goes to zero as A(G) goes to infinity.

As a corollary of this theorem, we have

Corollary 1.2. Let G be a graph. Ifg(G) > 5 then

'logA(G)

where o(l) goes to zero as A(G) goes to infinity.

The basic approach is via the so-called 'semirandom' method, some version of which
seems to have been first used in [2]. Subsequently, more developed applications appeared
in many papers [6, 22, 11, 21, 14]. See also [12, 13] for fairly detailed discussions of these
developments. The method here is close to that of [14].

In section 2 we sketch the proof of Theorem 1.1. In section 3 we introduce our basic
parameters and algorithms, and prove Theorem 1.1 modulo the proof of our main lemma
on the behaviour of these parameters under a random colouring. The main lemma
says roughly that the behaviour of our basic parameters under an appropriate random
colouring procedure is highly predictable. There are two parts to this: showing that
expected values behave properly; and showing that the parameters are concentrated near
their expectations.

Section 4 deals with the main lemma at the level of expectations. To prove high
concentrations near means of the random variables (in the main lemma), we develop
Azuma-Hoeffding-type martingale inequalities in section 5, which are thought to be of
independent interest. Finally, we prove the main lemma (the concentration results) in the
last two sections using these inequalities.

2. Sketch of methods (semirandom methods)

In this section we give a rough idea of the proof of Theorem 1.1. Let G be a graph
with girth at least 5 and maximum degree D. Further, suppose we have a set S(v) of size
s « D/ log D assigned to every vertex v in G. We call S(v) the set of legal colours for v.
Our object is to find an S-legal colouring on V(G), that is, a function from V(G) to the set
of all colours F := L)vSv(G)S(v) such that for all v, x(v) e S(v) and T(U) ^ T(W) if v ~ c w.

In each stage of our algorithm we will colour some set, say X, of uncoloured vertices
so that the new set X together with the set of already coloured vertices is legally
coloured. Our goal is to reach a situation in which the maximum degree of the graph
induced by uncoloured vertices is less than the minimum over uncoloured v of \S(v) \
{colour of w : w ~ v,w is coloured}|. Once we achieve this goal it is enough for us to
colour the uncoloured vertices greedily.

Before showing how to choose such a set X, and a legal colouring on it, we introduce
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the following notation: for v e V(G), w £ V{G) and sets S(w) of legal colours for w £ W,
define

% ( » ) = {w e W : w ~ c v}, dw{v) = \Nw(v)\

Nw(v,y) = {weNw(v):yeS(w)}, dw(v,y) = \N(v;y)\ . (5)

Also for a set /I c K(G), we write

= {w e W : w ~ c D for some v € A } .

When W = V{H) for an induced subgraph H of G we write iV//(!;) etc. Usually we do
not write the subscript W (or H) if the identity of W (or H) is obvious.

The induced subgraph of G on W s F(G) is denoted by G[W]. For the rest of this
section we use '« ' to mean approximately equal, deferring precise statements to the next
section.

We give a rough version of our colouring algorithm only for the 'canonical case' in
which the graph G is D-regular and all S(v) are the same. In general, the idea is similar,
but we need some auxiliary structures (see the last part of this section) to make the
evolution, as in the canonical case. (Note that it is not a loss of generality to assume G is
D-regular.)

Fix a small 0 > 0. First, we define parameters: ao = Po = I and for L = D/s « log/)

(6)

Our first algorithm is:

Algorithm 1 (idea) Initially we set Ho = G, T0{v) = S(v), to = \T0(v)\ = s and i = 0.

(Step 1) In general, at the beginning of each stage we will have H,-, the subgraph of G
induced by the set of uncoloured vertices, and a list Ti(v) of still-legal colours for each
v € V{Hi). The properties we seek to maintain are

di(v) «

ti(v) » <x,s

di(v;y) » a,ftD

for all t; € K(H,) and y e ^(u). (Note that these are obvious initially, i.e. i = 0.)
Assuming these properties hold, we define the random colouring T* according to

r p, :=e/(a,D) ifyeTi(v)
Pr(Ti(v) = y)=l l -p , |T , (») | ify = A

( 0 otherwise

(Note that Pi\Tt(v)\ « ajs(0/a,D) « 0/logD < 1) independently of all other colours T,(W),

and set

Xt = {v€ V{Ht) : r,(v) ± A, v ~H( w
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On Brooks' Theorem for Sparse Graphs 101

For the next stage, we should consider the induced subgraph Hi+\ := H,[K(H,) \ Xj]
and the sets Ti+i(v) of still legal colours for each v € V{Hiy, denned in the obvious way:

v) = Tf(v) \ {T,(W) : w e Xh w

|7i+,(o)|.
We then want

« ui+1s (7)

The definitions of a,+i and j8,-+i come from analysing the (probable) behaviour of the
parameters under the random colouring specified above. Namely,

« Pr(y e Ti+i(v)) {y e Tt(v)), (8)
fa+i/fa « Pr(w e K(Hf+1)) (w e V(Ht)). (9)

(These are not hard to see, but for (8) we need the fact that the girth of H, is at least 5.)
Furthermore,

awj?,1 /(a i f t)«Pr(y6Tl + 1W, w € V(Hi+l)), (y € T,(w)) (10)

reflecting the idea that the events "y e Ti+1(w)" and "w € V(Hi+i)" are almost indepen-
dent.

Once we have Xt and T, satisfying the properties (7), we proceed to

(Step 2) Set i = i+l and go to step 1.
The number of stages will be

a := min{i : fa < D~6/(2L)} (11)

(note that a is some power of log D).
The goal of the above algorithm is to reach a situation in which each colour degree

d(v;y) is small enough relative to t(v). (See (13).) To achieve this goal the role of 6 is
important, though it is somewhat technical. Note that for v e V(Hi)

Pr{v &X) = Pr(x{v) £ A)Pr(r(w) ^ t(o) Vw ~ v\x{v) =£ A).

and that as 9 increases the first factor of the right-hand side increases but the second
factor decreases. Thus, some optimization of 6 is in order.

What is left now is to prove that the properties (7) are feasible, i.e.

Pr(V) happens') > 0. (12)

To prove (12), we will consider the following steps:

• (a) Prove the properties (7) at the level of expectations.

* It is enough for us to consider these sets only for v e K(//,-+i), but it is convenient to consider them for all
v e V(H,).
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• (b) Prove that the random variables di+\(v) etc. are highly concentrated near their
means.

• (c) Prove (12) using (b) and the Lovasz Local Lemma. (Here it is very easy to show
that we have enough independence for the local lemma.)

Parts (a) and (c) are not hard. The only hard part is (b). Though the martingale
inequalities of [25, 15, 14] are quite powerful, we cannot use them directly for d'(v;y). In
section 5 we develop some martingale inequalities which are useful in our situation.

