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Abstract

We consider the chromatic number of graphs with maximum degree ∆. For suffi-
ciently large ∆, we determine the precise values of k for which the barrier to (∆+1−k)-
colourability must be a local condition, i.e. a small subgraph. We also show that for
∆ constant and sufficiently large, (∆ + 1 − k)-colourability is either NP-complete or
can be solved in linear time, and we determine precisely which values of k correspond
to each case.
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1 An overview

1.1 The results

A k-colouring of a graph is a colouring of its vertices with k colours so that no edge is
monochromatic. The chromatic number of G, denoted χ(G), is the minimum k for which
such a colouring exists. In general, the chromatic number of a graph can be forced to be large
by its global structure rather than by its local structure; i.e., small hard to colour subgraphs.
Indeed, as shown by Erdos[9], for every c > 2 and N there is a graph which has chromatic
number c but all of whose subgraphs with at most N vertices have chromatic number 2.

Brooks’ Theorem[5] yields a family of graphs for which the chromatic number is deter-
mined by its local structure - by the size of it’s largest clique. The degree of v, deg(v), is the
number of vertices adjacent to v. A simple greedy colouring procedure (colour the vertices in
any order, using on v a colour not yet used on any of its neighbours) yields that the chromatic
number of a graph exceeds its maximum vertex degree by at most one. That is, using ∆(G)
to denote the maximum vertex degree in G, we have: χ(G) ≤ ∆(G) + 1. Brooks’ Theorem
determines when this bound is tight. It states that for ∆(G) ≥ 3, if χ(G) = ∆(G)+1 then G
contains a clique of order ∆(G)+1; i.e. for such graphs, the chromatic number is determined
by a clique. (The analagous result is not true for ∆(G) = 2 as the odd cycles show).

Reed[25] settled a conjecture of Beutelspacher and Herring[3], by showing that for ∆(G)
large enough, if χ(G) = ∆(G) then G has a clique of size ∆(G). Borodin and Kostochka[4]
conjectured that this is true as long as ∆(G) is at least nine.

It is natural to ask whether these results can be extended to show that for every k there
is a ∆k such that if ∆(G) ≥ ∆k and χ(G) = ∆(G) + 1 − k then G has a clique of size
∆(G)+1−k. In fact this conjecture fails for the next value of k, two. To see this consider a
graph obtained by adding all edges between a cycle of length five and a clique of size ∆− 4.
However, the results of this paper imply that for ∆(G) large enough, if χ(G) = ∆(G)−1 then
Gmust contain either a clique of size ∆(G)−1 or the graph described in the previous sentence
(see [12]). So for such graphs, while χ(G) is not determined by a clique on χ(G) vertices, it
is determined by something very close to a clique - by a subgraph on approximately χ(G)
vertices.

This leads us to ask when the chromatic number of a graph is determined by a subgraph
with approximately χ(G) vertices. Erdös’ result shows that this is not true for general graphs.
But the results of the past few paragraphs suggest that for large enough ∆, perhaps it is
true whenever χ(G) is sufficiently close to its upper bound of ∆(G)+1. A construction from
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Embden-Weinert et al[8] shows that it is not true for some graphs with χ(G) = ∆− d√∆e:
Definition: k∆ is the maximum integer k such that (k + 1)(k + 2) ≤ ∆. Note that√

∆− 1 > k∆ >
√
∆− 3.

Theorem 1 For every ∆ ≥ 2 and 2 ≤ c ≤ ∆ − 1 − k∆, there are arbitrarily large graphs
G with maximum degree ∆ and with χ(G) = c + 1 such that every proper subgraph H ⊂ G
satisfies χ(H) ≤ c.

In this paper, we prove that for large enough ∆, if χ(G) > ∆(G) + 1− k∆, then χ(G) is
indeed determined by a subgraph of size approximately χ(G); specifically by a subgraph of

size at most ∆(G) + 1 < χ(G) +
√
χ(G):

Theorem 2 There is an absolute constant ∆0 such that for any ∆ ≥ ∆0 and c ≥ ∆+1−k∆,
if G has maximum degree ∆ and if χ(G) = c+ 1 then G contains a subgraph H such that

(i) |H| ≤ ∆+ 1;

(ii) χ(H) = c+ 1.

We conjecture that Theorem 2 in fact holds for every ∆ (see Conjecture 6 below).

This leaves only the case c = ∆ − k∆. For some values of ∆, this case is as in Theorem
1 and for all others it is as in Theorem 2 but with a weaker upper bound on |H|. We state
this precisely in the next subsection, when we have developed the relevant machinery. Thus,
for large ∆, we determine precisely how close c must be to ∆ + 1 for c-colorability to be a
local rather than a global property. Conjecture 6 implies that this holds for every ∆.

We say a graph is `-critical if its chromatic number is ` but all of its proper subgraphs
can be (` − 1)-coloured. So Theorem 2 implies that for c ≥ ∆ + 1 − k∆ and ∆ large, all
(c+ 1)-critical graphs have bounded size while Theorem 1 says that for c ≤ ∆− 1− k∆ this
is not true. When c = ∆−k∆ then, roughly speaking, for most values of ∆, all (∆−k∆+1)-
critical graphs have size at most O(∆5/2). For some values of ∆, the (∆ − k∆ + 1)-critical
graphs can have arbitrary size, but the large ones all have a fairly simple structure.

We give the simple short proof of Theorem 1 in the next subsection. It is Theorem 2,
and the similar case c = ∆− k∆, on which we will have to spend the most effort.

This paper uses an approach which is, by now, standard in this area (see [22] for several
applications). It combines the semi-random method with a structural decomposition theorem
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introduced in [25]. As in many earlier papers, in order to apply the approach, we need to (i)
partition the graph into some small dense clique-like pieces and one large sparse subgraph;
(ii) analyze the properties of the dense sets in the partition of a minimal counterexample;
and (iii) apply an iterative semi-random colouring procedure which exploits these properties.
All parts of the analysis are more delicate than usual. The partition is more complicated
than in previous applications, the analysis in the second step is quite detailed and the order
in which the vertices are coloured in the third step must be carefully controlled.

1.2 Focussing on the threshold using reducers

We start by giving an argument from [8] where they essentially proved Theorem 1, although
they didn’t state it explicitly. At the same time, we present a class of subgraphs that they
used which will play a crucial role in this paper.

Suppose G has a uniquely c-colourable subgraph D such that only one colour class in
this unique colouring contains vertices with neighbours outside D. Clearly G is c-colourable
if and only if the graph obtained from G by deleting D and adding a vertex adjacent to all
the vertices of G −D that have a neighbour in D is c-colourable. In such a situation, this
new graph is the c-reduction of G via D and G is the c-expansion of the new graph via D.

Embden-Weinert et al[8] introduced a class of such subgraphs which have a special form.
We will call these subgraphs c-reducers:

Definition: A c-reducer consists of a clique C with c − 1 vertices and a stable set S such
that every vertex of C is adjacent to all of S but none of V (G)− S − C.

We often drop the “c” when its value is clear from context.

Definition: We say that a c-reducer D = (C, S) is deleteable if there are fewer than c
vertices of V (G)−D with a neighbour in S.

Any c-colouring of G − D for a deleteable c-reducer D of G, can be extended to a
c-colouring of the c-reduction of G by D, since the only uncoloured vertex in this graph
has fewer than c neighbours. Thus, G is c-colourable if and only if G with D deleted is
c-colourable. This fact explains our choice of terminology.

We would like to iteratively apply c-expansion to build larger and larger (c + 1)-critical
graphs of maximum degree ∆. Suppose then, that we apply one such expansion and thereby
construct a critical c-reducer D = (C, S) in a (c + 1)-critical graph of maximum degree
∆. The bound on the degrees of the vertices in C implies that |S| ≤ ∆ − c + 2. The
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bound on the degrees of the vertices in S implies that each such vertex can have at most
∆− c+1 neighbours outside D. Thus, the degree of the vertex we expanded can be at most
(∆− c+ 2)(∆− c+ 1). Furthermore, we have:

Observation 3 For c ≥ 3: if G is a (c + 1)-critical graph with maximum degree ∆, and
v is a vertex in G with degree at most (∆ − c + 2)(∆ − c + 1), then we can construct a
(c+ 1)-critical c-expansion of G with maximum degree at most ∆.

Proof First note that ∆ ≥ c in any (c+1)-critical graph. Now take a (c+1)-clique
C and a stable set S of size min{∆−c+2, deg(v)}, and join all of C to all of S. Delete v and
join every neighbour of v to a vertex in S so that each vertex in S is joined to at least one and
at most T = min{∆−c+1, c−1} neighbours of v. This is possible if |S| ≤ deg(v) ≤ |S|×T ;
the lower bound is trivial, and the upper bound follows from hypothesis when T = ∆−c+1.
When T < ∆− c+1, we have c−1 < ∆− c+1 and so c < 1

2
∆+1 and |S| = ∆− c+2 > 1

2
∆.

This yields |S| × T = |S|(c− 1) > ∆ ≥ deg(v) for c ≥ 3.

It is an easy exercise to verify that the resulting expansion is (c+ 1)-critical. 2

In the other direction, we have:

Observation 4 Every c-reduction of a (c+ 1)-critical graph is (c+ 1)-critical.

We omit the easy proof.

Proof of Theorem 1: Observation 3 implies that we can build larger and larger (c+1)-
critical graphs with maximum degree ∆ by repeatedly expanding a (c + 1)-clique provided
c ≤ ∆ and (∆ + 2− c)(∆ + 1− c) ≥ ∆; i.e. c ≤ ∆− 1− k∆. 2

On the other hand, if c ≥ ∆ + 1 − k∆ then (∆ − c + 2)(∆ − c + 1) ≤ k∆(k∆ + 1) <
∆+ 1− k∆ < c. It follows that for such values of c, we cannot build (c + 1)-critical graphs
via c-expansions since the c-reducer formed by any c-expansion is deleteable. This gives us
some hope that Theorem 2 might hold.

Finally reducers allow us to characterize for which values of ∆ there are arbitrarily large
(c+ 1)-critical graphs of maximum degree ∆ at the threshold c = ∆− k∆.

In order to do so, we apply the following strengthening of Theorem 2 which is the main
result of this paper:

Theorem 5 There is an absolute constant ∆0 such that for any ∆ ≥ ∆0 and c ≥ ∆ − k∆,
if G has maximum degree at most ∆, χ(G) = c+ 1 and either
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(a) c ≥ ∆+ 1− k∆; or

(b) G has no c-reducer

then there is some vertex v in G such that the subgraph induced by {v}∪N(v) has chromatic
number c+ 1.

We don’t specify ∆0; instead we implicitly take it to be large enough to satisfy the many
inequalities arising in our proof. We think that it can be omitted; i.e. that Theorem 5 holds
for every ∆:

Conjecture 6 The condition “∆ ≥ ∆0” can be removed from Theorem 5.

Before turning to what happens at the threshold, we note that Theorem 5 easily implies
Theorem 2.

Proof of Theorem 2: Let v be the vertex guranteed by Theorem 2 and let H be the
subgraph induced by {v} ∪N(v). Then |H| = deg(v) + 1 ≤ ∆+ 1. 2

We now show how Theorem 3 gives us a better understanding of what happens at the
threshold c = ∆−k∆. Every (c+1)-critical subgraph G with maximum degree ∆ arises from a
graph of size at most ∆+1 via a series of c-expansions using c-reducers. If (k∆+1)(k∆+2) = ∆
then this series can be unlimited. If (k∆ + 1)(k∆ + 2) ≤ ∆ − 1 this is not the case, as we
now explain.

Corollary 7 There exists ∆0 such that for every constant ∆ ≥ ∆0 and every 0 ≤ k ≤ ∆:

(a) For c ≥ ∆+ 1− k∆, every (c+ 1)-critical graph has size at most ∆+ 1.

(b) For c ≤ ∆− 1− k∆, there are arbitrarily large (c+ 1)-critical graphs.

(c) For c = ∆− k∆, every (c + 1)-critical graph can be formed by starting with a (c + 1)-
critical graph of size at most ∆ + 1 and then applying a sequence of c-expansions.
Furthermore:

(i) if (k∆ + 1)(k∆ + 2) ≤ ∆ − 1 then every (c + 1)-critical graph has size at most
(∆ + 1)2k∆;

(ii) if (k∆ + 1)(k∆ + 2) = ∆ then there are arbitrarily large (c+ 1)-critical graphs.
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Proof Parts (a,b) follow immediately from Theorems 2 and 1. For part (c): set
c = ∆−k∆ and consider a (c+1)-critical graph G. By Theorem 5, either G has a c-reducer,
or G has a vertex v with χ({v} ∪N(v)) = c+ 1. In the former case, G is a c-expansion of a
smaller (c+1)-critical graph, by Observation 4. In the latter case, since G is (c+1)-critical,
G = {v} ∪N(v) and so |G| ≤ ∆+ 1. This proves the first assertion of part (c).

To prove part (ii), begin with any (c + 1)-critical graph of maximum degree ∆ (eg. a
(c + 1)-clique), and repeatedly apply Observation 3 to expand on any vertex and obtain a
larger (c + 1)-critical graph. We can expand on a vertex so long as it has degree at most
(k∆+1)(k∆+2) and since this value is ∆, we can expand on any vertex. Thus, we can carry
out this procedure an arbitrary number of times.

To prove part (i), set c = ∆ − k∆ and consider a (c + 1)-critical graph G0. We will
prove a limit on how many times it can be expanded. Suppose G1 is a c-expansion of G0

replacing a vertex v by a reducer D with corresponding partition into a clique C and a stable
set S joined by all possible edges. Because G0 is (c + 1)-critical, it has minimum degree at
least c. So there are degG0

(v) ≥ c = ∆ − k∆ edges out of D in G1. By the properties of
a reducer, the number of such edges is at most |S|(∆ + 1 − c), and |S| ≤ ∆ + 2 − c. This
implies |S| = ∆ + 2 − c since (∆ + 1 − c)(∆ + 1 − c) = (k∆ + 1)2 < ∆ − k∆ − 1 < c.
Therefore every vertex of C has degree (|C| − 1) + |S| = (c − 2) + (∆ + 2 − c) = ∆ in G1.
Furthermore,

∑
w∈S deg(w) = |C||S| − degG0

(v). Therefore, defining the deficiency of v to
be def(v) = ∆− deg(v), we have:

∑

w∈S
def(w) = ∆|S|−|C||S|−degG0

(v) = (∆+1−c)(∆+2−c)−degG0
(v) > ∆−degG0

(v) = def(v).

Thus, if v has degree ∆ − 1, then every vertex of D has degree ∆ in G1 and no further
expansions are possible in this part of the graph. More generally, a simple inductive argument
yields that the number of vertices in the subgraph obtained from expanding v and then
recursively expanding the nodes in the reducer thereby obtained is at most (∆ + 1)def(v).
Thus, if we start with a (c+1)-critical graph with at most ∆+1 vertices, since this graph has
minimum degree at least c and hence total deficiency at most (∆ + 1)(∆− c) = (∆ + 1)k∆,
we can only expand until it has size (∆ + 1)2k∆. 2

In [12] (see also [11]) we use Corollary 7 to explicitly list all (c + 1)-critical graphs for
c ≥ ∆− 5 and ∆ ≥ ∆0.

The following observation, along with hypothesis (b) of Theorem 5, allows us to ignore
reducers in proving that theorem.
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Observation 8 If D = (C, S) is a non-deleteable reducer in a graph with maximum degree
∆, and if c ≥ ∆− k∆ then we must have c = ∆− k∆ and |S| = k∆ + 2.

Proof Since D is non-deleteable, there are at least c edges from S to G−D. Every
vertex in S has at most ∆−|C| = ∆−c+1 neighbours in G−D and by considering the degree
of a vertex in C, we have |S| ≤ ∆−c+2. Therefore (∆−c+1)(∆−c+2) ≥ c. If c ≥ ∆−k∆+1
then this yields k∆(k∆+1) ≥ ∆−k∆+1 and so (k∆+2)(k∆+1) ≥ ∆−k∆+1+2(k∆+1) > ∆
which violates the definition of k∆. Therefore c = ∆− k∆ and so |S| ≤ ∆− c+ 2 = k∆ + 2.
If |S| ≤ k∆+1 then we must have (k∆+1)(∆− c+1) ≥ c and so (k∆+1)(k∆+1) ≥ ∆−k∆
and thus (k∆ + 2)(k∆ + 1) ≥ ∆− k∆ + (k∆ + 1) > ∆ which again violates the definition of
k∆. 2

1.3 Algorithmic Implications

Another corollary of our main theorem is that for every constant ∆ ≥ ∆0, we determine
(under the hypothesis that P 6= NP ) the precise values of c for which one can test in
polynomial time whether a graph of maximum degree ∆ is c-colourable. This is well-known
to be trivial for c ≤ 2. Embden-Weinert et al[8] used their construction (see Section 1.2) to
prove that for 3 ≤ c ≤ ∆−k∆−1, we cannot test for c-colourability of graphs with maximum
degree ∆ in polytime unless P = NP . On the other hand, Theorem 5 easily implies that
for every constant ∆ ≥ ∆0 and every c ≥ ∆ − k∆, there is a linear time deterministic
algorithm to test whether graphs of maximum degree ∆ are c-colourable. Furthermore,
there is a polynomial time deterministic algorithm that will produce a c-colouring whenever
one exists.

For the case where ∆ is not constant, the threshold for polynomial testability of c-
colouring is (probably) higher: at ∆ − Θ(log∆). We will give the formal statements and
proofs of these results in Section 11.

2 A Preliminary Proof Sketch

Our proof combines probabilistic arguments with a structural decomposition.
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2.1 The Probabilistic Method

The Lovasz Local Lemma is a powerful tool which allows us to prove the existence of colour-
ings whose local behaviour is that which we would expect from a random colouring. We
introduce it in the next section and illustrate its power by proving the following result
(which is a key part of the proof of our main theorem).

Lemma 9 There exists a ∆0 such that for ∆ ≥ ∆0, if H has max degree ∆ and each of its
vertices either

(i) has fewer than ∆− 3
√
∆ neighbours; or

(ii) has at least 900∆3/2 non-adjacent pairs of neighbours

then there is a ∆− 2
√
∆ colouring of H.

This sort of lemma is, by now, standard (see eg. Section 10.3 of [22]). To prove it, we
actually prove the following result from which it easily follows:

Lemma 10 There exists a ∆0 such that for every ∆ ≥ ∆0, and every graph H of maximum
degree ∆ the following holds:

There is a ∆−2
√
∆ colouring of a subgraph of H such that for every vertex v of H which

has at least 900∆3/2 non-adjacent pairs of neighbours:

there are at least 2
√
∆+ 1 colours which appear on two neighbours of v. (1)

Lemma 10 yields Lemma 9 as follows:

Proof of Lemma 9 We use the same ∆0 as in Lemma 10. We apply Lemma 10 to obtain
a partial colouring of H. We then attempt to extend our partial colouring to a ∆ − 2

√
∆

colouring of H by greedily colouring the uncoloured vertices of H in any order. We claim
that throughout this process at most ∆ − 2

√
∆ − 1 colours appear in the neighbourhood

of any vertex, and hence this greedy procedure will succeed. Our claim clearly holds for
vertices of degree less than ∆ − 3

√
∆. It holds for the other vertices by the hypothesis of

Lemma 9 and the properties of the partial colouring returned by Lemma 10. 2

To prove Lemma 10, we analyze the partial colouring in which each vertex is randomly
assigned a uniform colour from {1, 2, ...,∆ − 2

√
∆}, where these choices are independent,
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and retains the colour provided it is assigned to none of its neighbours. We show that the
probability that (1) fails for a specific v in this random colouring is very small. The Local
Lemma then allows us to show that there is a colouring where this local property holds for
every v.

We leave the details of the proof of Lemma 10 to the next section, closing this subsection
with two remarks.

The colourings guaranteed to exist only look like a random colouring locally. In a truly
random colouring of a large enough graph, although most vertices would satisfy (1), there
would with high probability be some vertex on which (1) would fail. For this reason, we call
both the colourings and the process used to create them pseudorandom.

To prove that (1) holds for v with high probability we consider the random variable
counting the number of colours appearing twice in the neighbourhood of v. We compute
the expected value of this random variable and then use a concentration inequality to show
that the variable is close to its expected value with high probability. Such concentration
inequalities form part of our probabilistic toolbox presented in more detail in Section 3.

2.2 The Structural Decomposition

Our key structural result implies that every large (c+1)-critical graph either has a subgraph
which is quite similar to a deleteable c-reducer, or is easy to handle using the technique of
the previous section. We start with two definitions:

Definition: D is a c-near-reducer if it consists of a clique C with c−1 vertices, and a stable
set T with ∆− c+1 vertices such that every vertex of C is joined to every vertex of T . Note
that this implies that each vertex of C has at most one neighbour outside of D.

Definition: D is a c-quasi-reducer in G if it consists of a clique C with between c and
∆− 108

√
∆ vertices and a set of l ≤ c− |C| stable sets T1, ..., Tl such that for each Ti:

(a) the set of vertices outside D which have a neighbour in Ti is less than c;

(b) if |Ti| > 2 then every vertex of Ti sees all of C; and

(c) if |Ti| = 2 then either

(i) there is z ∈ C such that both vertices of Ti see all of C − z, or
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(ii) one vertex of Ti sees all of C, and the other vertex of Ti sees at least 2∆
3

of the
vertices of C.

Again, we often drop the “c” when its value is clear from context. Note that every
c-reducer is a c-near-reducer and every c-near-reducer is a c-quasi-reducer.

Lemma 11 There is a ∆0 such that for ∆ ≥ ∆0 and c ≥ ∆− k∆ the following holds:

If G is a (c+1)-critical graph of maximum degree at most ∆ which has no vertex that is
adjacent to all other vertices, then G can be partitioned into X1, ..., Xt, S such that

(a) each Xi induces a quasi-reducer, and

(b) each vertex of S satisfies hypothesis (i) or (ii) of Lemma 9.

Remark: Note that any (c+1)-critical graph with more than ∆+1 vertices cannot have
a vertex that is adjacent to all other vertices, and so we can apply Lemma 11 to it.

We present this result in Section 4, where we strengthen it via a sequence of lemmas
which imposes increasingly stronger conditions on the quasi-reducers of the decomposition.
We close this section with a few more definitions.

Definition: An internal neighbour of v ∈ Xi is a neighbour of v that is also in Xi. All
neighbours of v in G−Xi are external neighbours. For a stable set ρ of Xi, we say a vertex
u is an (internal/external) neighbour of ρ if it is an (internal/external) neighbour of a vertex
in ρ.

2.3 Putting It All Together

Our approach to proving Theorem 5 is straightforward. We fix ∆ ≥ ∆0 and c ≥ ∆ − k∆
and let G be a minimum counterexample with respect to ∆, c; i.e. a counterexample with
the smallest possible number of vertices. G clearly satisfies the conditions of Lemma 11,
so we can apply that lemma to obtain a decomposition of G. Applying Lemma 9, we can
c-colour the subgraph of G induced by S. We would now like to extend this colouring to the
quasi-reducers, thereby completing it.

In doing so, we would like to mimic our approach for deleteable c-reducers from Section
1.2. As in that case, we contract each stable set into a single vertex and colour these vertices
before we colour the cliques of the quasi-reducers.
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The difficulty is that the vertices in the clique of a quasi-reducer may have neighbours
outside the quasi-reducer. Indeed a quasi-reducer could simply consist of a clique C of size
c. Each of its vertices then could have ∆ − c external neighbours. If there was a colour i
appearing on an external neighbour of every vertex of C, then we could not use this colour
on C and hence would need at least c+ 1 colours to complete the colouring.

As this specific example illustrates, in choosing our intial colouring of S, and in extending
it, we need to take care that for each clique of a quasi-reducer, no colour which does not
appear in the quasi-reducer is used on the external neighbourhood of a large majority of the
vertices in the clique. In order to do so we:

(A) Massage the graph by adding edges between pairs of vertices that we want to get
different colours and contracting a stable set into a vertex if we want its members to get
the same colour. This results in a graph F , such that a c-colouring of F easily yields a
c-colouring of G.

(B) Choose our initial colouring of S and its extension using the probabilistic method. We
can thereby ensure that its local behaviour is what we would expect of a random colouring.
Here, we focus on one specific aspect of the behaviour: for each clique of a quasi-reducer and
colour i, how many vertices of the clique have an external neighbour of colour i?

(C) Interleave the colouring of the big stable sets of the quasi-reducers with the colouring
of the cliques within them. The reason for doing so will become clear later. For the moment,
the reader may choose to ignore this last complication. Doing so will only aid her intuition
as to the structure of the proof.

More specifically, we prove Theorem 5 by combining two lemmas:

Lemma 12 For any minimum counterexample G to Theorem 2, we can find a graph F of
maximum degree 108∆, whose c-colourability implies the c-colourability of G, and a partition
of the vertices of F into S,B,A1, ..., At such that:

(a) Every Ai is a clique with c− 108
√
∆ ≤ |Ai| ≤ c.

(b) Every vertex of Ai has at most 108
√
∆ neighbours in F − Ai.

(c) There is a set Alli ⊆ B of c−|Ai| vertices which are adjacent to all of Ai. Every other
vertex of F − Ai is adjacent to at most 3∆

4
+ 108

√
∆ vertices of Ai.

(d) Every vertex of S either has fewer than ∆ − 3
√
∆ neighbours in S or has at least

900∆
√
∆ non-adjacent pairs of neighbours within S.
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(e) Every vertex of B has fewer than c−√
∆+ 9 neighbours in F − ∪jAj.

(f) If a vertex v ∈ B has at least c − ∆
3
4 neighbours in F − ∪jAj, then there is some i

such that: v has at most c−√
∆+ 9 neighbours in F −Ai and every vertex of Ai has

at most 30∆
1
4 neighbours in F − Ai.

(g) For every Ai, every two vertices outside of Ai∪Alli which have at least 2∆
9
10 neighbours

in Ai are joined by an edge of F .

Lemma 13 Any graph F with a decomposition {S,B,A1, ..., At} as in Lemma 12, has a
c-colouring.

These yield our main theorem:

Proof of Theorem 5: We choose G to be a minimum counterexample to Theorem 5.
Lemmas 12 and 13 imply that χ(G) ≤ c, which is a contradiction. 2

In the next section, we will present our probabilistic tools. We give the proof of Lemma
12 in Sections 4 and 5. We prove Lemma 13 using a pseudorandom iterative colouring
procedure in Sections 6 to 10. We close by discussing algorithmic implications in Section 11.

3 The Probabilistic Method and a First Application

3.1 Some Powerful Tools

The following lemma has a three line proof but nevertheless is extremely powerful and has
had scores of applications. One of its applications is in this paper.

The Lovasz Local Lemma[10] Let A1, ..., An be a set of random events so that for each
1 ≤ i ≤ n:

(i) Pr(Ai) ≤ p; and

(ii) Ai is mutually independent of all but at most d other events.

If pd ≤ 1
4
then Pr(A1 ∪ ... ∪ An) > 0.
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The lemma is powerful because it allows us to deduce global results via a local analysis.
The best way to explain this is via an example. We give one in the next subsection, where
we prove Lemma 10.

The binomial random variable BIN(n, p) is the sum of n independent 0 − 1 random
variables each of which is equal to 1 with probability p. The following special case of
Chernoff’s original bound[6] can be found in [22]:

The Chernoff Bound For any 0 < t ≤ np:

Pr(|BIN(n, p)− np| > t) < 2e−t2/3np.

The following is a simple corollary of Hoeffding’s Inequality[14] or Azuma’s Inequality[1],
as described in [22]:

Simple Concentration Bound: Let X be a non-negative random variable determined
by the independent trials T1, ..., Tn. Suppose that for every set of possible outcomes of the
trials, we have:

(i) changing the outcome of any one trial can affect X by at most c.

Then for any 0 ≤ t ≤ Exp(X), we have

Pr(|X − Exp(X)| > t) ≤ 2e−
t2

2c2n .

Talagrand’s Inequality requires another condition, but often provides a stronger bound
when Exp(X) is much smaller than n. Rather than providing Talagrand’s original statement
from [27], we present the following useful reworking, which we prove in an appendix:

Talagrand’s Inequality Let X be a non-negative random variable determined by the in-
dependent trials T1, ..., Tn. Suppose that for every set of possible outcomes of the trials, we
have:

(i) changing the outcome of any one trial can affect X by at most c; and

(ii) for each s > 0, if X ≥ s then there is a set of at most rs trials whose outcomes certify
that X ≥ s.
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Then for any t ≥ 0, we have

Pr(|X − Exp(X)| > t+ 20c
√
rExp(X) + 64c2r) ≤ 4e

− t2

8c2r(Exp(X)+t) .

McDiarmid extended Talagrand’s Inequality to the setting where X depends on indepen-
dent trials and permutations, a setting that arises often in this paper. Again, we present
a useful reworking rather than the original inequality. The derivation can also be found in
the appendix. Talagrand[27] derived a similar result for the case where there is exactly one
permutation.

In the context of this inequality, a choice means either (a) the outcome of a random trial
or (b) the position that a particular element gets mapped to in a permutation.

McDiarmid’s Inequality[19] Let X be a non-negative random variable determined by in-
dependent trials T1, ..., Tn and independent permutations Π1, ...,Πm. Suppose that for every
set of possible outcomes of the trials and permutations, we have:

(i) changing the outcome of any one trial can affect X by at most c;

(ii) interchanging two elements in any one permutation can affect X by at most c; and

(iii) for each s > 0, if X ≥ s then there is a set of at most rs choices whose outcomes
certify that X ≥ s.

Then for any t ≥ 0, we have

Pr(|X − Exp(X)| > t+ 25c
√
rExp(X) + 128c2r) ≤ 4e

− t2

32c2r(Exp(X)+t) .

Note that in both Talagrand’s Inequality and McDiarmid’s Inequality, if t ≥ 50c
√
rExp(X))+

256c2r then by substituting t/2 for t in the above bounds, we obtain the more concise:

Pr(|X − Exp(X)| > t) ≤ 4e
− t2

32c2r(Exp(X)+t) (2)

and for McDiarmid’s Inequality:

Pr(|X − Exp(X)| > t) ≤ 4e
− t2

128c2r(Exp(X)+t) . (3)

Those are the bounds that we will usually use.
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3.2 Proof of Lemma 10

Remark: The arguments in this section have appeared in several other papers. The reader
who is familiar with, eg., [25, 22] may choose to skip to the next section.

We obtain a partial colouring of H as follows:

1. We activate each vertex of H with probability 9
10
.

2. Each activated vertex inH is assigned a uniformly random colour from {1, ..., c}. These
choices are made independently.

3. We uncolour every vertex that has a neighbour with the same colour.

We will apply the Lovasz Local Lemma to prove that with positive probability the resul-
tant colouring satisfies condition (1) of Lemma 10. For each v ∈ H with at least 900∆3/2 non-
adjacent pairs of neighbours, define E1(v) to be the event that v has fewer than 3

√
∆ colours

that appear at least twice in its neighbourhood. We will prove below that Pr(E1(v)) ≤ ∆−10.

It is straightforward to check that each E1(v) is mutually independent of all the E1(w) for
vertices w at distance more than 4 from v in H. Thus, each event is mutually independent of
all but fewer than ∆4 other events. Thus, our lemma follows from the Lovasz Local Lemma
since ∆−10 ×∆4 < 1

4
.

We now fix a v ∈ H and bound Pr(E1(v)). We let Ω be a collection of 900∆3/2 pairs of
non-adjacent neighbours of v. We consider the random variable Y which counts the number
of pairs in Ω which (i) are both assigned the same colour, (ii) both retain that colour, and
(iii) are the only two vertices in N(v) that are assigned that colour. Clearly Y is a lower
bound on the number of colours appearing at least twice in N(v).

The probability that some non-adjacent pair u,w ∈ N(v) satisfies (i) is 9
10
× 9

10
× 1

c
. The

total number of neighbours of v, u, w in H is at most 3∆. Given that they satisfy (i), u,w
also satisfy (ii) and (iii) if none of those vertices are activated and assigned the colour of
u, v, and this occurs with probability at least (1− 1

c
)3∆. Therefore,

Exp(Y ) ≥ 900∆3/2 × 81

100c
× exp(−3∆/c) > 4

√
∆.

So if E1(v) holds then Y must differ from its mean by at least
√
∆.

We will apply Talagrand’s Inequality to show that Y is highly concentrated. To do so,
we consider two related variables: Y1 is the number of colours assigned to both members of
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at least one pair in Ω; Y2 is the number of colours that are (i) assigned to both members
of at least one pair in Ω and (ii) also assigned to one of their neighbours or to at least one
other vertex in N(v). Note that Y = Y1−Y2. Thus, if E1(v) holds then either Y1 or Y2 must
differ from its mean by at least 1

2

√
∆. Note that:

Exp(Y2) ≤ Exp(Y1) ≤ c× (900∆3/2)×
(
9

10

)2 (1
c

)2

< 1200
√
∆.

If Y1 ≥ s then there is a set of at most 4s trials whose outcomes certify that Y1 ≥ s,
namely the activation and colour assignment for s pairs of variables. Also, changing the
outcome of any individual random trial can only affect Y1 by at most 2 since at worse it
affects whether Y1 counts the old colour and the new colour of a vertex whose colour is
changed. Therefore, applying (2) with c = 2, r = 4 yields:

Pr(|Y1 − Exp(Y1)| > 1

2

√
∆) ≤ 4 exp

(
−1

4
∆/(32× 4× 4× 1201

√
∆)

)
<

1

2
∆−10.

Similarly, if Y2 ≥ s then there is a set of at most 6s trials whose outcomes certify that
Y2 ≥ s: the activation and colour assignment for s pairs of variables and for each pair the
activation and assignment of the same colour to a neighbour of one member of the pair or
to another member of N(v). Also, changing the outcome of any individual random trial can
only affect Y2 by at most 2 for the same reason as for X1. Therefore, applying (2) with
c = 2, r = 6 yields:

Pr(|Y2 − Exp(Y2)| > 1

2

√
∆) ≤ 4 exp

(
−1

4
∆/(32× 4× 6× 1201

√
∆)

)
<

1

2
∆−10.

Therefore, |Pr(Y − Exp(Y )| > √
∆ ≤ ∆−10. 2

4 The Structural Decomposition

In this section we prove Lemma 11. In addition, we show that in a minimum counterexample
to Theorem 5, none of the Xi can be reducers or near-reducers. Thus we assume throughout
that G is (c+ 1)-critical and contains no vertex that is adjacent to all the other vertices.

We start with a decomposition introduced by the second author in [25]. The following
result is essentially Lemma 15.2 of [22], and actually holds for all graphs of maximum degree
∆, for any ∆.
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Definition: We set d = 106
√
∆ and, following Section 15.2 of [22], call a vertex sparse if it

has at most
(
∆
2

)
− d∆ edges in its neighbourhood.

Lemma 14 There is a partition of V (G) into sets X1, ..., Xt and S such that:

(a) ∀i, ∆− 106
√
∆ ≤ |Xi| ≤ ∆+ 106

√
∆;

(b) ∀i, there are at most 107∆3/2 edges from Xi to G−Xi;

(c) ∀i,a vertex is adjacent to at least 3∆
4

vertices of Xi iff it is in Xi;

(d) every vertex in S is sparse.

We note that every sparse vertex satisfies (i) or (ii) of Lemma 9. Thus, to prove Lemma
11 given Lemma 14, it is enough to prove that each Xi is a quasi-reducer. To begin, we show
that under this hypothesis each Xi has a c-colouring. We do so by studying a maximum
matching in Xi, as was done in [25].

Lemma 15 For every i, χ(Xi) ≤ c.

Proof Suppose Xi is not c-colourable. Since G is (c + 1)-critical, we must have
G = Xi. We let M be a maximum matching in G, chosen subject to this to maximize the
sum of the degrees (in G) of the vertices within it. M has fewer than |G| − c edges as
otherwise, we can colour G with c colours using the edges of M as the only non-singleton
colour classes. Thus, by Lemma 14(a), M has at most 107

√
∆ edges, and the clique C

induced by the vertices of G not in M has at least ∆− 107
√
∆ vertices.

By the maximality of M , for every edge of M , either (i) one endpoint is adjacent to
every vertex in C or (ii) for some z in C both endpoints of M are adjacent to every vertex
in C − z. Since G is (c + 1)-critical, it has minimum degree at least c, and so each vertex
in M is non-adjacent to at most (|G| − c) vertices. It follows that for each edge of M , the
endpoints have a total of at least 2|C| − (|G| − c) neighbours in C and so there are at least
2|C||M | − |M |(|G| − c) edges from C to M . Thus the average degree of the vertices in C is

at least |G| − 1− |M |(|G|−c)
|C| .

By our bounds on the size of M and G, if ∆ is large enough, this is at least |G|−1−1015.
Thus, |G| ≤ ∆+1+ 1015. This bound on |G| implies that both |M | and |G| − c are at most
∆+1+1015−c ≤ √

∆+1016. By exploiting the bound from the last paragraph on the number
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of edges from M to C, we obtain that for large enough ∆, the average degree of the vertices
in C is at least 2|M |− |M |(|G|−c)

|C| > |G|−3. It follows that G has at most ∆+2 vertices. Since

|M | ≤ |G|−(c+1) ≤ ∆+1−c ≤ k∆+1 this yields that |C| ≥ c+1−|M | ≥ c−k∆ ≥ ∆−2k∆.

We now count the non-edges between C and the vertices of M again, being a bit more
careful. Consider some edge e = uv of M . The number of edges from {u, v} to C is at
least 2|C| − 2 in case (ii) above, but can be smaller in case (i) if u is adjacent to all of
C and v is adjacent to as much of G − C as possible. Since v is non-adjacent to u, v is
adjacent to at least deg(v)− 2|M |+2 ≥ c− 2|M |+2 vertices in C. Hence there are at most
|C| + 2(|M | − 1) − c ≤ |G| − c − 2 non-edges between any edge of M and C. So, letting
E(C,M) be the number of nonedges between C and V (M), we have:

|E(C,M)| ≤ |M |(|G|−c−2) ≤ (k∆+1)k∆ ≤ (k∆+1)(k∆+2)−2k∆−2 ≤ ∆−2k∆−2 < |C|.

Thus, some vertex v ∈ C is adjacent to all of V (M) and so v is adjacent to all vertices in G
(other than v), thus contradicting the hypothesis of Lemma 11. 2

We next prove that in any c-colouring of an Xi, the majority of the colour classes are
singletons which together form a clique.

Lemma 16 For each i, G[Xi] has no matching of size d102√∆e.

Proof Suppose that M is a matching of size d102√∆e in G[Xi]. Let R be the
unmatched vertices in Xi; by Lemma 14(a), ∆ − 106

√
∆ < |R| < ∆ + 106

√
∆. For each

pair u, v that are matched in M , the number of neighbours of u in Xi plus the number of
neighbours of v in Xi is at least 3∆/2, by Lemma 14(c). Thus there are at least 3∆/2 −
4|M |−|R| > |R|/3 vertices in R that are adjacent to both of u, v. So on average, a vertex of R
is adjacent to both members of at least |M |/3 pairs. This implies that at least |R|/5 > ∆/10
members of R are adjacent to both members of at least |M |/10 pairs. Let Z be ∆/10 such
vertices in R.

Any vertex of R−Z that is adjacent to less than half of Z must have at least ∆− (|Xi|−
1
2
|Z|) > ∆/25 neighbours outside of Xi. Thus, Lemma 14(b) implies that there are at least

∆/2 vertices in R− Z which are adjacent to at least half of Z. Let Y be a set of ∆/2 such
vertices.

Since G is (c+1)-critical, we can c-colour G−Xi. We will extend that c-colouring to Xi

greedily as follows, thus obtaining a contradiction.
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1. Colour the vertices of M , assigning the same colour to both members of each matched
pair. This is possible because, by Lemma 14(c), each pair has at most ∆/2 + |M | < c
previously coloured neighbours.