After running the above algorithm a times we will have

da(v;y) < D-eta(v)/2 (13)

by the definition of a. We then run the following more efficient algorithm which prevents
excessive error accumulation. Actually, we may not expect any nice behaviour of di(v;y)
(i > a), since these might be too small to disregard error terms. Thus we need a new
phase:

Algorithm 2 (idea) We randomly colour all remaining vertices as in Step 1 with p, =
(i > a). (We may delete colours from the larger Tt(v)s so that all i,-(i>)s are equal.) It turns
out that in this phase the degrees will shrink rapidly while the numbers t(v) remain almost
constant.

More precisely, the properties we will have are

d,(v) < Iz)i-(--«+i)e (14)

U(v) « aas. (15)

i = a,...,b where b := a + 6~l + 3. (Note that for i = a these are obvious by the definition
of a. Also, it turns out that we cannot run this algorithm more than 8~l + 3 times, since
the expected degrees E[db+I(v)], if possible, might be smaller than error terms.) To prove
these we do not need any information about d(v;y) other than (13).

Assuming (14) and (15), it is clear that we can achieve our main goal (i.e. db(v) < tb(v)
for all uncoloured v) provided

abs > D2e , (16)

which is possible by choosing a suitable 9.
In the general (i.e. non-canonical) case, we do not have (7). Instead, we will have

dt(v) < frD
t,(v) > «,-s (17)

di(v;y) < OLtfrD

for all v e V(Hi) and y e Tt(v).
The first two properties are in our favour. For example, we may throw away some

colours from Tt(v) so that r,(i>) « a,s. But the last property may cause some trouble in
the next stage. Roughly speaking, the reason is that we cannot control the t,(u)s well if
some colour degrees are small and the others are relatively big. To avoid such problems
we add some new (artificial) vertices to Hi. These extra vertices are used to force the t,-(t;)s
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(for v G V(Ht)) to behave as in the canonical case, and are then discarded before the
beginning of the next stage.

For each v e V(Hj), y G Tj(v) with d,-(i;;y) < d,-, we add d, —d,(u;y) new vertices

{w1,...,wJ_d(lir)} = : A(y;y) all joined to v. (The precise value of d, « a,-/?,-/) will be given

below.) For each of these new vertices wp we add d,-—1 more new vertices {uj\..., u^_t} = :

B(v;y, Wj) all joined to w,. Finally, set Tt{z) = {y} for all z € A(v;y)U\J'jilf^v'y B(v;y,w;).

All sets {A(v;y)}^y) and {B(u;y,w^fayj) must be mutually disjoint.
From now on, we write H, = H,-(d,-) for the extended graph just defined. Also, we write

Nt(v), Ni(v;y) etc. for N^v), N^t(v;y) etc. (see (5)). Note that if each di(v;y) is at most dt

then di(v;y) = df for all v e K(i/,)UN{V(Ht)) with y e T,(u).

3. Main lemma

In this section we define our parameters and algorithms precisely, and give the proof of
Theorem 1.1 modulo our Main Lemma (Lemma 3.3) on the behaviour of our random
colouring procedure.

First, we need some parameters. Let 0 < n < 1, and then choose 0 < 6 < 0.1 with 9~l

an integer and 5 such that

Set A(G) = D and L = n log D. Also, let n0 = v0 = 1 and for i = 0 ,1 , . . .

(these parameters are to be used to control the error terms precisely), whereas in (6),
<x0 = Po = 1 a n d

Furthermore, for notational convenience set

a := min{i" : ft < D~e/(2L)},

and for i = 0,1,.. . ,a

A, := ^ ( I + V / P ' - ' J D

t, := ^(l-wD'-'jfl/L (19)

ViD
s-l)D

except

^ := D~eta. (20)

As mentioned in the previous section, we use a two-part colouring procedure to prove
that

Z,(G) < U0J < D/L . (21)
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Notice that to prove Theorem 1.1 it is enough to prove this for each fixed r\ and large
enough D.

Suppose we are given sets S(v) of size to, v e V(G). (Of course, we should really write
[toj here.) First we describe Algorithm 1 which colours many of the vertices of G and
leaves an (induced) subgraph in which the colour degrees are significantly smaller than
the sizes of the sets of legal colours.

Algorithm 1 Initially we set Ho = G, TQ(V) = S(v), and i = 0. We run the following Steps
a times.
(Step 1) Define the random colouring T, from V{Hi), Ht = Hi{di), to the set of all colours
according to

( p, :=6/(a,D) ifyeTt(v)
Pr(Ti(v) = y) = I 1 - P l | 7 - (» ) | i f y = A

{ 0 otherwise

independently of the other colours T,(W). Also set

Xt = {v e V{kt) : r,(v) + A, v ~ w in H, => T,(V) + T,(W)}

= T,{v) \ {TJ(Z) : z G Xu z ~ v in Ht} .

The properties we want are:

4n(f) < A1+i

ti+i{v) > tl+i (22)

di+i(v;y) < di+i

for all v e V{Ht) and y e Tt(v) except

Define an event Qt = { (22) holds Vu e F(tf;) and y e Tt(v) } . As mentioned, we need
to show

Pr(Qt) > 0. (23)

Supposing (23) is established, we choose T,- SO that (22) holds and proceed to Step 2.
(Step 2) Discard some colours, if necessary, from the sets Ti+i(v) (v € V{Hi+i)) so that
|T I + I (D) | = t,+i. (By this modification di+i(v;y) never increases.)
(Step 3) If i < a — 1 then set i = i + 1 (i.e. replace Ht by Hi+i etc.) and go to Step 1. Stop
otherwise.

We will show below that values of fia, va satisfy

VaD
s-\vaD

6-1 = o{\), (24)

where o(l) tends to zero as D tends to infinity. Thus by /?„ < D~e/(2L) we have

Aa < D-\\ + vaD
d-l)D/{lL) (25)

da < (2/3)D-°ta (cf. (20)). (26)
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We now continue with a modified algorithm better suited to the current values of our
parameters. First, set b := a + 6~~l — 3 and for i = a,..., b

ti+l = (l-2Zre)r,

d,+i = D-eti+l .

We run the following steps c := 6~l — 3 times.

Algorithm 2 Initially, i = a.
(Step 1) Do step 1 of the first algorithm with p. = 1/f,. (Note p,U(v) = 1 for v G
The properties we seek are:

(27)

for all v e V{Hi) and y e Tt(v). Note that the last inequality is trivial since by (26)

di+i(v;y)<da(v;y)<D-eti+l (28)

(because the number of stages is less than the fixed constant 6~l). Define an event Q, =
{ (27) holds Vu e V(Hj) and y e r,(u) }. Again, we need to show

Pr(Qt) > 0. (29)

Supposing (29) is established, we choose T, SO that (27) holds and proceed to Step 2.
(Step 2) As in Algorithm 1.
(Step 3) If i < a + 6~x — 4 then set i = i: + 1 and go to step 1. Otherwise, stop.
Notice that once

db(v) < tb(v) for all v e V{Hb) (30)

we may colour the remaining vertices greedily. So to prove (21) (for large enough D), we
just need to prove (23), (29), (24) and (30). We first dispose of the last two of these and
then turn to the more difficult (23) and (29).