2. Colour the vertices ofXi−Y−Z−M . This is possible since each such vertex has at most
∆/4 neighbours outside of Xi (by Lemma 14(c)) and at most |Xi| − |Z| − |Y | < ∆/2
previously coloured neighbours in Xi.

3. Colour the vertices of Y . This is possible since each vertex of Y has at least 1
2
|Z| ≥

∆/20 uncoloured neighbours and hence at most 19∆/20 < c coloured neighbours.

4. Colour the vertices of Z. This is possible since each vertex of Z has at least |M |/10 ≥
10
√
∆ colours that appear twice in its neighbourhood, and thus has at most ∆ −

10
√
∆ < c colours appearing in its neighbourhood.

2

We now describe how to construct a particular c-colouring of each Xi, which will demon-
strate that Xi is a quasi-reducer. There are two cases.

Construction

Case 1: G[Xi] has a matching of size at least |Xi| − c.

Let M be a maximum matching in G[Xi]. Each edge of M forms a colour class of size 2.
The remaining vertices are singleton colour classes.

Case 2: G[Xi] has no matching of size at least |Xi| − c.

Note that |Xi| > c or else we would trivially be in Case 1. This, plus the fact that
χ(G[Xi]) ≤ c, means that we can take a colouring of G[Xi], which uses exactly c colours. For
each j let λj be the number of colour classes of size j. Note that, since |Xi| ≤ ∆+ 106

√
∆

(by Lemma 14(a)) and since c ≥ ∆− k∆ > ∆−√
∆+1, we can assume that λj = 0 for each

j > (106 + 1)
√
∆.

We choose our colouring to be optimal with respect to the following criteria amongst all
colourings using exactly c colours.

1. First, λ1 is as small as possible.

2. Second, subject to 1, the sequence λ108
√
∆, ..., λ2 is lexicographically minimum.
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End of Construction

Definition: Let Ci denote the set of colour classes in Xi of size 1.

We now use these colourings to show that each Xi is a quasi-reducer with clique Ci and
whose stable sets are the colour classes of size at least two. We will need:

Observation 17 If our colouring was constructed via Case 2, then there was at least one
colour class of size greater than 2.

Proof If every colour class has size at most 2, then the colour classes of size 2 form
a matching in G[Xi] of size exactly |Xi| − c; this would put us in Case 1. 2

Observation 17 implies:

Lemma 18 Ci is a clique in G of size at least ∆− 2× 106
√
∆.

Proof First we show that Ci is a clique in G. This is true if we carry out the
reduction described in Case 1, since M is a maximum matching and |M | ≤ 102

√
∆ by

Lemma 16. So we can assume that we carry out the reduction of Case 2. By Observation 17,
there is at least one colour class ρ of size at least 3. Suppose that u, v ∈ Ci are not adjacent.
Then by making {u, v} a colour class and by splitting ρ into 2 colour classes, we obtain a
colouring using exactly c colours and with fewer classes of size 1. Therefore Ci is a clique.

Note that if we performed the reduction of Case 2 then since all classes outside of Ci have
size at least two, and since we have exactly c colour classes, we have Ci+2(c−|Ci|) ≤ |Xi| ≤
∆+106

√
∆ (by Lemma 14(a)). So Ci ≥ 2c− (∆+106

√
∆) > ∆− 2× 106

√
∆. On the other

hand, if we performed the reduction of Case 1 then by Lemma 16, |Ci| ≥ |Xi|−2×102
√
∆ >

∆− 2× d106√∆e (by Lemma 14(a)). 2

We also have:

Lemma 19 Every vertex in Ci is adjacent to every vertex in any colour class of Xi that has
size at least 3.

Proof Suppose that v ∈ Ci is not adjacent to u ∈ ρ where ρ is a colour class of size
at least 3. Thus we applied Case 2 of our construction to Xi. By making {u, v} a colour
class and ρ− u a colour class, we obtain a colouring using exactly c colours and with fewer
classes of size 1, thus contradicting our choice of the colouring of Xi. 2
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Lemma 20 Suppose that {u, v} is a colour class. Then either

(i) there is some x ∈ Ci such that u, v are both adjacent to all of Ci − x; or

(ii) one of {u, v} is adjacent to all of Ci, and the other is adjacent to all but at most
∆
4
+ 107

√
∆ vertices of Ci.

Proof Case A: One of the vertices is adjacent to all of Ci; w.l.o.g. assume it is u.
By Lemma 14(c), v is adjacent to at least 3∆

4
vertices in Xi. At most |Xi| − |Ci| < 107

√
∆

(by Lemmas 14(a) and 18) of them are not in Ci. This yields (ii), since |Ci| ≤ ∆.

Case B: There are x, y ∈ Ci so that u is not adjacent to x and v is not adjacent to y.
If x 6= y then we know that we did not perform Case 1 of the reduction since replacing uv
by ux and vy would yield a matching larger than M . So by Observation 17, there must be
a colour class ρ of size at least three in the colouring. But by making {u, x} and {v, y} two
colour classes, and splitting ρ in two, we obtain a colouring using c colours with fewer classes
of size 1. Thus we must have x = y and so (i) holds. 2

Lemmas 18, 19 and 20 establish that Xi satisfies most of the definition of a quasi-reducer.
All that remains is to bound the number of external neighbours of the classes of size at least
two. We will need the following two lemmas.

Lemma 21 Consider any two colour classes ρ1, ρ2 where |ρ1| − 2 ≥ |ρ2| ≥ 2. Then every
vertex in ρ1 has at least one neighbour in ρ2.

Proof Suppose that v ∈ ρ1 has no neighbour in ρ2. Then by moving v from ρ1 to
ρ2, we obtain a colouring using exactly c colours in which the sequence λ(106+1)

√
∆, ..., λ2 is

lexicographically smaller, thus contradicting our choice of the colouring in our construction.
2

Recall from our construction that λ` is the number of colour classes of size ` in Xi.

Lemma 22 For any Xi that has a colour class of size at least 3:

∑

`≥3

(`− 1)λ` ≤ ∆− c+ 1− 2

3
λ2.
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Proof By Lemma 17, we know that |Ci| ≥ ∆− 2× 106
√
∆. So, by Lemma 20, The

number of edges between Ci and a colour class of size 2 is at least |Ci|(2− ∆
4
−2×106

√
∆) >

5
3
|Ci|. By Lemma 19, every vertex of Ci is adjacent to every member of every colour class

of size greater than 2. Lemma 18 implies that every vertex of Ci is also adjacent to every
other vertex of Ci. Combining these results implies that the average degree of the vertices
of Ci in G[Xi] is at least |Ci| − 1 + 5

3
λ2 +

∑
`≥3 `λ` ≤ ∆, since the average degree of a vertex

in Ci is at most ∆.

Since there is a colour class of size at least 3, we are in Case 2 of the construction. So
|Ci| +∑

`≥2 λ` = c The lemma follows by subtracting this inequality from the previous one.
2

Lemmas 21 and 22 allow us to bound the sizes of the colour classes:

Lemma 23 For any Xi for which we applied Case 2 of the construction, there is no colour
class of size greater than ∆− c+ 2. Furthermore, if there is a colour class of size ∆− c+ 1
then Xi is a near-reducer and if there is a colour class of size ∆− c+2 then Xi is a reducer.

Proof If there is a colour class of size at least ∆ − c + 2, then since there are c
colour classes in total, applying Lemma 22, we obtain that this is the only colour class of
size exceeding 1. By Lemma 19 this implies that Xi is a c-reducer.

Assume there is a colour class ρ of size ∆ − c + 1. By the preceding paragraph, we can
assume that there is no colour class of size at least ∆− c+ 2. So since we applied Case 2 of
the construction, we must have |ρ| ≥ 3. By Lemma 22 either this is the only colour class of
size exceeding 1 or there is one other such colour class and it has size 2. By Lemma 19, if Xi

is not a near-reducer then there is such a colour class ρ′ of size 2. By Lemma 20, and the fact
that |Ci| ≥ 2∆

3
(by Lemma 18), there is a set Z of at least ∆

4
vertices of Ci which see all of ρ′.

By Lemma 19, these vertices also see all of ρ. If |ρ| > 3 then Lemmas 19 and 21 imply that
every vertex in ρ has at least c− 1 neighbours in Xi and hence at most ∆− c+1 neighbours
outsideXi. It follows that there are at most (∆−c+1)(∆−c+1) ≤ (k∆+1)2 ≤ ∆−k∆−1 < c
vertices of G − Xi adjacent to vertices of ρ. If |ρ| = 3 then Lemma 19 implies that every
vertex in ρ has at least c − 2 neighbours in Xi, and so there are at most 3(∆ − c + 2) < c
vertices of G−Xi adjacent to vertices of ρ.

Since G is (c+ 1)-critical, we can c-colour G−Xi. We extend this to a c-colouring of G
as follows: (a) First colour all of ρ with a colour not appearing on any of the fewer than c
vertices of G − Xi adjacent to ρ. (b) Then colour the two vertices of ρ′ with a colour not
appearing on any of their at most 2× ∆

4
neighbours in G−Xi (by Lemma 14(c)) nor on ρ.
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(c) Next colour all of Ci−Z which is possible since each vertex in this set has ∆
4
uncoloured

neighbours in Z. (d) Finally colour Z which is possible since each vertex of Z sees all the
∆ − c + 3 vertices of ρ ∪ ρ′ and those are coloured using two colours. This contradiction
implies the desired result. 2

And finally we bound the size of the external neighbourhoods of the colour classes of
size at least two. Parts (a,b) of the following lemma are enough to prove that Xi is a
quasi-reducer. The remaining parts will be used in the proof of Lemma 12.

Lemma 24 (a) If a colour class is not the unique largest colour class in Xi, then it has
at most ∆

2
+ 10

√
∆ external neighbours.

(b) If Xi is not a reducer or near-reducer then every colour class ρ of Xi, has at most
c−√

∆+ 3 external neighbours.

(c) If Xi is not a reducer or near-reducer and there is a colour class ρ of Xi with more
than c− 108

√
∆ external neighbours then |Ci| ≥ c− 2× 108 and each vertex of Ci has

at most 3× 108 external neighbours.

(d) If Xi is not a reducer or near-reducer and there is a colour class ρ of Xi with more
than c − 2

√
∆ + 3 external neighbours then |Ci| = c − 1 and each vertex of Ci has at

most 5 external neighbours.

(e) If Xi is not a reducer or near-reducer and there is a colour class ρ of Xi with more
than c− 2∆3/4 external neighbours then |Ci| ≥ c− 5∆1/4 and each vertex of Ci has at
most 8∆1/4 external neighbours.

Proof We first prove (a). Every vertex v which is a singleton colour class has at
most ∆

4
external neighbours by Lemma 14(c) and hence satisfies (a).

If |ρ| = 2 then by Lemma 20, at least one member of ρ has at least |Ci|−1 > ∆−107
√
∆

(by Lemma 18) neighbours within Xi and thus at most 107
√
∆ external neighbours. By

Lemma 14(c), the other member of ρ has at most ∆
4
external neighbours. Thus they have

a total of at most ∆
4
+ 107

√
∆ external neighbours which is less than ∆

2
for ∆ sufficiently

large. So any such colour class satisfies (a).

So we assume |ρ| ≥ 3. By Lemma 19, every vertex of ρ sees all of Ci. So we know
that there are at most |ρ|107√∆ edges from ρ to vertices outside Xi. So we are done unless
|ρ| > 1

2×107

√
∆. Suppose that there are j colour classes (including ρ) of size at least |ρ| − 1.
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By Lemma 22, j(|ρ|−2) ≤ ∆−c+1 and so |ρ| ≤ (∆−c+1+2j)/j and j ≤ ∆−c+1 ≤ √
∆.

By Lemmas 19 and 21 each vertex in ρ is adjacent to a member of each of the c− j colour
classes of size less than |ρ| − 1 and so has at most ∆− c+ j external neighbours. Therefore,
the number of external neighbours of ρ is at most (∆ − c + j)(∆ − c + 1 + 2j)/j. For j
between 2 and

√
∆, this is easily seen to be at most 1

2
∆+ 10

√
∆ since c ≥ ∆−√

∆+ 2. If
j = 1 then ρ is the unique largest colour class, and so this finishes the proof of part (a).

We turn now to (b), (c), and (d). Since 1
2
∆+10

√
∆ ≤ c− 108

√
∆, by the above remarks

we can restrict our attention to unique largest colour classes ρ such that |ρ| ≥ 3 and j = 1.

Since Xi is not a reducer or near-reducer, Lemma 23 implies |ρ| ≤ ∆− c.

We first focus on the case |ρ| ≤ ∆ − c − 1. Since j = 1, we know by Lemma 21 that
every vertex of ρ has at least c− 1 neighbours in Xi and hence at most ∆− c+1 neighbours
outside Xi. So, using the facts that c ≥ ∆ − k∆, (k∆ + 1)(k∆ + 2) ≤ ∆ and k∆ >

√
∆ − 3,

the number of external neighbours of ρ is at most

|ρ|(∆− c+1) ≤ (k∆− 1)(k∆+1) < (k∆+2)(k∆+1)− (k∆+1)− 2(
√
∆− 2) ≤ c− 2

√
∆+3.

Thus (b,d) hold for this case. Furthermore, if |ρ| ≤ ∆ − c − 108 then ρ has at most
|ρ|(∆− c+ 1) ≤ (k∆ − 108)(k∆ + 1) < c− 108

√
∆ external neighbours and so (c) holds.

Suppose that |ρ| > ∆−c−108. By Lemma 22, 2
3
λ2 plus the sum of |ρ′|−1 over all colour

classes ρ′ 6= ρ with |ρ′| ≥ 3 is at most ∆ − c + 1 − (|ρ| − 1) ≤ 108 + 1. Each colour class
of size at least 2, other than ρ, contributes at least 2

3
to that sum. Thus, there are at most

3
2
× (108+1)+1 < 2×108−1 colour classes of size at least 2 and so |Ci| ≥ c−2×108+1. By

Lemmas 18 and 19, each vertex of Ci has at least |Ci|− 1+ |ρ| ≥ ∆− c− 108+ c− 2× 108 =
∆− 3× 108 neighbours in Xi and hence has at most 3× 108 neighbours outside of Xi. Thus
(c) holds (even when |ρ| = ∆− c).

We now turn to the remaining case for (b,d): |ρ| = ∆ − c. The same argument used
twice already above yields that ρ has at most |ρ|(∆ − c + 1) ≤ k∆(k∆ + 1) < c − √

∆ + 1
external neighbours, and so (b) holds. Furthermore, applying Lemma 22 as in the previous
paragraph yields that there are at most 3

2
(∆ − c + 1 − (|ρ| − 1)) + 1 = 4 colour classes of

size at least 2. Hence |Ci| ≥ c− 4. By the same argument as the previous paragraph, each
vertex of Ci has at least |Ci| − 1 + |ρ| ≥ c− 5 +∆− c = ∆− 5 neighbours in Xi and hence
has at most 5 neighbours outside of Xi. This proves (d).

The proof of (e) is similar. Again, we can assume that ρ is the unique largest colour
class, and that there is no colour class of size ρ − 1. If |ρ| ≤ ∆ − c − 3∆1/4 then ρ has at
most |ρ|(∆ − c + 1) ≤ (k∆ − 3∆1/4)(k∆ + 1) < c − 2∆3/4 external neighbours. So we can
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assume |ρ| ≥ ∆− c− 3∆1/4. Thus there are at most 3
2
(∆− c+1− (|ρ| − 1))+ 1 < 5∆1/4 − 1

colour classes of size at least two and so |Ci| ≥ c − 5∆1/4 + 1 and each vertex of Ci has at
least |Ci| − 1 + |ρ| ≥ ∆− 8∆1/4 internal neighbours. This proves (e). 2

Proof of Lemma 11: Consider a graph G as in Lemma 11, and the decomposition of
G that is ensured by Lemma 14. The sparseness of the vertices in S easily implies condition
(b) of Lemma 11.

If Xi is a reducer or near-reducer then it is easy to verify that the unique stable set in Xi

has at most c external neighbours. Otherwise, Lemma 24(a,b) imply that every colour class
of size at least two in Xi has fewer than c external neighbours. This, along with Lemmas
18, 19 and 20 prove that Xi is a quasi-reducer. 2

We strengthen Lemma 11 by showing that for minimum counterexamples to Theorem 5,
the Xi can be neither reducers nor near-reducers. Recall that we fix ∆ ≥ ∆0 and c ≥ ∆−k∆
and say that G is a minimum counterexample to Theorem 5 if it is a counterexample with
the smallest possible number of vertices for those values of ∆, c.

Observation 25 In a minimum counterexample to Theorem 5, no Xi is a reducer.

Proof If G is a minimum counterexample to Theorem 5, then G is (c + 1)-critical.
Therefore, G cannot contain a reducible c-reducer and so by Observation 3 we have c =
∆− k∆. Thus, G contains no reducers by the hypothesis of Theorem 2. 2

Lemma 26 In a minimum counterexample to Theorem 5, no Xi is a near-reducer.

Remark: In the future, when we apply Lemma 24, we implicitly exploit Observation 25 and
Lemma 26 to remove from that lemma the conditions thatXi is not a reducer or near-reducer.

Proof of Lemma 26: Suppose Xi is a near-reducer, with corresponding clique Ki and
stable set Si. By the minimality of G, there is a c-colouring of G −Xi; we will extend this
c-colouring to G. If some vertex v ∈ Ki has no neighbour in G − Xi, then we can extend
any such colouring, as we now show.

Since |Si|+|Ki| = ∆, every vertex ofKi has at most one neighbour outside of Xi. We first
colour all of the vertices of Si using a colour not appearing on the at most |Si|(∆− |Ki|) =
(∆− c+1)(∆− c+1) ≤ (k∆+1)(k∆+1) ≤ ∆− (k∆+1) < c neighbours of Si in G−Xi. We
then colour all of the vertices of Ki − v, which is possible because at most c− 2 colours are
forbidden because they are used on Xi and at most 1 is forbidden by a neighbour outside of
Xi. Finally we colour v with the unique colour not yet appearing in Xi.
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So we can assume that every vertex of Ki has a neighbour in G−Xi. We want to colour
G−Xi so that these neighbours do not all get the same colour. To this end consider the set
Z of vertices of G −Xi with neighbours in Ki. If any two vertices of Z are adjacent, then
any colouring of G−Xi will suffice since those two vertices will have different colours; so we
can assume that Z is a stable set. If there is a vertex z of Z with fewer than c−1 neighbours
outside of Xi, then fix a colouring of G−Xi and check if there is some colour appearing on
all of the elements of Z. If there is then recolour z with some other colour which appears on
none of its neighbours, to produce the desired colouring of G−Xi.

Otherwise, |Z| ≥ d |Ki|
∆−(c−1)

e = d c−1
∆+1−c

e ≥ k∆ + 1. For each pair of vertices x and y in
Z, consider the graph obtained from G−Xi by adding the edge xy. Since G is a minimum
counterexample to Theorem 5, G−Xi+xy has a c-colouring unless in this graph either (i) xy
is contained in a reducer, or (ii) there is a vertex v such that x, y ∈ {v}∪N(v) and the graph
induced by {v} ∪ N(v) is not c-colourable. In either case, x and y are both dense vertices
in G −Xi with at least ∆ − 2

√
∆ common neighbours. Such a c-colouring of G −Xi + xy

would be a c-colouring of G − Xi in which Z is not monochromatic, as desired. It follows
that if we cannot find such a colouring of G−Xi then there is some j such that Z ⊆ Xj and
in every c-colouring of Xj, all the vertices of Z receive the same colour; thus, Z is contained
in a colour class of Xj. But there are c − 1 edges from this colour class to Xi, so applying
Lemma 24(b), we obtain that Xj is a near-reducer with Z ⊆ Sj. Simply counting shows
that all of the edges leaving Sj go to Ki.

We construct a directed graph on the Xi which are near-reducers by adding an edge from
i to j if all the edges from Si to G−Xi go to Xj. Clearly this graph has maximum outdegree
1. So, it either has a vertex of indegree zero or is a set of directed cycles. In the latter case,
we consider some such cycle J . The Xi that are on J form a component of G so by the
minimality of G they must span G. For each Xl on J , we colour all the vertices in Sl with
colour 1, and colour Kl using the colours 2, ..., c. This yields a c-colouring of G and thereby
a contradiction.

So we can assume that there is a near-reducer Xj with indegree zero in this graph, which
by the argument above implies that we can colour G −Xj so that there are two vertices v
and w in Kj whose neighbours outside of Xj are coloured with different colours. We extend
our colouring by first giving all of Sj the same colour. We then colour w, giving preference
to the colour assigned to the neighbour of v outside Xj. The only reason we fail to use
this colour is if we have already used it on the vertices of Sj. In either case, we colour the
remaining vertices of Kj, colouring v last. Since every colour incident to v appears in Xj,
we will be able to colour v, thereby obtaining a c-colouring of G. 2
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5 Massaging the Decomposition

In this section we prove Lemma 12 which we restate for the reader’s convenience:

Lemma 12 We can find a graph F of maximum degree 109∆, whose c-colourability
implies the c-colourability of G, and a partition of the vertices of F into S,B,A1, ..., At such
that:

(a) Every Ai is a clique with c− 108
√
∆ ≤ |Ai| ≤ c.

(b) Every vertex of Ai has at most 108
√
∆ neighbours in F − Ai.

(c) There is a set Alli ⊆ B of c−|Ai| vertices which are adjacent to all of Ai. Every other
vertex of F − Ai is adjacent to at most 3∆

4
+ 108

√
∆ vertices of Ai.

(d) Every vertex of S has degree at most ∆ and either has fewer than ∆−3
√
∆ neighbours

in S or has at least 900∆
√
∆ non-adjacent pairs of neighbours within S.

(e) Every vertex of B has fewer than c−√
∆+ 9 neighbours in F − ∪jAj.

(f) If a vertex v ∈ B has at least c − ∆
3
4 neighbours in F − ∪jAj, then there is some i

such that: v has at most c−√
∆+ 9 neighbours in F −Ai and every vertex of Ai has

at most 30∆
1
4 neighbours in F − Ai.

(g) For every Ai, every two vertices outside of Ai∪Alli which have at least 2∆
9
10 neighbours

in Ai are joined by an edge of F .

The starting point for the proof of Lemma 12 is the decomposition into X1, ..., Xt, S given
by Lemma 11. The first step in our construction of F will be to contract the non-singleton
stable sets of each Xi into vertices as we did with reducers. If we were to let B be the set of
these contracted vertices, let Ai be the clique formed by the singleton colour classes of Xi,
and leave S unchanged then (a) and (b) would follow from the definition of a quasi-reducer,
(d) would follow from Lemma 11(b), (e) would follow from Lemma 24(b), and (f) would
follow from Lemma 24(b,e) (letting Ai be the clique from the quasi-reducer Xi containing
v).

Conditions (c) and (g) were added to give us better control over the pseudorandom
colouring process. In particular, these conditions will help us ensure that for most colours
α, not too many vertices of Ai have a neighbour of colour α. (Thus our approach is slightly
more nuanced than the sketch in Section 2.3 suggests. In fact, we can let up to c − |Ai|
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colours appear on external neighbours of all vertices in Ai without precluding a colouring;
these will be the colours on the vertices of Alli.)

To ensure that conditions (c) and (g) hold we will need to massage the graph obtained
in the first step of the proof by contracting vertices and adding edges, while ensuring that
the other properties continue to hold. This may increase the maximum degree, but it will
remain O(∆).

We describe a three step process for constructing F in the next three subsections. We
then prove that F has the properties claimed in the lemma.

5.1 Constructing G′

We construct a graph G′ as follows:

1. For each Xi, if our colouring of the Xi used r < c colours then we add c − r vertices
to Ci adding edges so they are adjacent to all of Xi, and

2. We contract each stable set of Xi into a vertex and add edges so that the vertices of
Xi form a clique Di of size c.

Clearly, if we can c-colour G′, then we can c-colour G: simply give each vertex of Xi the
colour that it, or the vertex that it was contracted to, received in Di. The way in which we
selected the vertices to be contracted ensures that this will be a valid colouring.

Note that G′ may have maximum degree greater than ∆. Note also that the analogue of
Lemma 14(c) does not hold here; in particular, perhaps v ∈ Di has more than 3

4
∆ neighbours

in some Dj. Nevertheless, we do have the following properties:

Lemma 27 For each i:

(a) |Di| = c;

(b) every vertex in Ci has at most 2× 106
√
∆ neighbours in G′ −Di;

(c) every vertex in S has degree at most ∆ in G′ and is adjacent to at most 3∆
4

vertices in
Di;

(d) |Di − Ci| ≤ 3× 106
√
∆.
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(e) every vertex in Di has degree at most 2∆ in G′.

Proof Our construction implies that (a) holds. Lemma 18 then yields (b) and (d).
We obtain (c) by combining Lemma 14(c) and the fact that every edge from a vertex v ∈ S
to Di corresponds to an edge from v to Xi.

For part (e): Lemma 24(b) implies that every stable set of Xi has fewer than ∆ external
neighbours. (In fact, this is also implied by the definition of a quasi-reducer.) Part (a)
implies that the vertex it is contracted to has c − 1 < ∆ neighbours in Di for at total of
fewer than 2∆ neighbours in G′. Parts (a,b) imply that each vertex in Ci has degree at most
c+ 2× 106

√
∆ < 2∆ in G′. 2

Definition: As with Xi, an internal neighbour of v ∈ Di is a neighbour of v that is also in
Di and all neighbours of v in G−Di are external neighbours.

5.2 The First Modification

We now present our first modification, which enforces Lemma 12(c). Before doing so, we
remind the reader why we want that condition to hold.

Since each Di is a c-clique, we must ensure that, in our c-colouring, every colour appears
on a vertex of Di. One difficulty in doing so is that a vertex u in some Dj might be adjacent
to almost all of some Di. If we are not careful, we could end up colouring all the non-
neighbours in Di of such a vertex u with colours different from that appearing on u. This
would exclude the use of the colour appearing on u in Di thereby preventing a c-colouring
of G′. The way we deal with this issue is to plan in advance which member of Di will be
assigned the colour of each external vertex that is adjacent to too much of Di. We will take
“too much” to mean “more than 3∆

4
vertices in Ci”.

We will define, for some of the vertices v ∈ Di, a set Rv which contains vertices outside
of Di that have more than 3∆

4
neighbours in Ci. We note that, by Lemma 27(b,c), these

vertices are all in Dj − Cj for some j 6= i. In our colouring, we will ensure that v and all
members of Rv receive the same colour.

We will define Ri to be the vertices v ∈ Di for which Rv is defined.

We begin with those b ∈ ∪j 6=i(Dj − Cj) that have at least |Ci| −∆3/4 neighbours in Ci.
Note that, by Lemma 27(b), there are at most 2× 106

√
∆|Ci|/(|Di| −∆3/4) < 107

√
∆ such

vertices. Note furthermore that, by Lemma 24(a), there is at most one such vertex in each
Dj.
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We process these vertices one-at-a-time. We say that v ∈ Di is eligible for b ∈ Dj if (i)
v has fewer than 1

2
∆+ 10

√
∆ external neighbours and (ii) b is not adjacent to v nor to any

members of Rv. By Lemma 24(a), condition (i) rules out at most one vertex. By Lemma
24(b), and the fact that no other vertex in Dj can be in any Rv, condition (ii) rules out at
most c−√

∆+3 vertices. So, at least (|Di| − 1)− (c−√
∆+3) =

√
∆− 4 vertices of Di are

eligible for b. Amongst all those eligible vertices, we select a v for which |Rv| is (currently)
smallest and we place b into Rv. Since we only do this for at most 107

√
∆ vertices b, and

since each has at least
√
∆ − 4 eligible vertices to choose from, this guarantees that every

Rv contains at most 2× 107 vertices.

Next we process those b with between 3∆
4

and |Ci| −∆3/4 neighbours in Ci. By Lemma

27(b), the total number of vertices we process in the two phases is at most 2×106∆
√
∆/3∆

4
<

107
√
∆. So, when we come to process a vertex b in this phase, the number of vertices eligible

for b will be at least the number of non-neighbours of b in Ci minus the number of v ∈ Ci with
Rv 6= ∅, which is at least ∆3/4−107

√
∆ ≥ 1

2
∆3/4. Thus, we can process these vertices one-at-

a-time, adding at most one of them to each Rv. This guarantees that |Rv| ≤ 2×107+1 < 108.

We now note some consequences of the way in which we constructed each Rv:

Lemma 28 For each Di, and each v ∈ Ri:

(a) ∪w∈Ri
Rw is the set of vertices not in Di which have more than 3

4
∆ neighbours in Ci;

(b) Every vertex of Rv is in Dj − (Cj ∪ Rj) for some j, and there is no v 6= u with
Rv ∩Ru 6= ∅;

(c) v ∪Rv is an independent set;

(d) |Ri| ≤ 107
√
∆;

(e) |Rv| < 108;

(f) the external degree of v plus the sum over each b ∈ Rv of the number of external
neighbours of b outside of Di is at most 3

4
∆+ 108∆3/4;

Before proving this lemma, we show how we use it to modify G′:

Modification 1: For every v ∈ ∪t
i=1Ri, we contract Rv into v. We define Ai = Ci\Ri. So

the Di’s may now intersect, but by Lemma 28(b), the Ai’s are still disjoint. We will set
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Alli = Di − Ai. Note that after Modification 1, each Di is still a clique and so every vertex
in Alli is adjacent to all of Ci (as required in Lemma 12(c)).

The effect of this contraction is equivalent to enforcing a rule that all vertices in Rv must
get the same colour as v. Recall that this was our goal: ∪v∈Ri

Rv are all those vertices u /∈ Di

for which we had to select in advance a v ∈ Di that would have the same colour as u.

Note that Lemma 28(b) implies that the modification is well-defined in that no vertex is
contracted into two different vertices and no member of ∪t

i=1Ri is contracted into another
vertex. Note also that Lemma 28(c) implies that a c-colouring of the modified graph yields
a c-colouring of G. And note that the contracted vertices may have degree higher than ∆,
but Lemmas 28 and 27(e) ensure that none have degree higher than 2× 108∆.

And finally, note that Lemma 28(f) implies Lemma 12(c).

Proof of Lemma 28 Parts (a,b,c) are guaranteed by the way we choose Rv, the fact
that, by Lemma 24(b), no vertex of G′ can have 3∆

4
neighbours in two different Di’s, and

Lemma 27(b,c) which implies that we need not place any vertices in S ∪ (∪jCj) into Rv.
For part (d): by Lemma 27(b), at most 2 × 106∆

√
∆/(3

4
∆) < 107

√
∆ vertices lie in the

union of all the Rv’s. Part (e) is described above. For part (f): in the first phase of
the construction, we add at most 2 × 107 vertices to Rv and by Lemma 24(b) each such
vertex has at most c − √

∆ + 3 − (|Ci| − ∆3/4) < 2∆3/4 external neighbours outside of
Di. In the second phase, we add at most one vertex and by Lemma 24(b) it has at most
c−√

∆+3− 3
4
∆ < 1

4
∆ external neighbours outside of Di. By condition (i) of the definition

of “eligible”, the external degree of v is at most 1
2
∆+ 10

√
∆. So we have a total of at most

1
2
∆+ 10

√
∆+ 2× 107 × 2∆3/4 + 1

4
∆ < 3

4
∆+ 108∆3/4. 2

5.3 Our Second Modification

As we said above, every colour must appear on Di, since it is a c-clique. Thus every colour
not on Di −Ai must appear on Ai. This will be impossible if there is some such colour that
appears in the external neighbourhoods of every vertex of Ai.

We started to deal with this problem in the previous subsection with Modification 1. In
particular, we ensured that there is no one vertex outside of Di that is adjacent to too many
vertices of Ai. However, we still might have the problem that a colour appears on several
vertices outside of Di, which between them are adjacent to all of Ai. This is a common
issue when colouring graphs using the decomposition from [25]. We handle it using the usual
modification, which was introduced in [25].
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Definition: Bigi is the set of vertices not in Di with at least ∆9/10 neighbours in Ai, after
Modification 1 is applied. Each pair of members of some Bigi are said to be big-neighbours.

Modification 2: We add an edge between every pair of big-neighbours, thus turning each
Bigi into a clique.

Thus, for each colour α, at most one vertex outside ofDi with more than ∆9/10 neighbours
in Di can be assigned α. So α cannot be forbidden from all of Ai because it appears on
only a few vertices which between them are adjacent to all of Ai. The only remaining thing
to worry about is that α appears on many vertices which between them are adjacent to all
of Ai. When we construct our colouring, we will see that we can prevent this using our
probabilistic tools.

The following lemma with respect to Bigi will be useful when we analyze the effects of
Modification 2.

Lemma 29 In the graph formed by applying Modification 1 to G′:

(a) |Bigi| ≤ 108∆3/5.

(b) No vertex has more than 1016∆7/10 big-neighbours.

(c) If v ∈ Ai then v is not in any Bigj.

(d) If v ∈ S is in Bigi for at least one i, then the number of neighbours v has in S plus the
number of big-neighbours v has in S is at most ∆− 1

2
∆9/10.

Note that adding these edges may increase some vertex degrees, but Lemma 29(b) ensures
that these increases are only o(∆).

Proof (a) The number of edges from Di to G′ −Di before Modification 1 is at most
the number of edges from Xi to G−Xi, which is at most 107∆3/2 by Lemma 14(b). In the
proof of Lemma 28(d), we showed that at most 107

√
∆ vertices were contracted into vertices

of Ri during Modification 1. Each of these vertices has less than 2∆ neighbours outside of
Di (by Lemma 24(b)). So the total number of edges from Di to G′ −Di after Modification
1 is at most 3× 107∆3/2 and so |Bigi| ≤ 3× 107∆3/2/∆9/10 < 108∆3/5.

(b) By Lemma 28(e), no vertex is the contraction of more than 108 vertices of G′. Lemma
24(b) implies that, before Modification 1, each vertex had degree less than 2∆. So after
Modification 1, no vertex has degree greater than 2× 108∆. Therefore no vertex can belong
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to Bigi for more than 2× 108∆/∆9/10 = 2× 108∆1/10 cliques Di. So by part (a), each vertex
has at most 2× 108∆1/10 × 107∆3/5 < 1016∆7/10 big-neighbours.

(c) By Lemma 28(b), v did not gain any new neighbours during Modification 1 so by
Lemma 27(b), v has at most 2 × 106

√
∆ external neighbours. Thus v has fewer than ∆9/10

neighbours in each Aj.

(d) Let ` be the number of Ai with v ∈ Bigi. Then v has at least ` ×∆9/10 neighbours
outside of S. By part (a), v has at most ` × 108∆3/5 < 1

2
`∆9/10 big-neighbours. So the

number of neighbours of v in S plus the number of big-neighbours of v in S is at most
∆− `×∆9/10 + `× 1

2
∆9/10 ≤ ∆− 1

2
∆9/10. 2

5.4 Proof of Lemma 12

F is the graph formed by applying Modifications 1 and 2 to G′. We close this section by
proving the properties of F that are listed in Lemma 12.

Proof of Lemma 12: We define Alli to be Di − Ai. If any member of Di − Ai was
contracted into some v during Modification 1, then we include v in Alli. Thus we may have
Alli ∩ Allj 6= ∅. We define B to be ∪t

i=1Alli.

We begin by bounding the maximum degree in F . Lemma 27(c,e) implies that the
maximum degree in G′ is at most 2∆. Lemma 28(e) ensures that the maximum degree after
Modification 1 is at most 2 × 108∆. And Lemma 29(b) ensures that no vertex gains more
than 1016∆7/10 new neighbours during Modification 2. So the maximum degree in F is at
most 2× 108∆+ 1016∆7/10 < 109∆.

Part (a): Ai ⊆ Ci so it is a clique of size at most |Di| = c. Lemmas 27(d) and 28(d)
yield that its size is at least c− 3× 106

√
∆− 107

√
∆ > c− 1

2
× 108

√
∆.

Part (b): Consider any v ∈ Ai. By the calculations of part (a), v has fewer than 1
2
108

√
∆

neighbours in Di−Ai. Lemma 27(b) implies that, in G′, v has at most 2×106
√
∆ neighbours

outside of Di. Since v ∈ Ai = Ci\Ri, Lemma 28(b) implies that v did not gain any new
neighbours fromModification 1. Lemma 29(c) implies that v did not gain any new neighbours
from Modification 2. So v has at most 1

2
108

√
∆+ 2× 106

√
∆ < 108

√
∆ neighbours outside

of Ai.

Part (c): |Alli| = |Di| − |Ai| = c − |Ai|. Lemma 28(a) implies that any vertex outside
of Ai ∪ Alli = Di that had more than 3

4
∆ neighbours in Ai was contracted into a vertex of

Alli during Modification 1, and Lemma 28(f) implies that Modification 1 did not cause any
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other vertices outside of Di to have more than 3
4
∆+108

√
∆ neighbours in Ai. Lemma 29(c)

implies that no vertex gained any new neighbours in Ai from Modification 2.

Part (d): Consider any v ∈ S. If v is not in any Bigi then its degree in F is at most
its degree in G and hence at most ∆. Otherwise, its degree in F is less than ∆ by Lemma
29(d).

Now suppose that, in F , v has more than ∆ − 3
√
∆ neighbours in S. Note that any

edges in S that are in the graph F but not in the graph G, were added by Modification 2.
By Lemma 29(d), v is not in any Bigi.

For each u ∈ N(v) ∩ S, if u ∈ Bigi for some Di then, in the graph G, u has at most
∆ −∆9/10 neighbours in S and hence is non-adjacent to at least ∆9/10 − 3

√
∆ members of

N(v)∩S. By Lemma 29(b), u is non-adjacent to at least ∆9/10−3
√
∆−1016∆7/10 ≥ 1

2
∆9/10

members of N(v)∩S. It follows that if at least 3600∆6/10 neighbours of v gained new edges
during Modification 2 then v has, in the graph F , at least 900∆

√
∆ pairs of non-adjacent

neighbours in S.

So suppose that at most 3600∆6/10 neighbours of v in S gained new edges during Modfi-

cation 2. Then the total number of edges added to N(v) ∩ S is at most
(
3600∆6/10

2

)
< ∆

√
∆.

So by Lemma 14(d), in the graph F , N(v) ∩ S has at most
(
∆
2

)
− (105 + 1)∆

√
∆ edges.

Straightforward calculations imply that, in the graph F , v has at least 900∆
√
∆ pairs of

non-adjacent neighbours in S.

Part (e): This is a simple corollary of part (f).

Part (f): We will first establish that v did not gain any new neighbours during Modi-
fications 1 and 2. Suppose that vertices were contracted into v during Modification 1; i.e.
v ∈ Rj for some Dj. The number of neighbours that v has in F − ∪Ai is at most the sum
of: (i) the external degree of v plus the sum over each b ∈ Rv of the number of external
neighbours of b outside of Dj; (ii) |Dj−Aj| plus the sum of |D`−A`| over all D` that contain
a member of Rv; and (iii) the total number of big-neighbours of v and all members of Rv.
By Lemma 28(f), (i) is at most 3

4
∆ + 108

√
∆. By Lemma 28(e) and by part (a), (ii) is at

most 108 × (108
√
∆). By Lemma 29(b), (iii) is at most 1016∆7/10. This yields a total of less

that c−∆3/4 thus contradicting the hypothesis of part (f).

Suppose that v ∈ Bigj for some Dj; i.e. v has at least ∆9/10 neighbours in Dj. By part

(a), v has at most |Dj − Aj| < 108
√
∆ neighbours in Dj − Aj, and so v has at least 1

2
∆9/10

in Aj. By Lemma 29(b), v gained at most 1016∆7/10 new neighbours during Modification
2. By the previous paragraph, v was not contracted in Modification 1. So v has at most
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∆− 1
2
∆9/10+1016∆7/10 < ∆−∆3/4 neighbours in F −∪iDi thus contradicting the hypothesis

of part (f).