Lemma 3.1.

aa > D-"*6 (31)

max{/ia,va} = £»<)(1', (32)

where o(l) goes to zero as D goes to infinity. In particular, we have (24).

Proof. Since

a, = expf-fl/Jj-ie-W-'Jai-i >

we have
a-l

i=0
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On the other hand, since

we have
a—I oo

i=l i=0

which implies
0-1

<xa > exp(-0 Y^ A) ^ exp(-6e0L/9) = D'^'.
i=0

To prove (32), let us define a, to be the maximum i such that /?, > L~2. Then by (33),
we have

a, <20-VLlogL.

Note that, trivially,

(meaning, as usual, that \ia (resp. va ) is at most the first (resp. second) component of the
right-hand side). Similarly, we have

a < eeL(\ogD + 0"1 log(2L)) + 1,

and

va J V 1/L 1 + 1/L3

since /?, < L~2 for i> ar Furthermore, the matrices

1 1 \ ( \ l/L2
(

1/LJ' V V-L 1 + 1/L3

have diagonal Jordan forms with eigenvalues approximately 1 + 1/^/L, 1 ± \/{LsfL),
respectively, and these with the above bounds on a, ax imply

{ ^ , vfli} <

and

max{/ifl, va} < 2L(1

D

Proof of Theorem 1.1 Suppose now that we have run Algorithm 2 c times. Then by (24)
and (25)

Afc = (1 + l/logD)cD-c9Aa < exp(c/logD)D-(c+1)9D/L < D26.
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On the other hand, by (24), (31) and (18) we have

tb = (1 - 2D-efta > (1 - 2D-8faaD/{2L) > ^D'^D/L > D28 . (34)

Thus we are done. •
We have already mentioned in section 2 the methods to be used in proving (23) and (29).

The following lemmas are precise statements. We will prove them in the last two sections.
From now on, we fix i G [b] := {l,...,b} and for simplicity, we do not write the

subscript i (i.e. H = Hhd(v) = dj(v),<x = a, etc.). Also, we write H',al etc. for Hi+\,a.i+\ etc.
(respectively).

Lemma 3.2. For v G V(H) and y G T(v),

E[d'(v)] = (l-pt(l-p)d)d(v)<(l-pt(l-p)d)A,

E[t'(v)] = (1 - p ( l -p)d)dt + 0(1),

E[d'(v;y)] < (1 - p ( l -p)d)d{\ - p t ( l -p)d)d + 0(1).

The proof of Lemma 3.2 is quite straightforward. Our main lemma is:

Lemma 3.3. (Main Lemma)

Pr(d'(v) -E [d'(v)] >A 1 / 2 log A) < exp(-(log A)2/4) (35)

Pr(t'(v)-E[t'(v)]<-tl'2\ogt) < exp(-(logt)2/2) (36)

Pr(d'(v;y)-E[d'(v;y)]>d1/2(\ogd)2) < 3D2exp(-^logrfloglogd) (37)

Our proof will give bounds on the probabilities in (35), (36) of other direction—e.g.

Pr(d'(v) - E[d'(v)] < -A1/2 log A) < exp(-(log A)2/4)

—but we restrict the formal statement to the values we will actually use.
Once the above lemmas are proved, it is easy to prove (23) and (29). Before doing so,

we summarize some inequalities already established. Here we write x <€. y if there is a
constant e > 0 depending only on 6,8 and r\ such that xD€ < y.

<5-l > Ur]e8+28-\) by (18) (38)

tj > D'-"e9-o(1) » D 2 8 V j e [b] by (34) and (18) (39)

Pj > D-0-°m V ; G [a] by the definition of a (40)

^ < £>"""-' < Dd-2e-x V j G [a] by (31) and (18). (41)

Moreover, by (40) and (39)

dj > D "' 'tj > D ~n °' ' ~^> D V j G [b], (42)

and by the definitions of A(,_i, Afl and b = a + Q~l — 3 for all j = 1,2,...,b — 1

A > Afc_, > (1 + 1/ logD)b-1-aD-('(fc-1-a)Aa > D-W'-^D1-0-^ > D28 . (43)
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Proofs of (23) and (29). For each v € V(H) consider the event Qv that we do not have
the required properties for v, i.e.

Qv = {d'(v) > E [d'(v)] + A1'2 log A} U {t'(v) < E [t'(v)] - t1/2 log t}

U {d'{v;y) > E[d'{v;y)] + dl/2(\ogd)2 for some y e T(v) }.

Since (by (43), (39) and (42))

min{A, t,d} > De,

Lemma 3.3 implies that (as D is large)

Pr(Qv) < 3tD2 exp(-(0/3) log D log log D) < Di exp(-(0/3) log D log log D) .

Furthermore, note that the event Qv is independent of all events {Qw} for which the
distance between v and w is more than 6 (since for all v, d'(v),t'(v) and all d'(v;y)s are
determined by the values of T on vertices within distance 3 of v). Thus the Lovasz Local
Lemma [9], (see also [27]) together with the inequalities

4D6Pr(Qv) < D6D3 exp(-(0/3) log D log log D) < 1 Vo G V(H)

guarantees

Pr( f | Qv)>0.

Therefore, (using the values in Lemma 3.2) we can find a colouring z on V(H) such that
for every v and y G T'(v)

d'(v) < {l-pt(l-p)d)A +

t'(v) > (1 - p{\ - p)d)dt -t1 /2 log t- 0(1) (44)

Thus to show (22), (27) we just have to show that the inequalities in (44) imply those
in (22) if we are in Algorithm 1 and those in (27) if we are in Algorithm 2.

We analyse the two cases separately. In Algorithm 1 we have two kinds of error terms
other than the trivial errors 0(1). The first kind is from accumulation of errors in the
expectations. (Note that t and d already contain such error terms.) The other kind is, of
course, from concentration errors (A1/2logA etc.). As will appear below, we have chosen
the parameters—see (18)—so that the errors of the first type dominate those of the second.
Though not hard, the estimates are somewhat complicated and tedious. We will frequently
use (41)-(43).