Since v ∈ B we have that v ∈ Di − Ai for some i. By Lemma 24(e), |Di − Ci| < 5∆1/4

and every vertex of Ci has at most 8∆1/4 neighbours in G′ − Di. Thus, the total number
of edges from Ci to G′ −Di is at most 8∆1/4|Ci| < 8∆5/4. So by the construction of Ri, at
most 8∆5/4/(3

4
∆) < 11∆1/4 vertices are in ∪u∈Ri

Ru and so |Ri| < 11∆1/4. Thus, no vertex
of Ai has more than |Ri|+ |Di−Ci| < 16∆1/4 neighbours in Di−Ai. By Lemmas 28(b) and
29(c), no vertex of Ai gained any new neighbours during Modifications 1 and 2. So every
vertex of Ai has at most 8∆1/4 + 16∆1/4 < 30∆1/4 neighbours in F − Ai.

Now we bound the number of neighbours that v has in F −Ai. Let ρ be the colour class
of Xi corresponding to v. The number of neighbours that v has in F − Ai is the number
of external neighbours of ρ plus |Di − Ai| − 1. The former term is at most c − √

∆ + 3,
by Lemma 24(b) (and Lemma 26). By part (a), |Di − Ai| ≤ 108

√
∆. So if ρ has at

most c− 108
√
∆ external neighbours, then v has fewer than c−√

∆ neighbours in F − Ai.
Else, by Lemma 24(c), |Ci| ≥ c − 2 × 108 and each vertex of Ci has at most 3 × 108

external neighbours. Every member of ∪u∈Ri
Ru is adjacent to at least 3

4
vertices of Ci and

so |Ri| ≤ 3× 108|Ci|/(34∆) ≤ 4× 108. Therefore, |Di −Ai| ≤ 2× 108 +4× 108 < 109. Thus,

if ρ has at most c−√
∆− 109 external neighbours then v has at most c−√

∆ neighbours in
F − Ai. If ρ has more than c−√

∆− 109 external neighbours then applying Lemma 24(d)
in the same way yields |Ci| = c − 1 and |Ri| ≤ b5|Ci|/(34∆)c ≤ 6. So |Di − Ai| ≤ 7 and v

has at most ∆−√
∆+ 9 neighbours in F − Ai.

Part (g): By Lemma 29 (b), if a vertex outside of Ai ∪ Alli = Di has at least 2∆
9/10 >

∆9/10 + 1016∆7/10 neighbours in Ai after Modification 2 then it must be in Bigi. So any two
such vertices were joined during Modification 2.

6 The Pseudorandom Process: A High Level Overview

The rest of the paper is devoted to proving Lemma 13; i.e. to showing that F can be
c-coloured.

We begin with a sketch of the proof. We will colour the graph in stages, at each stage
being careful so as to ensure that we can extend our colouring to the whole graph in later
stages. We have to be most careful about extending the colouring to the cliques Ai. When
we come to colour Ai, we will use the at least c− |Alli| ≥ |Ai| colours that do not appear on
Alli (see Lemma 12(c)). It turns out that it is sufficient to ensure that for each uncoloured
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Ai, every colour which does not appear on a vertex of Alli appears on neighbours of at most
4
5
∆ vertices of Ai.

In each stage, we will choose our colouring pseudorandomly. For ease of discussion,
suppose that we do so in an (oversimplified) manner in which each vertex gets a uniformly
random colour. By Lemma 12(b), every vertex of Ai has O(

√
∆) neighbours outside of

Ai∪Alli and so for any fixed colour x, the expected number of vertices of Ai with a neighbour

outside of Ai ∪ Alli that gets colour x is |Ai| × O(
√
∆
c
) = O(

√
∆). Of course we cannot

prove that this random variable is typically near its expectation, as there may be a vertex
v /∈ Ai ∪Alli with a large number, say ∆

2
, neighbours in Ai. In that case, those ∆

2
vertices of

Ai will each have a neighbour (namely v) in F − Ai ∪ Alli assigned one colour (namely the
colour of v). However, Lemma 12(g) (i.e. Modification 2) ensures that at most one vertex
b /∈ Ai ∪ Alli with more than 2∆9/10 neighbours in Ai will have colour x, and Lemma 12(c)
(i.e. Modification 1) ensures that b has at most 3

4
∆ neighbours in Ai. To make use of these

properties, we define:

Definition:

• Big+i is the set of vertices not in Ai ∪ Alli with at least 2∆9/10 neighbours in Ai.

• Notbig(i, x) is the number of vertices of Ai which have a neighbour v /∈ Ai∪Alli∪Big+i
with colour x.

We will always be able to ensure that Notbig(i, x) is o(∆). So at any point in our
colouring process, at most 3

4
∆+ o(∆) < 4

5
∆ vertices of Ai will have a neighbour outside of

Ai ∪ Alli with colour x.

We begin by colouring S so that each Notbig(i, x) is o(∆). We do so by applying an
iterative colouring algorithm to S. The first iteration is different from the others. We extend
the proof of Lemma 10 to show that we can partially colour S so that every vertex has at
most 19∆

20
colours appearing in its neighbourhood and if it has degree exceeding ∆ − 3

√
∆

then it has at least 3∆ repeated colours. In addition, we can do so while keeping every
Notbig(i, x) small. We then finish the colouring, exploiting the fact that for every vertex v,
the number of colours available at v exceeds the number of uncoloured vertices in N(v) by
at least

√
∆.

We would now like to colour the vertices of B, using the same technique in order to keep
Notbig(i, x) bounded for each i and x. By Lemma 12(e), we know that for each vertex v
of B, given the colouring of the rest of B ∪ S, there will be at least

√
∆ − 9 colours which

do not appear on its neighbours in v, so if we picked an extension of our colouring to B at
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random, then the probability v gets any particular colour is at most 1√
∆−9

. This bounds

the expectation of the increase in Notbig(i, x) during this phase by |Ai| ×O(
√
∆√

∆−9
) = O(∆);

unfortunately, this bound is too large for our purposes. To deal with this problem, we will
actually interleave the colourings of the Ai with our colourings of the vertices in B.

Definition:

• BH is the set of those vertices in B which have degree at most ∆−∆3/4 in F − ∪Ai;

• BL = B −BH ;

• AL is the set of those Ai such that every vertex of Ai has at most 30∆1/4 neighbours
outside of Ai ∪ Alli

• AH = A− AL.

We will first colour the vertices of BH , then those Ai in AH , then the vertices in BL

then those Ai in AL. When colouring BH , each vertex will have at most ∆−∆3/4 coloured
neighbours, and so the probability that a particular colour x appears on a particular member
of BH is at most ∆−3/4. Thus the expected increase in Notbig(i, x) while colouring BH is at

most |Ai| ×O(
√
∆

∆3/4 ) = o(∆).

When colouring BL we have already coloured the members of AH , so we only need bound
the increase Notbig(i, x) for each Ai ∈ AL. Lemma 12(f) implies that each b ∈ BL has at most
c−√

∆ neighbours outside of AL, and it follows as above that the probability that a particular
colour x appears on a particular member of BL is at most ∆−1/2. Thus for any Ai ∈ AL, the
expected increase in Notbig(i, x) while colouring BL is at most |Ai| ×O(∆

1/4√
∆
) = o(∆).

Furthermore, we will be able to prove that these increases in Notbig(i, x) are concentrated
enough to enable us to colour all of B whilst keeping Notbig(i, x) sufficiently small for all
uncoloured Ai.

Our algorithm has three main subroutines.

The first, which we apply only once on S to ensure that there are repeated colours in the
neighbourhoods of high degree vertices, is a simple modification of that used in the proof of
Lemma 10.

The second is used in colouring S,BH , and BL. It takes an uncoloured subgraph H with
an upper bound on the number of neighbours any uncoloured Ai has in H, and lower bounds
on the number colours available to the vertices of H. It colours H so that for every colour
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x and every uncoloured Ai, the increase in Notbig(i, x) is o(∆). (There is no need to bound
this increase for any coloured Ai, since the only purpose of the bound is to help us colour
Ai.) This is a simple iterative procedure.

The third procedure is used to colour some of the Ai’s. It requires that for each Ai that we
wish to colour, and for every colour not already used in Alli, there are not too many vertices
of Ai with a neighbour of this colour; say at most 4∆

5
. It assigns a random permutation of

the colours not used on Alli to Ai. It then recolours any vertex which receives a colour also
appearing on an external neighbour. Each v ∈ Ai has at most O(

√
∆) external neighbours

(by Lemma 12(b)) and the probability of v receiving one of the O(
√
∆) colours from those

neighbours is at most O(
√
∆)/|Ai| = O(∆−1/2), so the expected number of vertices in Ai

that need to be recoloured is at most |Ai| × O(∆−1/2) = O(
√
∆). This is a manageably

small number, and because we insisted that at the start of this procedure, no more than 4
5
∆

vertices in Ai had neighbours with any given colour, we will be able to recolour by having
each of the vertices in conflict switch colours with a suitable vertex in Ai. More strongly,
this hypothesis ensures that there will be at least ∆/20 suitable vertices from which to pick,
and so we can show that the probability that a vertex v ends up with a particular colour α
is at most O(∆−1). This ensures that when colouring AH , for every Ai ∈ AL and colour x,
the expected increase in Notbig(i, x) is at most O(

√
∆). By applying the Local Lemma we

can show that with positive probability, at the end of the procedure every such Notbig(i, x)
still has size at most O(∆19/20).

We describe the iterative colouring procedure used on S,BL, and BH in Section 8. We
describe our procedure for colouring the Ai in Section 9. We then go on to describe how we
apply these procedures in each phase of our process to prove Lemma 13. First however, we
present a lemma which we will need in analyzing both of these procedures.

7 Bounding Notbig(i, x)

Here we present a lemma which will be used several times to prove that Notbig(i, x) does
not grow too large.

Suppose that we have a collection of at most ∆ subsets of V (F ). Each set contains at
most Q vertices. No vertex lies in more than 2∆9/10 sets. We conduct a random experiment
where each vertex is marked with probability at most 1/(Q × ∆1/5). The vertices are not
necessarily marked independently, but the experiment has the following property:

(P7.1) For any set of ` ≥ 1 vertices, the probability that all are marked is at most
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1/(Q×∆1/5)`.

Lemma 30 The probability that at least ∆37/40 sets contain at least one marked vertex is at
most exp(−∆1/40).

When we use this to bound Notbig(i, x), the sets will be the external neighbourhoods
of the vertices in Ai, after removing the vertices of Big+i from those neighbourhoods. Thus,
there are |Ai| ≤ ∆ such sets and no vertex lies in more than 2∆9/10 sets as otherwise it
would be in Big+i . Typically, a vertex is marked if it receives the colour x. So the increase
in Notbig(i, x) will be the number of sets that contain at least one marked vertex. Our
goal is roughly to keep that number less than ∆19/20. We have no hope of showing that,
with exponentially low probability, this number will be less than 2∆9/10, as it might become
that high with the marking of a single vertex. So we choose ∆37/40 which is asymptotically
between 2∆9/10 and ∆19/20.

Proof For each 1 ≤ i ≤ 9, let Ti be the set of vertices lying in between ∆(i−1)/10 and
∆i/10 sets. Let Ei denote the event that at least 1

9
∆37/40 sets contain a marked member of

Ti. Note that if at least ∆37/40 sets contain at least one marked vertex, then at least one Ei

must hold.

Since the sizes of the sets total at most ∆Q, |Ti| ≤ ∆Q/∆(i−1)/10. If Ei holds, then at
least 1

9
∆37/40/∆i/10 members of Ti must be marked. Therefore, applying (P7.1), we have:

Pr(Ei) ≤
(
∆Q/∆(i−1)/10

1
9
∆37/40/∆i/10

)(
1

Q∆1/5

)1
9
∆37/40/∆i/10

≤
(

e∆Q/∆(i−1)/10

1
9
(∆37/40/∆i/10)×Q∆1/5

)1
9
∆37/40/∆i/10

=
(

9e

∆1/40

)1
9
∆37/40/∆i/10

.

Since 1
9
∆37/40/∆i/10 > 1

9
∆1/40 and 9e/∆1/40 < 1

2e
, this yields that Pr(Ei) <

1
9
exp(−∆1/40).

So the probability that at least one Ei holds is at most exp(−∆1/40). 2

40



8 An Iterative Colouring Procedure

In this section, we describe the technique that we use to colour S,BL, and BH . In order
to have it apply to all three situations, we use preconditions that are somewhat general,
although not nearly as general as possible.

In this setting, F may be partially coloured, but every Ai is either completely coloured
or completely uncoloured. We are given an uncoloured subgraph H of F − ∪iAi (and so H
has maximum degree ∆ by Lemma 12(d,e)). We wish to extend our partial colouring to H.
For each vertex u ∈ H we are given an initial list L(u) of the colours available to u. We have
values X ≥ 1

2

√
∆ and U ≥ ∆1/4 such that:

(P8.1) every uncoloured vertex in each Ai has at most U neighbours in H − Alli;

(P8.2) for all u ∈ H, |L(u)| is at least 5U ×∆1/5 and is at least degH(u) +X.

The main thrust of (P8.2) is that each vertex inH initially has at least 5U×∆1/5 available
colours and throughout the procedure will always have at least X available colours.

Lemma 31 We can extend our partial colouring to H such that for every uncoloured Ai ∈ A
and every colour x, Notbig(i, x) increases by at most ∆19/20.

We will colour H using a two step pseudorandom procedure. This is an example of what
is often referred to as the “semi-random method”. This particular procedure is commonly
used on this sort of problem; see [22] for several examples.

Step 1: We fix a small constant 1
100000

> ε > 0 and carry out I = d2∆ε log∆e iterations.
In each iteration, we will analyze the following random colouring procedure:

1. We activate each uncoloured u ∈ H with probability α = ∆−ε.

2. We assign each activated u a uniformly random colour from L(u).

3. If two activated neighbours receive the same colour, we uncolour them both.

4. Each activated u that is still coloured is uncoloured with probability q(u) where q(u) is
defined so that u has probability exactly 1

2
α of being activated and retaining a colour.

5. For each vertex u which retains a colour x, we remove x from L(v) for each v ∈ NH(u).
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Note that it is possible to define q(u) as desired since, defining N1(u) to be the set of
uncoloured neighbours of u in H, the probability of an activated u being uncoloured in the
third step is at most:

∑

x∈L(u)
Pr(u is assigned x)× ∑

u′∈N1(u)

αPr(u′ is assigned x)

=
α

|L(u)|
∑

u′∈N1(u)

∑

x∈L(u)
Pr(u′ is assigned x)

≤ α

|L(u)|
∑

u′∈N1(u)

1

=
α|N1(u)|
|L(u)|

< α,

since |L(u)| > |N1(u)| (by (P8.2)). Thus, the probability of being activated and not being
uncolored in the third step is at least α(1 − α) > 1

2
α. So q(u) is well-defined as a function

of the lists of u and N1(u).

Our analysis allows us to prove the following:

Lemma 32 After I iterations, with positive probability:

(a) Each u ∈ H has at most ∆200ε uncoloured neighbours in H.

(b) Each uncoloured vertex in ∪Ai has at most ∆200ε uncoloured neighbours in H.

(c) For every Ai and colour x, Notbig(i, x) ≤ 1
2
∆19/20.

We choose a partial colouring satisfying (a)-(c) of this lemma.

Step 2: To finish the colouring we analyze a different procedure. Note that for every
v ∈ H, |L(v)| ≥ X by (P8.2) and the fact that at most degH(v) colours have been removed
from L(v).

1. For each uncoloured v ∈ H, we choose a uniformly random subset L′(v) ⊂ L(v) of size
2∆200ε.
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2. We colour all such v from their sublists, one-at-a-time.

Of course, the second step is possible because of Lemma 32(a).

Lemma 33 With positive probability, for every uncoloured Ai and colour x, at most 1
2
∆19/20

vertices of Ai have neighbours outside of Big+i with colour x in their sublists.

We choose a set of lists as guaranteed by Lemma 33.

Proof of Lemma 31: By Lemma 32(c), for each i, at most 1
2
∆19/20 vertices of Ai have

neighbours outside of Big+i that were given colour x during Step 1. By Lemma 33, for each
i, at most 1

2
∆19/20 vertices of Ai have neighbours outside of Big+i that were given colour x

during Step 2, since in order for a vertex to be given colour x, x must appear on its sublist.
2

8.1 Proofs of Lemmas 32 and 33

To prove Lemma 32, we will recursively obtain a bound Ui on the maximum number of
uncoloured external neighbours of a vertex of ∪jAj after the ith iteration. We also obtain
upper and lower bounds d+i (v) and d−i (v) on the number of uncoloured neighbours of a vertex
v ∈ H after the ith iteration. These bounds are defined as follows:

U0 = U ; for each i > 0, Ui =
(
1− 1

2
∆−ε

)
× Ui−1 + U

49/50
i−1

and for each vertex v ∈ H,

d+0 (v) = degH(v); for each i > 0, d+i =
(
1− 1

2
∆−ε

)
× d+i−1 + (d+i−1)

49/50

d−0 (v) = degH(v); for each i > 0, d−i =
(
1− 1

2
∆−ε

)
× d−i−1 − (d−i−1)

49/50

Some standard analysis shows that the small order terms in these definitions do not
accumulate substantially, and so we obtain:

Lemma 34 (a) if Ui ≥ ∆150ε, then

Ui ≤ 2
(
1− 1

2
∆−ε

)i

U ;
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(b) if d−i (v) ≥ ∆150ε, then

1

2

(
1− 1

2
∆−ε

)i

degH(v) ≤ d−i (v) ≤ d+i (v) ≤ 2
(
1− 1

2
∆−ε

)i

degH(v).

We will defer the proof until the end of this subsection. For now, note the immediate
corollary:

Corollary 35 (a) if d−i (v) ≥ ∆150ε, then d−i (v) ≥ 1
4
d+i (v);

(b) if d−i (v), Ui ≥ ∆150ε, then d−i (v) ≥ 1
4
Ui × (degH(v)/U).

Proof of Lemma 32 We will apply the Lovasz Local Lemma to each iteration of the
procedure to prove inductively that with positive probability, after i ≤ I iterations:

(8.1) If Ui ≥ 1
2
∆200ε then every uncoloured vertex in ∪jAj has at most Ui uncoloured external

neighbours in H.

(8.2) For every vertex v ∈ H, if d−i (v) ≥ 1
8
∆200ε then v has between d−i (v) and d+i (v)

uncoloured neighbours in H.

(8.3) For every uncolouredAj and colour x, |Notbig(j, x)| increases by at most ∆19/20 −ε/4 log∆
during iteration i.

These will establish Lemma 32 as follows. (1 − 1
2
∆−ε)I∆ < 1 < 1

2
∆150ε, so by Lemma

34, UI < ∆150ε < 1
2
∆200ε and d−i (v) < ∆150ε < 1

8
∆200ε for all v (since degH(v) ≤ ∆ by

Lemma 12(d,e) as H ⊆ B ∪ S). Furthermore, these parameters decrease by less than half,
and so there are i1, i2(v) < I such that 1

2
∆200ε < Ui1 < ∆200ε and, if degH(v) > ∆200ε,

1
8
∆200ε < d−i2(v)(v) <

1
4
∆200ε. Thus (8.1) applied at iteration i1 establishes part (a) and (8.2)

applied at iteration i2(v) establishes part (b) as d
+
i2(v)

(v) < 4d−i2(v)(v) < ∆200ε (by Corollary
35(a)). Part (c) follows from (8.3) since the number of iterations is I = d2∆ε log∆e.

Our statements hold trivially for i = 0. Consider some larger value of i ≤ I and suppose
that the statements hold for all smaller values of i. We will prove that with positive prob-
ability, the random choices made during iteration i will result in the statements holding for
this value i.