Suppose first that we are in Algorithm 1. Let us recall

vD<5-')< 0.11, pt = 0(1-iiD'-l)/L £0.1. (45)

We claim

(1 - pt(l - p)d) - (1 - {e/L)e~^) < (6/L)(n + epv)D&'1 + OPp (46)

0 < expi-epe-W) - (1 - p(l - p)d)d < epvD*-1. (47)

https://doi.org/10.1017/S0963548300001528 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548300001528


On Brooks' Theorem for Sparse Graphs 109

For (46), since 1 — p > e~p~p we have

1 - pt( 1 - p)d < 1 - pte-pde-p2d

< 1 - pte-pd(l - p2d) by e~pH > 1 - p2d

< 1 - pte-pd + 6Pp by (45) and (24).

Now set

If 0 < x,y < 0.1 then by Taylor's theorem

f(x, y) - /(0,0) < /x(0,0)x + /,(0,0)j; = {e/L)e~^x + ̂ p/Qe'Wy < (6/L)(x + 6py)

since all second order derivatives are non-positive (for 0 < x,y < 0.1). Setting x = ^D5~l

and y = vD5~l, we have (46).
For the upper bound of (47), consider

(l-p(l-p)Y > (l-pe-pd)d

> exp(-pde-pd - p2de-2pd)

> (1 - p2de-2pd) exp(-pde-pd)

> exp{-pde~pd) - p . (48)

Set h(y) = —60(1 + y)e~e^l+yK Then by a similar argument, we have

h{y) - h(0) > h'(0)y = {-epe~^ + 62p2
e-

ei})y > -(Op - 62p2)y , (49)

for 0 < y < 0.1. Moreover, we have by (40) and (41)

p < 62P2DS-1 , (50)

(note p = 9/(aD) here). Again setting y = vDd~x we finally have

( l-p(l-p)Y > exp(h(y))-p by (48)

> cxp(h(0)-(ep-92p2)y)-p by (49)

> txp{-epe-
Bli) - (dp - 62p2)vD5-1 - p

> exp(-epe~6p) - epvD6-1 by (50),

which is exactly what we want for the upper bound.
Note that the upper bound is quite tight, thus we may easily modify the estimation to

show the lower bound. We leave this to the reader.
Now we claim the following to control the second kind of errors.

A1/2logA + pA < (6/L)(n + 9Pv)Ds~lA (51)

t1/2logf + O(l) < epvDs~lt (52)

d1/2(\ogd)2+Pd + O(l) < (Q/L)(n + 6pv)Ds-ld. (53)

We have already seen that p is small enough in (50). Thus it is enough for us to show
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(We cannot disregard j? here because it can be as small as D~e/(2L).) For (51), it is
enough for us to note that by (40) and (38)

A-1/2

Similarly, we have by (39), (40) and (38)

0 - l r l / 2 < D(r,e»+2e-l)/2+o(\) < £,5-1 _

Finally, by (42) and (38)

which completes the proof of our claims.
Using the above claims and the fact that /?//?' is almost 1, we have

d\v) < (l-

< p'(l + vD^-')(l + 2(p/p")(0/L)(n +

< p"(l + (v + (36/L)(n + 0jSv))D5-' )D

< P'(l + (v + (n + pv)/L)Ds-l)D

Here we do not have to be so careful about the product of the error terms, since we
already know n, v = Z)o<1). Similarly,

t'(v) >

d'(v;y) <

Suppose now we are in Algorithm 2. Then since (1 — p)d > 1 — pd = 1 — D~e we have

and

(l-p(l-p)d)

Since by (43)

A-l /2 < D-(3e-o(l))/2 = D-8D-

we have

d'(v) ^ D~eA

< (I+DeA~1/2 log A)D~e A

< (l + l/logD)Z)-flA = A'(=A1+1).

Similarly, by (39), we have

t'(v) > (l-D-e)t-ti/2logt

= (1 -D-d-r1/2 log t)t

> ( l-2D-> = t'(=fl+1). D
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4. Expectations

In this section we prove Lemma 3.2. Let us recall the lemma.

Lemma 3.2 (restatement) For v e V(H) and y e T(v),

E[d'(v)] = (l-pt(l-p)d)d(v), (54)

E[t'(v)] = (l-p(l-p)d)dt + O{l), (55)

E[d'(v;y)] < (l-p(l-p)d)d(l-pt(l-p)d)d + O(l). (56)

Proof, (a) For degrees,

E[d'(v)] = J2 (* ~ P r ( w G X)) •
weN(v)

But

~ W) = yr(z)^y Vz€N(w:y))

Therefore, we have (54).
(b) For the number of legal colours,

E[t'(v)] =

On the other hand, for fixed v and y 6 T(v), we have y € T'(u) if and only if there is no
w e N(y) for which the event

Aw := (T(W) = y, x(z) ±y Vz ~\f\

happens. If we condition on t(v) =fc y, then, since g(G) > 5, the events Aw (w e N(v;y))
are independent, and we have

Pr(yeT'(v)\x(v)^y) = J ] Pr(Aw)\z(v) =£ y)
w€N(v;y)

= (l-p(l-p)d-l)d. (57)

Thus, since Pr(x(v) = y) = p,

Pr(yeT'(v)) = Pr(x(v) = y)Pr(y€T'(v)\z(v) = y)
+ Pr(x(v)^y)(l-p(l-p)"-l)d

= (1 - p(l - p)d-l)d + O(p)

Y (58)

which (since pt < 1) gives (55).
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(c) For colour degree,

E[d'(v;y)] = £ Pr(w <f X,y e T'(w))
weN(v;y)

(Pr(y&T'(W))-Pr(yeT'(W),WeX))

We claim

Pr(y e T'(W), weX)>pt{\-p)d{\ - p{\ - p)d)d + 0(p). (59)

Since we know Pr(y e T'(w)) = (1 - p(l - p)d)d + 0(p) and pi < 0.11 (see (45)), (56)
follows if we prove (59).

To do so, we need only consider the case x(w) =j= y, since the other case has the
probability p. First note that since w € X implies x(w) =£ A we have

Pr(y G T'{w),w&X)

J2 ) = y')Pr(y 6 T'(vv), w e X|T(W) = / ) + O(p)

= P
y'ZT(w)\{y}

/eT(w)\{y}

Thus it is enough to show that

Pr(y € T'(w)|w e X, t(w) = y') > (1 - (1 - p)d)d + O(p). (60)

Without the extra condition 'w e X', we may easily prove (60) as in (57). On the other
hand, the extra condition is nothing but T(Z) ̂  y' for all z e JV(w;/) and does not
affect the mutual independence of events 'T(Z) = y\ The only change required here is
replacement of p = Pr{x{z) = y) by

Then as in (57)

zeN(w;y)

Since p{z) = p + 0(p2) we have (60). •

5. Martingales

In this section, we develop Azuma-Hoeffding-type martingale inequalities which form the
basis for our proofs of high concentrations of the random variables d'(v), t'iv), and d'(v;y)
near their expectations. For general probability theory and martingales, see elsewhere
[6, 19, 27].
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Here we define finite martingales briefly.

Let Y be a random variable and ̂ 0,^i,...,^n a non-decreasing sequence of cr-fields on
a probability space, where ^ 0 is the trivial <r-field (i.e. SSQ = {0, Whole Set}). Suppose Y
is ^-measurable, that is,

E[Y\an] = Y .

Then the martingale generated by Y with respect to {^i}|Lo is the sequence

{Y, := EiYWt]}^ .

Note that Yo = E[Y], Yn = Y and

£[y , | ^_ i ] = y,-, V i = l , 2 , . . . , n (61)

(actually, (61) is the general definition of martingales). Also, we define the martingale
difference sequence

Zk:=Yk-Yk-i for/c = l , . . . ,n,

and set Z := £ L i Zk = Y - E[Y].

From now on when we refer martingales we always assume that {^,}, Z,s etc. are taken
for granted. We first introduce the following lemma from [15].

Lemma 5.1. Let {Yi}"=0 be a martingale. Suppose that

E[emZk\^k-i]<Ck V /c= l , . . . , n (62)

for some positive co and C\,...,Cn. Then

k=l

n

(a)E[e°'z}<\{ck and

(b)Pr(Y -
k=l

for all real numbers X.

Proof. First, note that (a) implies (b) since Z = Y — E[Y] and

Pr(Z > A) = Pr{emZ > ew>) < e->M1E\emZ

by Markov's inequality. For (a), we show

for all k = 1,. . . , n by induction. If k = 1,

E[emZi] = E[E[ewZ'\@0]] < C,
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For k > 1 using the induction hypothesis,

= E[E[ew{Zl+~+Zk)\!%k-i]]

< f[Q.
/=i

D

As mentioned in section 2, we need something a little more general than Lemma 5.1
which allows the bounds (62) to fail occasionally.

Lemma 5.2. If there are Ak-\ e 3&k-\ such that

E\emZk\®k^\Ak_x<Ck V/c = l ,2, . . . ,n (63)

with C/c > 1 for all k, then

n n—\

Pr(Y - E[Y] > X) < e-)a>\[Ck + Pr(\J Ak).
fc=l (c=0

When the Pr(Ak) is small enough we may roughly speak of Ck as an 'essential upper
bound' on E[ef°Zk\^k-{\.

Proof. First we define a stopping time

n - l

|x € Ak) if x e ( J Ak

fc=o
otherwise.

Then by the Optional Sampling Theorem [6], the sequence {Ykrya}l=0 is a martingale,
where, as usual, k A a := min{&, <r}. In particular, we have for Y' = YnAc

E\Y'\@k\ = Ykha V/c = 0 , . . . , n . (64)

In particular E[Y'] = E[Y].
Furthermore, for Z'k := E{Y'\®k\ - E\Y'\@k-{\ = Ykha - y(k_i)Aff, we know

Thus we have

, = f0 if o- < fe — 1
fc \ Yk-Yk-i=Zk ifa>k.

Since {cr < fc - 1}, {cr > k} e ^fc_i, {cr > k} S. Ak-\ and Q > 1, we have
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Therefore, by Lemma 5.1 we have

Pr(Y' -
k=\

which implies the result since E[Y'] = E[Y] and Y' = Yn/^a = Yn = Y except on
{o<n}=[fk-J)Ak. U

Of course if we know, say, \Zk\ < ck on Ak-\ then we can take Ck = emc* or ea c^2 (by
E[Zk\3&k-\\ = 0) in (5.2). But if (on Ak-\) Zk is only rarely near its maximum, then we
should be able to do better. A typical example for us (and also, for example, in [14, 15])
is that Zk takes only two values, say

r_ . ck onBk
k~^ c[ onBk

for some low probability set Bk € 88k- In this case, if Bk is independent of 3Sk-\ then
E[Zk\@)k-\\ = 0 implies that c'k is small (no more than ckPr(Bk) in absolute value). This
situation is described in the next lemma.

Lemma 5.3. Suppose that there is a set I c [n]> such that

_, £ cklBk+ckPr(Bk), V/c G / (65)

U_, < ck V / c e J : = [ n ] \ / (66)

for some constants ck, and some sets Ak-\ € $)k-\ and Bk independent of 3Sk-\. Then we
have for all positive <x> with comaxkei{ck} < g

n - l

Pr(Y-E[Y] >l)< Pr(\J Ak) + exp(-o)(A - £ < * ) + 3w2 J24Pr(Bk)).
k=o kej kei

Proof. By Lemma 5.2 it is enough to show that

E [ewZk \ak-i] U _ , ^ e3a>2ciPrW for k G / (67)

and

E[(/oZk\ak-i\^l < eWCk for k G J . (68)

Note that (68) is immediate from (66), we really only need to prove (67).
For (67), set V = Zk\Aki, @ = @k-\, ck = c, Bk = B and b = Pr(B) (for fixed k G / ) .

Then

Also we know

E[V\m = E\Zk\AkJ@k-<\ = EtZfcl^-i]!^, = 0 . (69)
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Thus by (69) and (65) we have

00

E[ewV\@] = ^ E K ' W l ^ ] / ; !
7=0

1

7=2

On the other hand, since

I 1 if I = j

(since Bk is independent of &k-i), we have

1 ] E[b'(iBy-i>

= y^ f J
1=0 ^

= b(\ + b)> + b>(\-b) .

Furthermore, since coc < 1/6 and b < 1

;=2

7=2 7=2

b)2 (1 - b)co2c2b2

+1 - (oc{\

Thus

Therefore,

E{emV\m\ < 1 + 3ko2c2 < exp(3fco»2c2) .

•
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6. More lemmas

In the previous section, we developed martingale inequalities which are useful when we
know nice (essential) upper bounds on Zk = E[Y\SSk] — E[Y\3)k-i\. It is relatively easy
to find nice upper bounds if the random variable Y has the typical form

Y = y ( T 1 , T 2 , . . . , T n )

where T,,T2,...,Tn are mutually independent random variables such that for every k the
<x-field generated by x1,x2,...,xk is exactly 8)k. As all examples we require will look like
this, we restrict our attention to such Ys from now on.

For

T :=(T, ,T 2 , . . . ,T n ) and x' := (x[,x'2,...,x'n),

define equivalence relations =k by

T =k x' if and only if %j = T' for all j G [n] \ {k}.