For each uncoloured vertex v ∈ A, define E1(v) to be the event that v violates (8.1). For
each vertex v ∈ H, define E2(v) to be the event that v violates (8.2). For each uncoloured
Aj ∈ A and colour x define E3(j, x) to be the event that Aj, x violate (8.3). We will prove
that each of these events holds with probability at most ∆−10.
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For each vertex v, define D(v) to be the set consisting of: (i) E1(u) and E2(u) for
every vertex u of distance at most 4 from v; and (ii) E3(j, x) for every colour x and every
uncoloured set Aj containing a vertex of distance at most 4 from v. For each uncoloured set
Aj, define D(j) = ∪v∈Aj

D(v). It is straightforward to check that the random choices which
determine whether E1(v) holds have no affect on whether any events outside of D(v) hold;
it follows that E1(v) is mutually independent of all events outside of D(v). Similarly, E2(v)
and E3(j, x) are mutually independent of all events outside of D(v) and D(j) respectively.
Since F has maximum degree at most 109∆, each D(v) has size less than 3× 109c∆4 and so
each D(j) has size less than 3× 109c∆5 (as |Aj| ≤ ∆). Thus with positive probability, none
of these events hold since 3× 109c∆5 ×∆−10 < 1

4
.

Bounding Pr(E3(j, x)):

We begin with Pr(E3(j, x)) as it is the shortest of the three arguments. Consider any
uncoloured Aj and colour x. We will apply Lemma 30 with Q = max(Ui−1,

1
2
∆200ε) to bound

Pr(E3(j, x)). To do so, we will show that for every vertex v ∈ H, at the beginning of
iteration i we have |L(v)| > Q∆1/5.

At most degH(v) colours are removed from L(v). So by (P8.2), |L(v)| ≥ X ≥ 1
2

√
∆. This

establishes |L(v)| > Q∆1/5 for the case where Q < 1
2
∆3/10 and so we can assume Q = Ui−1

(since ε < 3
2000

) and Ui−1 ≥ 1
2
∆3/10. By (P8.2), L(v) initially has size at least 5U∆1/5, so if

degH(v) < 4U∆1/5 then L(v) will always have size at least U∆1/5 ≥ Ui−1∆
1/5. Suppose that

degH(v) ≥ 4U∆1/5. Using the facts that Ui−1 ≥ 1
2
∆3/10 >> ∆150ε and that d−j−1(v) >

1
2
d−j (v),

a simple inductive application of Corollary 35(b) implies that d−j (v) ≥ 1
4
Uj × (4∆1/5) >>

∆150ε for every j ≤ i− 1; in particular, d−i−1(v) ≥ Ui−1∆
1/5 = Q∆1/5. Since |L(v)| is at least

the number of uncoloured neighbours of v in H, (8.2) establishes that |L(v)| > Q∆1/5.

By applying induction, and using (8.1), we know that at the beginning of iteration i,
every vertex in Aj has at most Q uncoloured neighbours in H. Also, the probability that a
vertex v ∈ H receives colour x is at most 1/L(v) > 1/(Q∆1/5). Furthermore, these colour
assignments are independent and so (P7.1) holds. Therefore, since ∆19/20/ log2∆ > ∆37/40,
Lemma 30 implies that Pr(E3(j, x)) < exp(−∆1/40) < ∆−10, as required.

Bounding Pr(E1(v)):

Next, we turn to Pr(E1(v)). Consider any uncoloured vertex v ∈ ∪jAj. Since H ⊂
F − ∪jAj, every neighbour of v in H is external. So by induction, we can assume that at
the beginning of the ith iteration, v has at most Ui−1 neighbours in H that are not coloured.
Let Y be the number of these neighbours which have colours at the end of iteration i. The
probability of any particular uncoloured vertex becoming coloured in iteration i is exactly
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1
2
∆−ε, and so Exp(Y ) = 1

2
∆−εUi−1. Thus, if E1(v) holds, then Y must differ from its mean

by more than U
49/50
i−1 .

Let Y1 be the number of neighbours of v that get activated, and let Y2 be the number
that get activated and have their colours removed. Note that Y = Y1 − Y2 and so if E1(v)

holds then either Y1 or Y2 differs from its mean by more than 1
2
U

49/50
i−1 . Y1 is a binomial

variable. So the Chernoff Bound implies that the probability of Y1 differing from its mean
by that much is at most 2 exp(−U

49/25
i−1 /(12Ui−1∆

−ε)) < 1
2
∆−10, since Ui−1 >

1
2
∆150ε. So we

turn our attention to Y2.

Rather than showing directly that Y2 is concentrated, it will be more convenient to deal
with Y ′

2 which we define to be the number of uncoloured neighbours of v that are activated
and (i) have their colours removed, or (ii) are assigned a colour that is assigned to at least
log∆ neighbours of v. Clearly Y2 ≤ Y ′

2 . Furthermore, it is straightforward to show that,
with high probability, Y2 = Y ′

2 as follows:

For each vertex u, we will use d̃(u) to denote the number of neighbours of u in H that
do not have colours at the beginning of iteration i.

If Y2 6= Y ′
2 then some colour x must be assigned to at least log∆ neighbours of v.

Applying (8.1), (8.2) and Lemma 34 we have: d̃(v) ≤ Ui−1 ≤ 2(1− 1
2
∆−ε)i−1U , and for every

u ∈ NH(v), d̃(u) ≥ d−i−1(u) ≥ 1
2
(1 − 1

2
∆−ε)i−1 degH(u). By (P8.2) the number of colours

available for u ∈ NH(v) is at least

max{degH(u) +X, 5U ×∆1/5} − (degH(u)− d−i−1(u))

≥ max{degH(u) +X, 5U ×∆1/5} −
(
1− 1

2

(
1− 1

2
∆−ε

)i−1
)
degH(u)

≥ max{degH(u) +X, 5U ×∆1/5} −
(
1− 1

2

(
1− 1

2
∆−ε

)i−1
)
max{degH(u) +X, 5U ×∆1/5}

≥ 1

2

(
1− 1

2
∆−ε

)i−1

× 5U∆1/5

≥ 5

4
∆1/5d̃(v).

Therefore,

Pr(Y2 6= Y ′
2) ≤ c×

(
d̃(v)

log∆

)(
5

4
∆1/5d̃(v)

)− log∆

≤ c×
(

4e/5

∆1/5 log∆

)log∆

< 1
4
∆−10.

Note that, since |Y2 − Y ′
2 | ≤ ∆, this implies that |Exp(Y2)− Exp(Y ′

2)| < 1
4
∆−9 = o(1).
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We wish to show that Pr(|Y2 − Exp(Y2)| > 1
2
U

49/50
i−1 ) < 1

2
∆−10. By the preceding bound

on Pr(Y2 6= Y ′
2) and on |Exp(Y2)−Exp(Y ′

2)|, it will suffice to show that Pr(|Y ′
2−Exp(Y ′

2)| >
1
4
U

49/50
i−1 ) < 1

4
∆−10.

We will apply Talagrand’s Inequality. It will be helpful to consider each v ∈ H to be
involved in two random trials. The first one combines Steps 1 and 2: v is assigned the label
“unactivated” or “activated with colour x” for some x ∈ L(v); the first label is given with
probability 1 −∆−ε, and each of the other labels with probability ∆−ε/|Lv|. In the second
random trial, v is labelled “uncoloured” with probability q(v), even if v was unactivated or
lost its colour in Step 3. Of course, from the view of the algorithm, it is pointless to carry
out the second step on vertices that don’t have colours at the beginning of Step 4, but doing
so has the technical advantage that all our random trials are independent in the sense that
the outcome of one trial does not affect whether another is carried out.

If Y ′
2 ≥ s then there is a set of at most (log∆) × s random trials that certify this

fact, namely for each of s vertices counted by Y ′
2 : the activation and colour assignment of

the vertex and either the choice to uncolour that vertex in Step 4, or the activation and
assignment of the same colour to either a neighbour of the vertex or to log∆ − 1 other
vertices in N(v). Also, changing the outcome of one of the random trials can only affect Y ′

2

by at most log∆: in the extreme cases, changing the colour of u from Red to Blue either
(i) causes u and fewer than log∆ of its neighbours with colour Blue to be uncoloured, (ii)
causes u and log∆− 1 other vertices in N(v) with colour Blue to be counted by Y ′

2 , or (iii)
reduces the number of vertices in N(v) with colour Red to below log∆ thus causing them
all to not be counted by Y ′

2 . (Remark: this is the benefit of working with Y ′
2 rather than Y2;

a single colour assignment could potentially affect Y2 by a much larger amount.) Also note
that Y2 ≤ Ui−1 and so Exp(Y2) ≤ Ui−1. Therefore, applying (2) with c = r = log∆ yields:

Pr(|Y ′
2 − Exp(Y ′

2)| > 1
4
U

49/50
i−1 ) < 4 exp(−

(
1
4
U

49/50
i−1 )2/(32 log3∆(Ui−1 +

1
4
U

49/50
i−1 ))

)
< 1

4
∆−10,

since Ui−1 ≥ ∆200ε. This implies Pr(E1(v)) < ∆−10.

Bounding Pr(E2(v)).

The proof that Pr(E2(v)) < ∆−10 is very similar to that for E1(v). The main difference
is that for each u ∈ NH(v), degH(u) may be a lot bigger than degH(v), and this makes it
more difficult to bound the analogue of Pr(Y ′

2 6= Y2).

For each vertex u, we will again use d̃(u) ≤ d+i−1(u) to denote the number of neighbours
of u in H that do not have colours at the beginning of iteration i. We use Lu to denote
the set of colours that are available for u at the beginning of iteration i. By (P8.2), |Lu| ≥
d̃(u) +X > d̃(u).
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Consider any v ∈ H with d−i (v) ≥ 1
8
∆200ε. We define Zi analogously to Yi. So we let

Z1 be the number of neighbours of v that get activated, and let Z2 be the number that get
activated and then have their colours removed. Again, it suffices to prove that with high
probability, neither Z1 nor Z2 differs from its mean by more than 1

2
(di−1(v)

−)49/50. The
Chernoff Bound implies that the probability of Z1 differing from its mean by that much is
at most

2 exp
(
−(d−i−1(v))

49/25/(12d−i−1(v)∆
−ε)

)
<

1

2
∆−10,

since d−i−1(v) ≥ d−i (v) ≥ 1
8
∆200ε. So we turn our attention to Z2.

We partition the vertices of NH(v) that are not coloured at the beginning of iteration i
into NC ∪ND where NC contains those vertices u with d̃(u) ≥ d̃(v)3/4 and ND contains those
with d̃(u) < d̃(v)3/4. We let ZC , ZD be the number of vertices in NC , ND respectively that
get activated and uncoloured during this iteration. Thus Z2 = ZC + ZD.

A similar argument to that used for Y2 shows that ZC is concentrated: Let Z ′
C be the

number of vertices in NC that get activated and (i) are uncoloured or (ii) are assigned a
colour that is assigned to at least d̃(v)3/10 members of NC . Since |NC | ≤ d̃(v) and each
vertex u ∈ NC has Lu ≥ d̃(u) ≥ d̃(v)3/4, the probability that ZC 6= Z ′

C is at most

c×
(

d̃(v)

d̃(v)3/10

)
(d̃(v)3/4)−d̃(v)3/10 < ∆×

(
ed̃(v)

d̃(v)3/10d̃(v)3/4

)d̃(v)3/10

< 1
8
∆−8,

since d̃(v) ≥ d−i−1(v) >
1
8
∆200ε. As |ZC−Z ′

C | ≤ ∆, this implies |Exp(ZC)−Exp(Z ′
C)| = o(1).

By the same arguments as for Y ′
2 : If Z ′

C ≥ s then there are d̃(v)3/10s trials whose
outcomes certify this fact. Each trial can affect Z ′

C by at most d̃(v)3/10. So applying (2) with
c = r = d̃(v)3/10 yields

Pr(|Z ′
C − Exp(Z ′

C)| > 1
4
(d−i−1(v))

49/50)

≤ 4 exp
(
− 1

16
(d−i−1)

49/25/(128(d−i−1(v))
6/10(d−i−1(v))

3/10(d−i−1(v) +
1
4
(d−i−1(v))

49/50))
)

< 1
8
∆−10

and so
Pr(|ZC − Exp(ZC)| > 1

4
(d−i−1(v))

49/50) ≤ 1
8
∆−10.

ZD requires a bit more care. We first expose the assignments to all vertices other than
ND - we denote this assignment by H. We will then focus on the conditional distribution
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of ZD. Our first step is to show that, with high probability, the conditional mean does not
differ from the mean by very much:

Claim: Pr(|Exp(ZD|H)− Exp(ZD)| > 1
2
(d−i−1(v))

49/50) < 1
8
∆−10.

Proof: For any assignment H to the vertices of H − ND, we use µH to denote the
conditional expectation Exp(ZD|H). Note that, the expected value of µH over the space of
random colourings of H −ND is equal to the expected value of ZD over the space of random
colourings of H. So our claim simply says that µH is concentrated.

For each u ∈ ND, we define Fu = Fu(H) ⊆ Lu to be the set of colours in Lu that are
assigned by H to vertices in NH(u)−ND. We start by using Talagrand’s Inequality to show
that |Fu| is highly concentrated.

Fu is determined by the independent colour assignments to the vertices of H − ND. If
|Fu| ≥ s then there is a set of s assignments that certifies this fact; namely the assignments
of different colours to s vertices. The assignment to one vertex can affect |Fu| by at most one,
since it contributes at most one new colour to Fu. Since |Fu| ≤ |Lu| we have Exp(Fu) < |Lu|.
Therefore, applying (2) with c = r = 1 yields:

Pr(|Fu| − Exp(|Fu|) > ∆−1/5|Lu|) < 4 exp
(
−∆−2/5|Lu|2/(32(|Lu|+∆−1/5|Lu|))

)
< 1

8
∆−10,

since by (P8.2) we have |Lu| ≥ X ≥ 1
2

√
∆.

Therefore, the probability that there is at least one vertex u ∈ ND for which |Fu| differs
from its mean by more than ∆−1/5|Lu| is at most |ND| × 1

8
∆−11 ≤ 1

8
∆−10. So we assume

that there is no such u, and show that this implies |µH − Exp(µH)| < 1
2
(d−i−1(v))

49/50.

Given a particular assignment H to H −ND, and colour γ ∈ Lu, the probability that u
keeps its colour if it is assigned γ is 0 if γ ∈ Fu and otherwise is (1−q(u))

∏
w(1− 1

|Lw|) where
the product is over all vertices w ∈ N(u)∩ND with γ ∈ L(w). Noting that the latter product
is at most 1 and is not a function of Fu, it follows that changing whether γ ∈ Fu affects the
probability that u retains its colour by at most 1/|Lu|. Therefore, since |Fu| differs from its
mean by at most ∆−1/5|Lu| the conditional probability that u is uncoloured differs from its
mean by at most ∆−1/5. µH is the sum over all u ∈ ND of these probabilities and so

|µH − Exp(µH)| ≤ ∆−1/5|ND| < 1

2
(d−i−1(v))

49/50,

since |ND| ≤ d+i−1(v) < 4d−i−1(v) (by Corollary 35(b)), and d−i−1(v) ≤ ∆. This proves our
claim. QED
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We define Z ′
D to be the number of vertices in ND that get activated and have their colours

removed because (i) they are assigned the same colour as a neighbour outside of ND or (ii)
they are assigned the same colour as a neighbour w ∈ ND and that colour is assigned to
fewer than d̃(v)3/10 vertices in N(w) ∩ ND. Note that this definition is a bit different than
the definition of Z ′

C . If ZD 6= Z ′
D, then some u ∈ ND gets the same colour as at least d̃(v)3/10

of its neighbours. Since each such u has at most d̃(v)3/4 neighbours, and every vertex w has
Lw ≥ X ≥ 1

2

√
∆ (by (P8.2), for every choice of H the conditional probability that ZD 6= Z ′

D

is at most:

|ND| ×
(

d̃(v)3/4

degH(v)
3/10

)
(
1

2

√
∆)− degH(v)3/10 < ∆×

(
2e∆3/4

∆3/10
√
∆

)d̃(v)3/10

< 1
8
∆−10.

Since |ZD| − |Z ′
D| ≤ ∆, for every choice of H we have |Exp(ZD|H)− Exp(Z ′

D|H)| = o(1).

After conditioning on H, Z ′
D is determined by |ND| ≤ d̃(v) assignments and each assign-

ment can affect Z ′
D by at most d̃(v)3/10. Note that d̃(v) ≤ d+i−1(v) < 4d−i−1(v) (by Corollary

35(a)). So the Simple Concentration Bound with c = (4d−i−1(v))
3/10 yields that for any choice

of H we have

Pr(|Z ′
D − Exp(Z ′

D|H)| > 1
4
(d−i−1(v))

49/50|H)

< 2 exp
(
− 1

16
(d−i−1(v))

49/25/(2× (4d−i−1(v))
3/5 × 4d−i−1(v))

)

< 1
8
∆−10,

since d−i−1(v) ≥ 1
8
∆200ε. This, along with our claim and our bound on Pr(ZD 6= Z ′

D), implies
that Pr(|ZD − Exp(ZD)| > 1

2
(d−i−1(v))

49/50) < 1
2
∆−10. Along with the analogous bound for

ZC , we have
Pr(E2(v)) < ∆−10.

2

Proof of Lemma 33 We will apply the Lovasz Local Lemma. For each uncoloured
Ai and colour x, define E(i, x) to be the event that more than 1

2
∆19/20 vertices of Ai have

neighbours outside of Big+i with colour x in their sublists. We will apply Lemma 30 with Q =
∆200ε to bound the probability of E(i, x). Each vertex v ∈ Ai has at most ∆200ε uncoloured
external neighbours (by Lemma 32(b)). Each such neighbour u chooses x for its sublist with
probability at most 2∆200ε/|L(u)| < 1/(∆200ε∆1/5), since by (P8.2), |L(u)| ≥ X ≥ 1

2

√
∆

and ε < 3
40000

. Furthermore, these colour assignments are made independently and so (P7.1)
holds. Since ∆19/20 > ∆37/40, applying Lemma 30 yields Pr(E(i, x)) < exp(−∆1/40) < ∆−10.
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For each uncoloured Ai, define D(i) to be the set of events consisting of E(j, x) for every
colour x and uncoloured Aj such that Aj contains a vertex within distance 2 of some vertex in
Ai. It is straightforward to check that the random choices which determine whether E(i, x)
holds have no affect on whether any events outside of D(i) hold; it follows that E(i, x) is
mutually independent of all events outside of D(i). Since F has maximum degree at most
109∆, each D(i) has size less than 109c∆3. Thus with positive probability, none of these
events hold since c∆3 ×∆−10 < 1

4
. 2

We now close this subsection with our deferred proof:

Proof of Lemma 34:

Part (a): Set θ = 1− 1
2
∆−ε. We use induction to prove the stronger statement:

Ui ≤ θiU + (θiU)99/100.

The base case is trivial as U0 = U . Assuming the statement holds for i − 1, we have
Ui−1 ≤ θi−1U + (θi−1U)99/100 < 2θi−1U < 4θiU (since θ > 1

2
). Since Ui−1 > Ui ≥ ∆150ε, this

implies
θiU > 1

4
∆150ε. (4)

We also have:

Ui = θUi−1 + U
49/50
i−1

≤ θ
(
θi−1U + (θi−1U)99/100

)
+

(
θi−1U + (θi−1U)99/100

)49/50

< θiU + θ
99
100

i+
1

100U99/100 + 249/50θ
49
50

i− 49
50U49/50

< θiU + θ
99
100

i+
1

100U99/100 + 2θ
49
50

iU49/50 (since 2
1
50 > θ−

49
50 )

< θiU + θ
99
100

iU99/100(θ1/100 + 2(θiU)−1/100)

< θiU + (θiU)99/100((1− 1

2
∆−ε)1/100 + 2(1

4
∆150ε)−1/100) by (4)

< θiU + (θiU)99/100(1− 1
200

∆−ε + 3∆−1.5ε)

< θiU + (θiU)99/100.