Lemma 6.1. With the above notation, suppose for some k € [n] there is a random variable
W such that

| Y(T) - Y{T')\ < W(z) + W{x') whenever x =k x'. (70)

Then

\zk\ z E[w\ak]
(Recall Zk=

Proof. First note that for fixed K = (K, , . . . , Kn)

and

E[Y\ak]{K) =

= Y Y(Ki'--->Kk>yk+i>--->yn)Pr(xk=yk,...,xn=yn)
vt-.,yn

since ^ P r { x k = yt,...,xn = yn) = Pr(xk+I = yk+l,...,xn = yn). Thus by (70) we have

h

\zk(K)\ =

k = y t , . . . , T . = y . )

xPr{xk =yk,...,xn = yn)

i](K). n

https://doi.org/10.1017/S0963548300001528 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548300001528


118 J.H. Kim

Now we come back to our own problem. Before developing some inequalities of the
form (70), we introduce a more convenient notation. For V(H) := {vl,v2,...,vn} we write
zk := x{vk), k € [n]. We will specify the order of the vertices later, depending on our
purpose. From now on, @k is the cr-field generated by xli...,zt and Bo is the trivial cr-field
that consists of the empty set and the whole set. We also write

Nk := N(vk), Tk := T(vk), T'k := T'(vk) and A£ := N(vk;y) .

(Notice that Tk is in fact Tt(vk).)
We define new random variables

0 otherwise.

and

Dy . f 1 if (1) xk = y, and (2) v. ~ vk or 3 v. G N• n Nl • B • x. = y
/v (T) "^ \Jk 1̂  0 otherwise.

Remark 1. If j =̂= k then |JV] n Ny
k\ < 1 because g(H) > 5. Thus the second condition of

(2) is very strong in most cases.

2. We could replace the condition v, e AT] n Ny
k by u, e Afy n Nk, since the requirement

x, = y then forces u, G iV] n N^.
As we saw in section 4, our random variables are sums of 0-1 random variables. We

first consider the 0-1 random variables.

Lemma 6.2. Suppose x =k x'. Then we have

£ R]k(x) + R'(x') (72)

> ; { J M (73)

for y e Tj.

Proof, (a) For (71) suppose

Then we claim

Qjk(r) + l{j=k} > 1 ,

which means

) < Qjk(t) + l{j=k} • (74)
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Proof of claim. First note that

= 1 =*• T; = A or Xj = T, for some vl G Nj and

0 => t ^ A and x'.±x\, for all v, € Nj .

We consider two cases.
(1) If T, ^ x'. then k = j . Thus l{j=k} = 1.

(2) Suppose T; = x'{j= A). Then we know xj ^ A and there is v, G JV/ such that •zj =x, =̂= TJ.
Thus / = fe and T; = xk =£ A i.e. ( ^ ( T ) = 1.

Similarly, we may have

which completes the proof,

(b) For (72) suppose that

Then we claim

Proof of claim. First we have

l{yer.}(^) = 1 =*• Vt), G A := {v, ~ vj : T, = y} 3 vq ~ v, • 3 • xq = y and

l{y€rj](x') = 0 ^ 3 v l £ A ' : = { v , ~ v J : x > = y} 9 - x'q ± y V „ , - « , .

We again consider two cases:
(1) \f A'\A±§ then it is clear by x =k x' that A'\A = {vk}. Thus vt ~ yt and T[ = y by
the definition of A'. This means /?^(T') = 1.
(2) Suppose A' s A. Then take u, G A' such that T^ ^ y for all u, ~ vr Since u, is also in A
(=> T, = y), we know there is vqo ~ v, such that T^ = y. Thus it is clear to see that q0 =k
and so R?

Jk(x) = 1. (Note that this includes the case k = j.)

Similarly, we have the same claim when the other case happens, which completes the
proof.

(c) The inequality (73) follows from (71) and (72) via the triangle inequality, since

D
Finally, we have the following easy lemma:

Lemma 6.3. If vt ~ vk and j > k then we have

= p2= p2\TjC\Tk\
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Also, if all vertices in Nj follow vk then we have

E[R'jk\!%k-i] < p2\N)nN'k\l{yeTk}

with equality unless j = k.

Proof. Suppose Vj ~ vk and j > k. Then

E[Q}k\ak]=

Since xj is independent of 08 k, we get

; i
0 otherwise.

And since xk is independent of &8k-i, it is clear that

= p2\TjnTk\.

For the second part, suppose all vertices in Nj follow vk, in particular vk ^ vr Then

E[R]k\i2k] = Pr(3v,eN]nNy
k - 3 - x, = y | ^ * ) l { T j k = y }

< p\N)nNy
k\hh=y} (75)

since

Pr(3v, etynNl 3- T, = y|^fc) = Pr(3v, €N)nNy
k • 3 • x,=y)

< p\N]nNy
k\.

And

£[/?;i<3fc-i] = p2|N] nJV;|l{y6Tl} . (76)

Furthermore, in (75), we have equality whenever |JV] r\Ny
k\ = 0 or 1, which happens unless

j = fc (since g(H) > 5). D

In what follows we will treat concentrations of the random variables d'{v\ t'iv) and
d'(v;y) separately. Since we would like to apply Lemma 5.3 the main goal is to establish
inequalities of the form (65) or (66). In most cases, Ak = 0 and 1 = [n], but in the proof
of the concentration result for d(v;y) we use Lemma 5.2 essentially (i.e. Ak ^ 0 in some
cases) and / is no longer [n]. In each case, we first choose the order of vertices carefully.
Next we apply lemmas 6.1 and 6.2, and analyse the resulting upper bounds case by case
(using Lemma 6.3 in most cases). Again in the proof of the concentration result for d(v;y),
we need to consider Ry

k under more complicated conditions, which will be developed in
section 7.3.
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In the following section, we always assume

when k is clear.

7. Proof of the main lemma

In this section we prove (35), (36) and (37) in the main lemma.

7.1. Degrees Fix u, = v e V(H). Since N(N(v)) n JV(u) = 0 by g(H) > 5, we may label all
vertices so that

N(N(v))\{v} = {v2,...,vm_l} and N(v) = {va,...,vn}

(recall N(v) = {w e K(#) : w ~ u}). Note that t>, =£ ̂  if ; ^ fc since g(#) > 5. Our
random variable Y is, of course,

Y = d'(v) = Y^ h t )
weN(v) j=m

We do not even define the order of the other vertices because Y does not depend upon
their colours.

We look for inequalities of the form (70). For T =k %' we easily see that by (71)

n

\Y(Z)-Y(T')\ < 5> { U . W (T) -1 { ^A: } (T ' ) I

j=m
n

< X)(Gy*(T) + Gyfc(r') + ly^}) .
j=m

and by Lemma 6.1 we have
n

\Zk\ < J2(E[QJk\£k] + £[G;t|»k-i] + ly-k}) • (77)

Now we claim that

Pr(Y-E[Y] >X)< exp(-(logA)2/4)

where X := A1/2logA.
First, recall

pt<l (by the definition of p) pd<0 .11 (by (45) or (28)). (78)

We consider three cases to get inequalities of the form (65). In what follows, we always
assume m < j <n.

(Case 1) k = 1
Then using Lemma 6.3, (77) and the fact that \N(v;y)\ < |iV(i;;y)| = d for all y € T(v),
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we have

< p(d + ptd) < 2pd.

Therefore, we have

|Zi| <2pd< 1 = 1/2+1/2,

i.e.

c, = 1/2, Pr(5,) = 1. (79)

in terms of parameters in (65).

(Case 2) 2 < fe < m - 1.
In this case there is only one _/ (m < j < n), say ./(fc), such that u; ~ vk. By (77) and
Lemma 6.3 we have

That is, for (65) we may take Bu := {ik e T}^)} and

cfc = p and Pr(Bfc) = p\Tk n r ; W | . (80)

(Case 3) m<k <n,
Since ut ~ i; and uy ~ v we know ut 7̂  vr Thus all g terms in (77) disappear. Therefore,
we have

\Zk\ < 1 i.e. ck = 1/2 and Pr(Bk) = 1 . (81)

Therefore, by (79), (80) and (81), we know that

" (\ m~l 1 \
3co2J£c2

kPr{Bk) = 3co2 - + p3 ̂  \Tk n T;W| + -
*=1 V *=2

Furthermore,

|Af(»)| < A

and by (78)
m— 1 n

p3 ^ IT* n Tm\ < p3 ^ ^ \Tk n r , |
*=2 J=">okeNj

< pA . (82)
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Finally, setting co = 2/(2A) and using Lemma 5.3 we have

Pr(Y - E[Y] > X) < cxp{-coX + cu2A) = exp(-(log A)2/4) .

7.2. Sizes of sets of legal colours We define an order similar to that of the previous
section. Fix v e V(H) and set vl=v and

N2{v) = {v2,...,vm-x}, N(v) = {vm,...,vn} ,

where, in general, for a subset (or vertex) A of V(H)

j-i

N°(A) = A and Nj(A) := N(NJ~\A)) \ \J Nl(A) for / = 1,2,....
/=o

Notice that by the definition

NJ(A)C\A = 0 for all j = 1,2,.... (83)

We do not define any order on the other vertices because they are irrelevant.
If we set

then for T =k T' we have by (72)

yer.

Hence by Lemma 6.1

\Zk\ < ^ ( £ [ < | ^ ] + £[i?;j^_,]) . (84)

We claim

Pr(Y -E[Y] >X)< exp(-(log02/2)

for X := tl/2 log t.

Again we first consider three cases.

(Case 1) k = 1
Then by (84), Lemma 6.3 and the fact that |A^| = d, we have

yeT,

i.e.

c, = 1/2, Pr{B{) = 1 . (85)

in terms of the parameters in (65).

(Case 2) 2 < k < m - 1
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Then there is only one element in N[ n Nk, say Vj(k>. By (84) and Lemma 6.3 (using
j(k) > k) we have

\zk\ <
yeT,

^ + P2\Ti Pi Tm n Tk\ .

Thus we may say Bk := {xk € T\ n T1^)} and

ct = p, Fr(5fc) = p|Ti n r , w n rfc|. (86)

(Case 3) m<k<n
Then by (84) and Lemma 6.3 we have

\Zk\ <

that is, B/c := {T̂  e l , } and

ct = l, Pr(Bk) = p\T1nTk\. (87)

Now by (85), (86) and (87), we have
n .. m— 1 n

fc=l fc=2 k=m

Moreover, by (78) we have
n

pY2\TinTk\ =pdt<,O.Ut
k—m

and
m - l

|r, n Tm nTk\ < P'J^Y.JI

So setting a> = A/t and using Lemma 5.3, we have

Pr(Y -E[Y] > X) < exp(-col + co2t/2) = exp(-(log£)2/2) . •

7.3. Colour degrees As we saw before, this case is a combination of the preceding two
cases. One might guess that the upper bound we try to get is more or less the sum of the
two previous upper bounds. However, our situation here is somewhat different, so that we
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need a more subtle and complicated analysis. The reason will be briefly explained after
we order vertices.

Fix v G V(H) and y € T(v). Set

{»„...,»,_,} = N2(N(v;y))

= N(N(v;y))n{zeV(H):z^v,yeT(z)}

= N(v;y)

and vn = v. Also set

n - l

j=m

Then as in the previous sections for T =/t T' we have

n - l

j=m

n-l

j=m

and so by Lemma 6.1

n - l

^ _ i ] + l{ j = i } . (88)

For the Q terms we may use the same estimation as in section 7.1. However, for the R
terms we need new analysis. Briefly, one (possibly main) reason is that we must take into
account edges between vertices U := {y,,...,i;m_i}. For example, it may happen that there
is a vertex vk in U such that almost all vertices in Ny

k are in U and precede vk. Furthermore,
it seems to be impossible to find a suitable order to avoid this kind of problem. Thus we
are considering essential maximums. The next two lemmas are presented mainly for this
purpose.

First we define new (random) sets

A\ = A[(z) := to € K : 1 < i < k - 1, T, = y}

C[ = q ' ( r ) := {«,, e N y
k : k < i < n , x , = y } .

Then it easy to see that for vk € Nj

* ; = hh=y) (89)

and for vt ^ Nj
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Furthermore, since A7 e S8k-i <= <%k and Ck is independent of 8$k, we have

E[\N]nc]ncl\
Thus for vk g Nj, we have

The next lemma is easy to get using the above inequalities.

Lemma 7.1. With the notation as above we have

«-i

E
j=m

where for 1 < k < h

ckl{h=y} if l<k<h
(2 + | 4 | ) l { t i = v } if h<k<m-\
1 + pd ifm<k<n—l

n - l

U A y A. y

N]nNy
k

(90)

Proof. For 1 < k < h we know Ny, C\Ar
k = 0 since all the vertices in JV'- follow vk. Also it

is easy to see that

n - l « - l

P ^ | Jv ;nN; i=p | | J jv ;nAr ; i = ct (<pd) (91)
j—m j=m

because the sets in the sum are disjoint by g(H) > 5. Thus by (90) we have

n - l n-l

j=m j=m

On the other hand, for h < k < m — 1 there is only one j between m and n — 1 such
that vk € Nj. Hence, by (89), (90) and (91) we get

n-l n-l

j—m j=m

< (2 + \A[\)l{Xk=y]

again because of the disjointness of the sets.
Finally, for m < k < n — 1 we know that if j' ± k then Nj C\Nk = {vn}, which also means

Nj n A\ = 0. Thus by (90), we get

•
j=m

]k\@k] < E[Rik\<Mk] +(d- l)pl{tk=y} <\+pd.