Part (b): It is trivial that d−i (v) ≤ d+i (v). The rightmost inequality follows from a nearly
identical proof to that of part (a); we omit the repetitive details. So we focus on the leftmost
inequality - the lower bound on d−i (v). We will use induction to prove a stronger statement:

d−i (v) ≥ θi degH(v)− (θi degH(v))
99/100.
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The argument is very close to that of part (a), but has a few slight differences. Again, the
base case is trivial and we have θi degH(v) >

1
4
∆150ε by the same reasoning as for (4). We

also have (by the aforementioned omitted proof) the upper bound

d−i−1(v) ≤ d+i−1(v) ≤ θi−1 degH(v) + (θi−1 degH(v))
99/100 < 2θi−1 degH(v) < 4θi degH(v),

which we will use to obtain the second line below.

d−i (v) = θd−i−1(v)− d−i−1(v)
49/50

≥ θ
(
θi−1 degH(v)− (θi−1 degH(v))

99/100
)
−

(
4θi degH(v)

)49/50

> θi degH(v)− θ
99
100

i degH(v)
99/100(θ1/100 + 4(θi degH(v))

−1/100)

> θi degH(v)− (θi degH(v))
99/100,

where the last line follows by the same argument as in part (a). 2

9 Colouring Cliques

In this section, we present the technique that we use for colouring the vertices of ∪iAi.

In this setting, F is partially coloured so that no two neighbours have the same colour.
We have a collection of cliques A′ ⊂ {A1, ..., At} where no vertices in the cliques of A′ are
coloured. We have the following condition on the colours appearing outside of the cliques.
(Recall that for v ∈ Ai, an external neighbour of v is a neighbour of v that is not in Ai∪Alli.)

(P9.1) For each Ai ∈ A′ and each colour x, Notbig(i, x) ≤ 10∆19/20.

(P9.2) Every uncoloured vertex in some Ai /∈ A′ has at most 30∆1/4 external neighbours.

Lemma 36 We can extend our partial colouring to all vertices of the cliques in A′ such that
for every uncoloured Ai /∈ A′ and every colour x, Notbig(i, x) increases by at most ∆19/20.

We use a two step procedure. In the first step, we assign a random permutation of colours
to the vertices of Ai. Possibly some vertices will need to be recoloured because they receive
a colour that is on an external neighbour; those vertices will be recoloured more carefully in
the second step. Essentially the same procedure was introduced in [25], and since then has
been used often in similar situations.
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Step 1: For each Ai ∈ A′, we choose uniformly at random a set of |Ai| colours that don’t
appear on Alli and we assign a random permutation of those colours onto the vertices of Ai.
Note that by Lemma 12(c), at least |Ai| such colours are available. We define:

• Tempi is the set of vertices v ∈ Ai that receive a colour which is also on an external
neighbour of v.

We remark that that colour might have been on the external neighbour of v in the given
partial colouring, or it might have been assigned to the external neighbour during Step 1.

Lemma 37 With positive probability:

(a) For each Ai ∈ A′, |Tempi| ≤ 108
√
∆.

(b) For each uncoloured Ai /∈ A′ and each colour x, at most 1
2
∆19/20 vertices in Ai have an

external neighbour not in Big+i that receives x.

We prove this lemma in Subsection 9.1. We choose a colouring satisfying conditions (a)
and (b) of Lemma 37. For each vertex v, we use γ(v) to denote the colour of v.

Step 2: For each Ai ∈ A′ and each vertex v ∈ Tempi, we define Swappablev to be the
set of vertices u ∈ Ai − Tempi that can swap colours with v. More specifically, u ∈ Ai is in
Swappablev if:

(a) u /∈ Tempi;

(b) γ(u) does not appear on any external neighbour of v;

(c) γ(v) does not appear on any external neighbour of u.

By Lemma 37(a), at most 108
√
∆ vertices u ∈ Ai violate (i). By Lemma 12(b), there are

at most 108
√
∆ colours appearing on external neighbours of v and so at most 108

√
∆ vertices

violate (b). Since Big+i is a clique of F (by Lemma 12(g)) at most one vertex of Big+i has
colour γ(v). So Lemma 12(c) and the fact that γ(u), γ(v) do not appear on Alli imply that
at most 3

4
∆ + 108

√
∆ vertices u violate (c) because γ(v) appears on an external neighbour

of u in Big+i . At the beginning of this procedure, at most 10∆19/20 vertices u ∈ Ai had γ(v)
on an external neighbour not in Big+i (by (P9.1)), and by Lemma 37(b), at most 1

2
∆19/20

vertices u ∈ Ai had such an external neighbour receive γ(v) during Part 1. So in total, fewer
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than 3
4
∆ + 11∆19/20 vertices u ∈ Ai violate (c). Therefore, since |Ai| ≥ ∆ − 108

√
∆ (by

Lemma 12(a)), we have:

|Swappablev| ≥ |Ai| − 108
√
∆− 108

√
∆− 3

4
∆− 11∆19/20 > ∆/10.

For each Ai ∈ A′ and each v ∈ Tempi, we choose 104 uniformly random members of
Swappablev. We call these vertices candidates of v. We say that a candidate u of v is bad if
either:

(i) u is a candidate of some other vertex;

(ii) v has an external neighbour w that has a candidate w′ with γ(w′) = γ(u);

(iii) v has an external neighbour w that is a candidate for exactly one vertex w′ and γ(w′) =
γ(u);

(iv) u has an external neighbour w that has a candidate w′ with γ(w′) = γ(v); or

(v) u has an external neighbour w that is a candidate for exactly one vertex w′ and
γ(w′) = γ(v).

A candidate u of v is good if it is not bad.

Lemma 38 With positive probability:

(a) For each Ai ∈ A′, every v ∈ Tempi has a good candidate.

(b) For each uncoloured Ai /∈ A′ and each colour x, at most 1
2
∆19/20 vertices in Ai have

a neighbour not in Big+i that either has a candidate of colour x or is a candidate for
some vertex of colour x.

We prove this lemma in Subsection 9.1.

We choose candidates satisfying conditions (a) and (b) of Lemma 38. For each v ∈ Tempi,
we swap the colour of v with that of one of its good candidates. Our definition of good ensures
that we have a proper partial colouring of F .

Proof of Lemma 36: Consider the extension of the colouring to A′ obtained using the
process above. The fact that Notbig(i, x) does not increase by more than ∆19/20 follows from
Lemmas 37(b) and 38(b), noting that a vertex can only be given the colour x in Step 2 if it
has a candidate with colour x or if it is a candidate for a vertex with colour x. 2
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9.1 Proofs of Lemmas 37 and 38

We say that Ai, Aj are adjacent if some u ∈ Ai is adjacent to some v ∈ Aj. We say they are
at distance at most two if they are identical, or adjacent, or some Ak is adjacent to Ai and
to Aj.

Proof of Lemma 37 We will use the Lovasz Local Lemma. For each Ai ∈ A′, we define
E1(i) to be the event that |Tempi| > 108

√
∆. For each uncoloured Ai /∈ A′ and colour x, we

define E2(i, x) to be the probability that more than 1
2
∆19/20 vertices in Ai have an external

neighbour not in Big+i that receives x.

Define D(i) to be the set of events E1(j) and E2(j, x) defined for any colour x and any
Aj at distance at most two from Ai. It is straightforward to check that the random choices
which determine whether E1(i) holds have no affect on whether any events outside of D(i)
hold; it follows that E1(i) is mutually independent of all events outside of D(i). Similarly,
E2(i, x) is also mutually independent of all events outside of D(i). Since F has maximum
degree at most 109, each Aj is at distance at most two from fewer than 109∆4 other sets and
so each D(i) has size less than 2 × 109c∆4. Thus with positive probability, none of these
events hold since 2× 109c∆4 ×∆−10 < 1

4
.

We actually bound the conditional probability of E1(i) given the colour assignments
for all cliques other than Ai, and the choice of |Ai| colours to be used on Ai. Summing
over all possible choices gives us the bound on the unconditional probability of this event.
So, our random experiment will be only the choice of the permutation of those colours
onto the vertices of Ai. For any vertex v ∈ Ai, the probability that v ∈ Tempi is at
most 108

√
∆/|Ai| since v has at most 108

√
∆ external neighbours by Lemma 12(b). So

Exp(|Tempi|) ≤ 108
√
∆.

An easy application of McDiarmid’s Inequality shows that, given our conditioning, |Tempi|
is highly concentrated. |Tempi| is determined by the random permutation from the |Ai|
colours to the vertices of Ai. It will be more convenient for us to view this step as a permu-
tation from the vertices to the colours, rather than vice versa.

If |Tempi| ≥ s then the colours of s members of Tempi certify that fact. Switching
the colours of two vertices in Ai only affects whether those two vertices are in Tempi. So
applying (3) with c = r = 1 yields:

Pr(E1(i)) ≤ Pr(|Tempi|−Exp(|Tempi|) >
√
∆) < 4 exp

(
−(

√
∆)2/(128× (108 + 1)

√
∆)

)
< ∆−10.

We apply Lemma 30 with Q = 30∆1/4 to bound E2(i, v). For each Ai and colour x, each
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vertex v ∈ Ai has at most 30∆1/4 external neighbours (by (P9.2)) and each such neighbour in
some Aj is assigned x with probability at most 1

|Aj | <
2
∆
< 1/(30∆1/4 ×∆1/5). Furthermore,

at most one vertex in each Ai is assigned x and the random permutations for different cliques
are independent; so (P7.1) holds. Thus applying Lemma 30 yields: the probability that more
than 1

2
∆19/20 vertices v ∈ Ai have an external neighbour not in Big+i that is assigned x is at

most exp(−∆1/40) < ∆−10. 2

Proof of Lemma 38 We will again use the Lovasz Local Lemma. For each v in some
Tempi, we define E1(v) to be the event that v does not have a good candidate. For each
uncoloured Ai /∈ A′ and colour x, we define E2(i, x) to be the probability that more than
1
2
∆19/20 vertices in Ai have an external neighbour not in Big+i that either has a candidate of

colour x or is a candidate of a vertex with colour x.

As in the previous proof, we define D(i) to be the set of events (i) E1(v) where v ∈ Aj

for some Aj at distance at most two from Ai and (ii) E2(j, x) for any colour x and any Aj

at distance at most two from Ai. For each v ∈ Ai, it is straightforward to check that the
random choices which determine whether E1(v) holds have no affect on whether any events
outside of D(i) hold; it follows that E1(v) is mutually independent of all events outside of
D(i). Similarly, E2(i, x) is also mutually independent of all events outside of D(i). Since F
has maximum degree at most 109, each Aj is at distance at most two from fewer than 109∆4

other sets and each Aj contains at most c vertices. So each D(i) has size less than 2×109c∆4.
Thus with positive probability, none of these events hold since 2× 109c∆4 ×∆−10 < 1

4
.

It will be useful to note that for any vertex u which chooses candidates, the probability
that a particular vertex w ∈ Swappablev is chosen is 104/|Swappablev| ≤ 105/∆.

To bound Pr(E1(v)) for some v ∈ Tempi, we will choose the candidates in two rounds.
In the first round, we choose the candidates for all vertices but v; in the second round, we
choose the candidates for v.

Let Y be the number of vertices u ∈ Swappablev that meet conditions (iv) or (v) of the
definition of bad; note that Y is determined by the candidates selected in the first round.
We will use Lemma 30 to show that, with high probability, Y is not too large. For each
vertex u ∈ Swappablev, we define θu to be the set of neighbours of u in A′ − Ai. Thus,
since every vertex in A′ has at most 108

√
∆ external neighbours, each set θu has size at most

108
√
∆ < 2∆9/10 and no vertex lies in more than Q = 108

√
∆ of these sets. We consider a

vertex in ∪u∈Swappablevθu to be marked if it chooses a candidate with colour γ(v) or if it is
chosen as a candidate for a vertex of colour γ(v). Each of these vertices has at most one
potential candidate with colour γ(v) and can be chosen as a candidate for at most one vertex
with colour γ(v) (and both cannot occur). So the probability that a vertex is marked is at
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most 105/∆ < 1/(Q × ∆1/5). Furthermore, it is easy to see that (P7.1) holds. Therefore,
Lemma 30 implies that:

Pr(Y > ∆39/40) ≤ exp
(
−∆1/40

)
<

1

2
∆−10.

Now we analyze the second round. By Lemma 37(a), at most 104 × 108
√
∆ members

of Swappablev meet condition (i) of the definition of bad. By Lemma 12(b), v has at most
108

√
∆ external neighbours, and each has at most 104 candidates; this, along with the fact

that every colour γ appears on at most one member of Swappablev, implies that at most
104 × 108

√
∆ members of Swappablev violate (ii) or (iii). So if Y ≤ ∆39/40 then the number

of bad members of Swappablev is at most ∆39/40 + 104 × 108
√
∆+ 104 × 108

√
∆ < 2∆39/40,

and so the probability that v does not choose a good candidate during the second round is
at most (

2∆39/40

∆/10

)104

<
1

2
∆−10.

Therefore, Pr(E1(v)) ≤ 1
2
∆−10 + 1

2
∆−10 = ∆−10.

For each uncoloured Ai and colour x, each vertex v ∈ Ai has at most 30∆1/4 external
neighbours by (P9.2). Each such neighbour in some Aj chooses a candidate with colour x or
is chosen as a candidate by the at most one vertex in its clique with colour x with probability
at most 104/∆ < 1/(30∆1/4 ×∆1/5), and it is easy to check that (P7.1) holds. So applying
Lemma 30 with Q = 30∆1/4 yields that Pr(E2(i, x)) ≤ exp(−∆1/40) < ∆−10. 2

10 The Proof At Last

We now prove Lemma 13 using a five phase procedure to colour the graph F from Lemma 12.

10.1 Phase I

In this phase, we colour S.

Step 1: Here we obtain a colouring of some of S by applying the following lemma.

Lemma 39 There is a colouring of the subgraph of F induced by S such that:
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(a) For every v ∈ S either dH(v) < ∆ − 3
√
∆, or there are at least 3

√
∆ colours that

appear at least twice in N(v) ∩ S;

(b) For every i, x, Notbigi,x ≤ ∆19/20.

(c) Every vertex in S has at most 19∆
20

coloured neighbours.

We give the proof of this lemma below.

Step 2 We colour the remainder of S using the procedure from Section 8.

We set H to be the subgraph of F induced by the uncoloured vertices of S. For each
u ∈ H we initialize L(u) to be the set of colours that do not appear on neighbours of u in
F . By Lemma 12(b) we can take U = 108

√
∆. By Lemma 39(a), L(u) ≥ degH(u) + 3

√
∆

and so we can take X = 3
√
∆. Lemma 39(c) implies that |L(u)| ≥ c− 19∆

20
> 5∆1/5U , thus

satisfying (P8.2).

Therefore, Lemmas 39(b) and 31 imply that we can extend our colouring to the vertices
of S so that no two neighbours have the same colour and:

For every i, x,Notbigi,x ≤ 2∆19/20. (5)

We close this subsection with:

Proof of Lemma 39 The proof is very similar to that of Lemma 10. We will apply the
Local Lemma to the same process studied there. For each v ∈ S with more than ∆− 3

√
∆

neighbours in H, define E1(v) to be the event that v has fewer than 3
√
∆ colours that

appear at least twice in its neighbourhood. For each i, x, define E2(i, x) to be the event
that |Notbigi,x| > ∆19/20. For each v ∈ S, define E3(v) to be the event that v has more
than 19∆/20 coloured neighbours. We will prove below that the probability of each of these
events is at most ∆−10.

Since every vertex in S has degree at most ∆ (by Lemma 12(d)), it is straightforward
to check that each event is mutually independent of all but fewer than 3c∆5 other events.
Thus, our lemma follows from the Lovasz Local Lemma since ∆−10 × 3c∆5 < 1

4
.

We gave already the bound on the probability of E1(v) in the proof of Lemma 10. We
consider now E2(i, v). For each Ai and colour x, each vertex v ∈ Ai has at most 108

√
∆

external neighbours (by Lemma 12(b)) and each such neighbour is activated and assigned x
with probability at most 9

10
× 1

c
< 1

∆
< 1/(108

√
∆×∆1/5). Furthermore, these assignments

are made independently and so (P7.1) holds. Thus applying Lemma 30 with Q = 108
√
∆
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yields: the probability that more than ∆19/20 vertices v ∈ Ai have an external neighbour not
in Big+i that is assigned x in Step 2 is at most exp(−∆1/40) < ∆−10. This is clearly an upper
bound on Pr(E2(i, x)).

Finally, the number of neighbours of v that are activated is distributed likeBIN(deg(v), 9
10
).

The probability that this number is at least 19
20
∆ is maximized when deg(v) = ∆, and the

Chernoff Bound implies that probability is at most 2e−(∆/20)2/3∆(9/10) < ∆−10. This is clearly
an upper bound on Pr(E3(i, x)). 2

10.2 Phase II

In this phase, we colour all of BH , using the procedure from Section 8. We start by setting
H to be the subgraph of F induced by BH . For each v ∈ H we initialize L(v) to be the set
of colours not appearing on any neighbours of v. By Lemma 12(b) we can take U = 108

√
∆.

By the definition of BH , each v ∈ H has at most ∆−∆3/4 > c− 1
2
∆3/4 neighbours in S∪BH .

Therefore |L(v)| ≥ degH(v) + X where X = 1
2
∆3/4 and so |L(v)| ≥ X ≥ 5U × ∆1/5 and

(P8.2) holds. Thus, Lemma 31 and (5) imply that we can extend our colouring to BH such
that no two neighbours have the same colour, and:

For every i, x,Notbig(i, x) ≤ 3∆19/20. (6)

10.3 Phase III

In this step, we colour each Ai ∈ AH , using the procedure from Section 9. We set A′ = AH .
By (6) we satisfy condition (P9.1). By definition, every vertex in a clique Ai /∈ A′ has at
most 30∆1/4 neighbours in F −Ai ∪Alli and so we satisfy condition (P9.2). Lemma 36 and
(6) imply that we can extend our colouring to the vertices of AH such that:

For every colour x and every uncoloured Ai,Notbig(i, x) ≤ 4∆19/20. (7)

10.4 Phase IV

In this phase, we extend our colouring to BL. Once again, we apply the procedure from
Section 8.
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We start by setting H to be the subgraph of F induced by the vertices of BL. For
each u ∈ H we initialize L(u) to be the set of colours not appearing on any neighbours of
u. All remaining uncoloured Ai are in AL and thus we can take U = 30∆1/4. For each
v ∈ H, Lemma 12(f) guarantees that there is some Ai ∈ AL such that v has at most
c−√

∆+ 9 neighbours outside of Ai. So |L(v)| ≥ degH(v) +X where X =
√
∆− 9 and so

|L(v)| ≥ X ≥ 5U ×∆1/5 and we satisfy (P8.2). Thus, Lemma 31 and (7) imply that we can
extend our colouring to BL such that no two neighbours have the same colour and:

For every colour x and every uncoloured Ai,Notbig(i, x) ≤ 5∆19/20. (8)

10.5 Phase V

In this step, we colour each Ai ∈ AL, using the procedure from Section 9. We set A′ = AL.
By (8) we satisfy condition (P9.1). No set Ai /∈ A′ is uncoloured and so we trivially satisfy
condition (P9.2). So Lemma 36 implies that we can extend our colouring to the vertices of
AL.

This completes the colouring of F and hence completes the proof of Lemma 13, and hence
of our main theorem.

11 The Algorithms

We close this paper by presenting the algorithmic implications of this work.

As a corollary of Theorem 5, we can determine for every constant ∆ ≥ ∆0, the precise
values of c for which one can test in polynomial time whether a graph of maximum degree
∆ is c-colourable (under the hypothesis that P 6= NP ). This is well-known to be trivial for
c ≤ 2. Embden-Weinert et al[8] used their construction that we presented in Section 1.2 to
prove that for 3 ≤ c ≤ ∆− k∆ − 1, we cannot test this in polytime unless P = NP :

Theorem 40 For every constant ∆ and every 3 ≤ c ≤ ∆ − k∆ − 1, it is NP-hard to test
whether graphs of maximum degree ∆ are c-colourable.