In the above lemma, the size of A\ can be as large as d. But the size is essentially small
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enough for our purposes. (Note that £[|/lj|] < pi < 0.11.) The following lemma gives the
exact meaning of this.

Lemma 7.2. For all y0 e Tk, we have

Pr(\A*\ > logd) < dexp(-logdloglogd).

Proof. Set 7 ' = \A[01. For to' = log log d we get

E[exp(o/y')] < E exp to' J2 Uv

E[exp(a/l{Ti=),o})]

< expipde01')

< exp(em') = d.

Thus, using the Markov inequality we have

Pr(Y' > logd) = Pr(exp(co'Y') > exp(a>' logd))

< dexp{—co'log d) . O

Now we claim for X := dl/2(logd)2,

P r ( y - £ [ y ] ^ A) ^exp(-^logdloglogd) (92)

using Lemma 5.3. That is, we first show that (65) and (66) with appropriate cks, BkS, Ak-\S
which satisfy the conditions in Lemma 5.3.

We consider five cases. In what follows we always assume m < j < n — 1.

(Case 1) 1 < k < h - 1
Note that j =fc k, and by (83) vj •j* vk for all m < j < n - 1. Thus all Q terms in (88)
disappear as well as the term l{j=k}- By (88) and Lemma 7.1, we have

\Zk\ <ckl{h=y}+pckl{yeTk} .

(Case 2)h<k<l-l
By y & Tk, all R terms in (88) disappear. Furthermore, because there is only one j , say
j(k), such that vk ~ vp we have

\ZkI < PhneTm) + p2\Tm nTk\ (< 2p) . (93)

•

as in the Case 2 of section 7.1.

https://doi.org/10.1017/S0963548300001528 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548300001528


128 J. H. Kim

Hence Bk := {T^ e Tj(k)} and

ck=p, Pr(Bk) = p\TmnTk\. (94)

(Case 3) / < k < m - 1

Let j(k) be as in (Case 2). Then we have the same bound in (93) for Q terms. Now we set

Ak-i :={T :\Ay
k(x)\>logd}e^k-i .

Then by (88) and Lemma 7.1 we have

|Z*IU_, < 2p + (2 + log^)l{ l t = y } +p(2 + logrf) < (4 + logrf)l{Tfe=y} + p(4 + logd) .

Hence we may say that Bk := {xk = y} and

C l = 4 + logd, Pr{Ak^)<ak, Pr{Bk) = p (95)

where ak := exp(—d log d log log d) (see Lemma 7.2).

(Case 4 ) m < / c < n - l
Note that Vj $ N^ and for k ^ _/, NjC\Nk = {vn} (m < j < n— 1). So all g terms disappear.
Therefore, by (88) and Lemma 7.1, we get

-1 < 4, (96)

that is, ck=2 and Pr(Bk) = 1.

(Case 5) k = n
For

we define

An-i := {T : Mn(x) > logd} G ̂ n _ i .

Then it is easy to check by Lemma 7.2 that

Pr(An-i) < rdexp(-logdloglogd) .

We now claim

ZnlAn] <2 + \ogd,

that is, J = {n} and

cn = 2 + logd (97)

in terms of parameters in Lemma 5.3.

Proof of claim. For Q terms, note that

n-l n-\

J2Qj»W = £ l{Ty-T.̂ A}(T) < Mn(T)
j=m j=m
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and

Hence by (88) we have

n - l

j=m

+ 1 + rfl{Tn=y} + Pd

dl{Zn=y}. (98)

If xn =£ y then we get

\Zn\lJni<2

When xn = y, the upper bound in (98) is no longer good. Actually the (essential)
maximum of \Zn\ is quite big. (Note that p is not so small.) But we can find a nice
essential upper bound of Zn. To do so we need a lemma, which is to be proved later. Our
result is an easy corollary of the lemma.

Recall that it is enough for us to consider only the case xn = y.

Lemma 7.3. With the same notation as above, suppose x =„ x' and xn = y. Then for
m < j < n — 1

; } ) - l{^^,v6Tj}(t') < l{T,=y}M • (99)

Corollary 7.4. If xn = y then

Proof. We use the same method in the proof of Lemma 6.1. For x = [x\,...,xn_x,y) we
know

Zn(x) = Y(x)-E[Y\xl,...,xn_l]

= J2 (Y(x)-Y(x'))Pr(xn=y')
y'ernu{A}

n - l

j=m

where x' = (x\,...,xn_{,y'). Thus by Lemma 7.3 we have

j=m /eTnU{A}

n - l

j=m

https://doi.org/10.1017/S0963548300001528 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548300001528


130 J. H. Kim

We now have
n-l h-\ /-I

k=\ k=\ k=h

m—\ n—\

k=l k=m

Also, it is easy to check that

( - 1 m - l

P3 E ITJW n T*l ^ P ^ 2 ^ !' P E ^ 4 + l o 8 d ) 2 ^ P ^ 4

and
A-l A- l n - l

/c=l fe=l j=m

h-\ n - l

since the last sum is less than the number of edges between Uylm &) a n d its neighbours
vk with y e Tk.

Hence, setting co = d~ll2 and using Lemma 5.3 (recall X = dxl2{\ogd)2) we have

Pr(Y-E[Y]>X) <
m - l

exp( - - (log d)2) + (d3 + td) exp(- log d log log d)

D

We complete the proof of the Main Lemma by proving Lemma 7.3.

Proof of Lemma 7.3. First recall vn ~ Vj. We consider two cases.
If vn e X(x) (i.e. l{Onex}(T) = 1) then since xn = y, we have y $ TJ(T) (i.e. l{yer;}W = 0),

which implies

= 0 .

Thus the left hand side of (99) is less than 0 while l{t>=y} > 0.
If vn # X(z) then it is easy to see

y $ T'j(z) if and only if 3t>,- 6 Nj n X(T) s.t. T. = y

if and only if 3u,- e N; n X(T' ) s.t. TJ = y

if and only if y (£ Tfc')

because T =„ T' and g(H) > 5. That is, l{ySr}(T) = l{ysr}(T')-
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Thus by (74) we have

8. Further discussion

Our result (Theorem 1.1) gives the correct order of magnitude for both chromatic and
list-chromatic numbers (cf. (2)). However, the original question regarding triangle-free
graphs (i.e. girth at least 4) is still open. Here we (J. Kahn and the author) would like to
conjecture that the same result holds for girth 4:

Conjecture 8.1. Let G be a graph. If g(G) > 4 then

A(G)
X,(G) <

'logA(G)

where o(l) goes to zero as A(G) goes to infinity.

Remark Recently, R. Haggkvist said that A. Johansson and S. McGuiness had just
(independently) proved our result and were pretty sure that for girth 4 they could show

X(G) = O(A(G)/logA(G)) and Z((G) = o(A(G)).
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