Theorem 5 easily implies that, for sufficiently large ∆, Theorem 40 is tight. Furthermore,
the proof of Theorem 5 yields a deterministic polynomial time algorithm that will actually
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produce the colouring that it gurantees to exist. So we have the following complement to
Theorem 40:

Theorem 41 For every constant ∆ ≥ ∆0 and every c ≥ ∆ − k∆, there is a linear time
deterministic algorithm to test whether graphs of maximum degree ∆ are c-colourable. Fur-
thermore, there is a polynomial time deterministic algorithm that will produce a c-colouring
whenever one exists.

For the case where ∆ is not constant, the threshold for polynomial testability of c-
colouring is (probably) higher: at ∆−Θ(log∆).

Theorem 42 (a) For any constant a and any function c : Z+ → Z+ with c(∆) ≥ ∆ −
a log∆, there is a polynomial time deterministic algorithm to test whether a graph G
is c(∆(G))-colourable so long as ∆(G) ≥ ∆0. Furthermore, there is a polynomial time
randomized algorithm that will produce a c(∆(G))-colouring whenever one exists.

(b) Consider any function γ : Z+ → Z+ such that:

(i) γ(n) = o(n);

(ii) limn→∞ γ(n)/ log n = ∞; and

(iii) γ(n) can be computed in poly(n) time.

If there is a polynomial time algorithm to test whether a graph G is (∆(G)−γ(∆(G)))-
colourable so long as ∆(G) ≥ ∆0, then there is a subexponential time algorithm to test
whether any graph is 3-colourable.

Since it is NP-hard to determine the chromatic number of a graph[16], it is widely believed
that this cannot be done in subexponential time, and so Theorem 42(b) indicates that for
unbounded ∆, we probably cannot test for c-colourability if ∆ − c is asymptotically larger
than O(log∆).

Proof of Theorem 41: We are given a graph G of maximum degree ∆ ≥ ∆0 where ∆
is a constant, and we wish to determine whether it is c-colourable for some c ≥ ∆− k∆. We
will present a linear time algorithm to do so.

If c = ∆− k∆ then we carry out an initial step in which we find all of the reducers. Each
time we find a reducer D, we take the c-reduction via D; i.e., we remove the clique C and
we contract the vertices of the stable set S into a single vertex. It is easily seen that the
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reduced graph is c-colourable iff G is (see the discussion in Section 1.2). To carry this step
out in linear time, we loop through every vertex and examine its neighbourhood to determine
whether it is in a reducer. For each vertex, this check takes constant time since the size of
the neighbourhood is ∆ which is constant. If we find a reducer, then the reduction takes
constant time as we are only removing and contracting a constant number of vertices.

Theorem 5 now implies that G is c-colourable iff the subgraph induced by {v}∪N(v) can
be c-coloured for every v. For each v, we can check this in constant time since the subgraph
has constant size. So it takes linear time to check all of these subgraphs and determine
whether G is c-colourable.

Next, we describe how to actually produce a c-colouring in polynomial time. Basically,
we work through the proof of Theorem 5, showing how to make it constructive. But we have
to be a bit careful since that proof assumes that G is a minimum counterexample, and this
might not be the case for a general input. That assumption is only used in the proofs of
Lemmas 15, 16, 23, 26, and Observation 25; it will be straightforward to handle the case
where G violates those.

First we carry out the same initial step as above, to obtain a reduction of G that contains
no reducers. We do this even if c > ∆− k∆, and so we know that Observation 25 holds for
the resulting graph.

Next we carry out a similar step to remove all near-reducers. We search the graph for any
near-reducers. If we find one then there are a few possible ways to deal with it, corresponding
to different arguments from the proof of Lemma 26. Let K,S denote the clique and stable
set of the near-reducer X. If there is a vertex of K that has no neighbours outside of X,
then we remove X from G. Let Z = N(K) −X; i.e., the set of vertices in G −X that are
adjacent to vertices in K. If Z contains any edges then we remove X from G. If any vertex
in Z has fewer than c− 1 neighbours in G−X, then we remove X from G. Otherwise, for
every pair x, y ∈ Z we consider the graph G−X + xy; i.e. the graph obtained by removing
X and adding the edge xy. We check whether, in this graph, x, y lie in either a reducer
or in a non-c-colourable subgraph induced by {v} ∪ N(v) for some v. If they do not, then
we replace G by G − X + xy. We repeat this step iteratively, until the graph contains no
near-reducers that we can remove in this manner. The arguments in the proof of Lemma 26
show that if we can c-colour the resulting graph, then we can modify that into a c-colouring
of G. This modification is easily done in polynomial time, as is this iterative step.

As described in the proof of Lemma 26: if any connected component of the graph still
contains near-reducers, then that component must consist of a cycle of near-reducers. Such
a component is easily c-coloured, as described in that proof, and thus we can remove it. We
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iterate until the remaining graph has no near-reducers, and thus satisfies Lemma 26.

Our next step is to decompose the graph into X1, X2, ..., Xt, S as described in Lemma 14.
The way to produce this decomposition is given in [25], and it can easily be implemented in
linear time. Since G is c-colourable, so is each Xi; i.e. Lemma 15 holds. For each set Xi,
we check to see whether G[Xi] has a matching of size d102√∆e. (This takes constant time
since |Xi| is bounded by a constant.) If it does then we remove Xi. The proof of Lemma 16
explains how to extend any c-colouring of the resulting graph to Xi.

So at this point, we have a graph that is decomposed as in Lemma 14 such that Lemmas
15, 16, 23, 26, and Observation 25 all hold. All other lemmas also hold, since they do not
rely on the graph being a minimum counterexample.

Next we construct the c-colouring for eachXi as described in Section 4; this takes constant
time for each Xi since |Xi| is bounded by a constant. Then we construct G′ and carry out
Modifications 1 and 2 as described in Section 5, thus forming the graph F from Lemma
12. Again, those Modifications require constant time for each Xi and so F is constructed in
linear time.

Thus far, the algorithm has been straightforward. The remaining work is to produce
the colourings whose existence was proven in Sections 8, 9 and 10.1. Those colourings were
proven to exist using the Lovasz Local Lemma. For each of those proofs, the main theorem
of Moser and Tardos[24] implies that a very simple randomized algorithm will produce the
colouring in polynomial expected time. Furthermore, the fact that ∆ is constant implies
that the maximum degree in the underlying dependency graph is bounded by a constant.
This is enough to allow us to use the technique from [23] to derandomize the algorithm and
thus obtain a deterministic algorithm.

Note: the main theorem of [24] is stated in terms of a more general version of the Lovasz
Local Lemma than what we use in this paper. To convert our applications into their terms,
we use a standard substitution such as xi = 2p (see Section 19.3 of [22]). 2

Remark: The algorithmic technique introduced by Beck[2] would also apply here, but
the newer approach of [24] (see also [23]) is simpler.

And now we turn to the case where ∆ is not constant. The proof of Theorem 42(a) is
much like that of Theorem 41.

Proof of Theorem 42(a): We can assume that a ≥ 1 as this implies the statement for
smaller values of a.

We start with the decision algorithm; i.e. we wish to determine whether the graph is
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c-colourable where c = ∆ − a ln∆. The main difficulty here is that we have no constant
bound on the size of {v} ∪ N(v) and so we cannot check whether the graph it induces is
c-colourable in constant time. Note that Lemma 15 is the only place in the proof where we
use the fact that, in a counterexample, {v} ∪ N(v) is c-colourable for each v. So our proof
actually shows that G is c-colourable iff every Xi is c-colourable.

The fact that we have c ≥ ∆ − a ln∆ allows us to revise the parameters in our lemmas
somewhat. We only outline the differences as the proofs remain the same. We say that a
vertex is nearsparse if it has at most

(
∆
2

)
− 106a∆ ln∆ edges in its neighbourhood. We take

a decomposition like that of Lemma 14, except that for each i: ∆ − 107a∆ ln∆ ≤ |Xi| ≤
∆+107a∆ ln∆, there are at most 107a∆ ln∆ edges from Xi to G−Xi, and every vertex in S
is nearsparse. Nearsparseness is sufficient for arguments nearly identical to those in Section
10.1, since c ≥ ∆− a ln∆. The other conditions are even stronger than those in Lemma 14
and so the arguments in the other sections still apply. In particular, it is still true that G is
c-colourable iff every Xi is c-colourable.

So it suffices to check whether each Xi is c-colourable. We use Edmond’s algorithm[7]
to find a maximum matching M in Xi, the complement of Xi. If M contains more than
2 × 107a ln∆ edges, then we can easily colour Xi with |Xi| − 2 × 107a ln∆ < c colours by
treating each edge of M as a colour class of size two.

For the case when M has fewer than 2 × 107a ln∆ edges: Let C denote the vertices of
Xi that are not matched in M . Since M is maximum, C is a clique, and |C| = |Xi| −
2|M | ≥ ∆ − 3 × 107a ln∆. We colour the vertices of C using colours {1, ..., |C|}. Every
vertex v ∈ Xi − C now has a list Lv of colours that do not appear on NXi

(v) ∩ C. Xi

can be c-coloured iff Xi − C can be list-coloured using these lists. The latter condition
can be tested using dynamic programming (see below) in time poly(|G|) × 22|Xi−C|. Since
|Xi − C| = 2|M | = O(ln∆) (as a is constant), this is polynomial in |G|.

To test whether Xi − C can be list-coloured, we do the following: For each subgraph
H ⊆ Xi − C, and each 1 ≤ i ≤ c, we test whether H can be list-coloured using only
the colours from {1, ..., i}; i.e. if every vertex v ∈ H has list Lv ∩ {1, ..., i}. We carry
out these tests in increasing order of |H|. There are only c × 2|Xi−C| tests that have to
be completed. For any particular H, we check every H ′ ⊂ H to see whether H ′ could
be the set of vertices coloured i. That is, we check whether (1) H ′ is a stable set; (2)
i ∈ Lv for each v ∈ H ′; (3) H −H ′ can be list-coloured using the colours from {1, ..., i− 1}.
To test H, we only have to check 2|H| ≤ 2|Xi−C| sets H ′ and each H ′ is easily checked
in polytime (since the test for H − H ′ is already done). So the overall running time is
c× poly(|Xi − C|)× 22|Xi−C| = poly(|G|)× 22|Xi−C| as required.
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The algorithm to find an actual c-colouring of G follows much like that for the case when
∆ is fixed. The main differences are: (1) During the initial steps, when we eliminate reducers
and near-reducers, some of the checks cannot be done in constant time; and (2) we can no
longer construct the c-colouring of Xi or carry out Modifications 1 and 2 in constant time.

To deal with (1): It is an easy exercise to find all reducers and near-reducers in a graph
in polynomial time. If we find a near-reducer then we process it using one of the methods
by which we processed near-reducers in the proof of Theorem 41. But we have to carry
out a few tests to determine which method to use. Most of the tests are easily done in
polynomial time. The only subtle one is checking whether a pair of vertices x, y ∈ Z lie in a
non-c-colourable subgraph induced by some {v} ∪N(v). Do do so, we check every vertex v
with x, y ∈ {v} ∪N(v) and use the algorithm described above to see whether {v} ∪N(v) is
c-colourable. This yields a graph for which Observation 25 and Lemma 26 hold. We ensure
that Lemmas 15, 16, 23 hold in the same way that we did for the proof of Theorem 41,
except that in this case the revised parameters described above ensure a tighter version of
Lemma 16: G[Xi] has no matching of size d102a ln∆e.

To deal with (2): We first try to colour Xi as in Case 1 of the colouring construction from
Section 4; i.e. we apply Edmonds’ algorithm to find a maximum matching in G[Xi], and if
it has size at least |Xi| − c then we fix our colouring by letting the edges of the matching be
colour classes of size 2. If it has size smaller than |Xi| − c then we find any c-colouring of Xi

using dynamic programming as described above; we ensure that every colour is used at least
once by recolouring some vertices if necessary. This colouring might not be optimal with
respect to the criteria given in Case 2 of the construction, and hence it might not satisfy
Lemmas 19, 20 and 21. We iteratively check whether the colouring satisfies those lemmas,
and if it does not, then we modify it as described in the proofs of those lemmas; each such
iteration is easily done in polytime. Each time we do this for Lemma 19 or 20, we reduce
the size of Ci and so we make at most |Xi| such modifications. Each time we do this for
Lemma 21, we reduce

∑
λ2
i , and so we make (far) fewer than |Xi|2 such modifications. So

within polynomial time we will have a colouring satisfying those three lemmas. The proofs
of those lemmas are the only places in which we used the fact that the colouring is optimal
with respect to the criteria for Case 2 of the construction. Thus, the colouring of Xi that
we obtain in this manner is sufficient to yield the graph F of Lemma 12.

Finally, we obtain the colouring of F using the randomized algorithm from [24], just as
we did in the proof of Theorem 41. Because ∆ is not bounded, it is not clear whether the
algorithm can be derandomized. 2

Finally, we prove the corresponding negative result:
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Proof of Theorem 42(b): Suppose that we have a function γ(n) as in the theorem
statement. Since γ(n) = o(n) and limn→∞ γ(n)/ log n = ∞, there is a function t : Z+ → Z+

such that: (i) t(n) − n − 2 ≥ γ(t(n)) ≥ n; (ii) t(n) ≤ 2o(n); and (iii) t(n) can be easily
computed in poly(n) time using binary search, since γ(n) can be computed in poly(n) time.

For any graph H and c ≤ |H|, we can test the c-colourability of H as follows:

First compute t = t(|H|). Next, choose a graph X on t− |H| + 1 vertices with χ(X) =
t− γ(t)− c, and such that X has at least one vertex that is adjacent to every other vertex
in X. This is straightforward since t − c − 2 ≥ t − |H| − 2 ≥ γ(t) ≥ |H| and so 2 ≤
t − γ(t) − c < |X|. Then we form G by joining every vertex of X to every vertex in H.
χ(G) = χ(H) + χ(X) = χ(H) + t − γ(t) − c. Also, ∆(G) = |H| + |X| − 1 = t. Therefore,
testing the c-colourability of H is equivalent to testing the (∆(G) − γ(∆(G))-colourability
of G which, by hypothesis, can be done in poly(|G|) = poly(t) time - a running time that is
subexponential in |H|. 2
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12 Appendix: Talagrand’s Inequality

Here we prove the version of Talagrand’s Inequality that we gave in Section 3. The original
inequality provided by Talagrand is much more general than the one we stated there, but it
does not apply as directly in the setting of this paper. We start by stating it:

Consider any n independent random trials T1, ..., Tn, and let A be the set of all the
possible sequences of n outcomes of those trials. For any subset A ⊆ A, and any real `, we
define A` ⊆ A to be the subset of sequences which are within a distance ` of some sequence
in A with regards to an unusual measure. In particular, we say that x = (x1, ..., xn) ∈ A` iff
for every set of reals b1, ..., bn, there exists at least one y = (y1, ..., yn) ∈ A such that

∑

xi 6=yi

bi < `

(
n∑

i=1

b2i

)1/2

.

Setting each bi = 1 (or in fact, setting each bi = c for any constant c > 0), we see that if
y ∈ A` then there is an x ∈ A such that x and y differ on at most `

√
n trials. Furthermore,

68



if y ∈ A`, then no matter how we weight the trials with bi’s, there will be an x ∈ A such
that the total weight of the trials that x and y differ on is small.

Talagrand’s Original Inequality[27]: For any n independent trials T1, ..., Tm, any set
A ⊆ A and any real `,

Pr(A)×Pr(A`) ≤ e−`2/4.

Recall our reworking of Talagrand’s Inequality from Section 3: Let X be a non-negative
random variable determined by the independent trials T1, ..., Tn. Suppose that for every set
of possible outcomes of the trials, we have:

(i) changing the outcome of any one trial can affect X by at most c; and

(ii) for each s > 0, if X ≥ s then there is a set of at most rs trials whose outcomes certify
that X ≥ s.

Then for any t ≥ 0, we have

Pr(|X − Exp(X)| > t+ 20c
√
rExp(X) + 64c2r) ≤ 4e

− t2

8c2r(Exp(X)+t) . (9)

Remark: The 64c2r term only arises from Lemma 43 below. It can be eliminated in
settings where one can show Exp(X) differs from the median by less than, say, 1

2
t; eg. when

t > 2Exp(X).

We start by proving that X is highly concentrated around its median, Med(X).

Define A = {x : X(x) ≥ Med(X)}, and C = {y : X(y) < Med(X)− t}. Our first step

is to prove that A ⊆ C`, where ` = t/(c
√
rMed(X)). So consider some x ∈ A. Let I be the

set of indices of the at most rMed(X) trials whose outcomes certify that X(x) ≥ Med(X).
For each i, we set bi = c if i ∈ I and bi = 0 if i /∈ I. Note that

m∑

i=1

b2i = c2|I| ≤ rc2Med(X) = (t/`)2.

Now consider any y ∈ C. Define y′ to be the outcome which agrees with x on all indices
of I, and with y on all other indices. Since I certifies that X(x) ≥ Med(X), we also have
X(y′) ≥ Med(X). Since y and y′ differ only on trials in I on which x and y differ, and
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since changing the outcome of any one Ti ∈ I can affect X by at most bi = c, we have that
X(y) ≥ X(y′)−∑

xi 6=yi bi ≥ Med(X)−∑
xi 6=yi bi. Thus,

∑

xi 6=yi

bi > t ≥ `

(
m∑

i=1

b2i

)1/2

.

Since this is true for every y ∈ C, we have x /∈ C`.

Therefore A ⊆ C`, and so Pr(C`) ≥ Pr(A) ≥ 1
2
, by the definition of median. Therefore,

by Talagrand’s Inequality:

Pr(C) ≤ 2e−`2/4 < 2e
− t2

4c2rMed(X) .

Next, set A
′
= {x : X(x) ≤ Med(X)}, C ′

= {y : X(y) > Med(X) + t} and ` =

t/(c
√
r(Med(X) + t)). By a nearly identical argument, we obtain that A

′
` ⊇ C

′
, and so

Pr(C
′
) ≤ Pr(A

′
`) ≤ 2e

− t2

4c2r(Med(X)+t) .

Therefore

Pr(|X −Med(X)| > t) ≤ Pr(C ∪ C ′) ≤ 4e
− t2

4c2r(Med(X)+t) (10)

To show that this implies concentration around the mean, we prove that the mean and
median do not differ by very much:

Lemma 43 Under the preconditions of (9), |Exp(X)−Med(X)| ≤ 20c
√
rExp(X)+64c2r.

Proof First, observe that Exp(X)−Med(X) = Exp(X−Med(X)). We will bound
the absolute value of this latter term by partitioning the positive real line into the intervals

Ii = (i × c
√
rMed(X), (i + 1) × c

√
rMed(X)], defined for each integer i ≥ 0. Clearly,

|Exp(X −Med(X))| is at most the sum over all Ii of the maximum value in Ii times the
probability that |X −Med(X)| ∈ Ii, which is

∑

i≥0

(i+ 1)× c
√
rMed(X)×Pr(|X −Med(X)| ∈ Ii)

=
∑

i≥0

c
√
rMed(X)×Pr(|X −Med(X)| ∈ ∪j≥iIj).
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Setting t = i× c
√
rMed(X) in (10) yields a bound on the probability that |X−Med(X)| ∈

∪j≥iIj of:

4e
− t2

4c2r(Med(X)+t) < 4e
− t2

8c2rmax{Med(X),t} < 4(e
− t2

8c2rMed(X) + e−
t2

8c2rt ) = 4(e−
i2

8 + e
− i

√
Med(X)

8c
√
r ).

Therefore:

|Exp(X −Med(X))| < c
√
rMed(X)×∑

i≥0

4(e−
i2

8 + e
− i

√
Med(X)

8c
√
r ).

It is straightforward to bound
∑

i≥0 4e
− i2

8 < 12.5. For the second summation, we use the
identity

∑
i≥0 x

i = (1 − x)−1 for x < 1 and the bound e−y < 1 − 1
2
y for y < 1.5. We

set y =

√
Med(X)

8c
√
r

and x = e−y. For the case y ≥ 1.5, the second summation is less than

(1− e−1.5)−1 < 1.3 and so the total is less than 14c
√
rMed(X). For y < 1.5 we have:

∑

i≥0

4e
− i

√
Med(X)

8c
√
r =

4

1− x
<

4
1
2
y
= 64c

√
r/

√
Med(X).

This, with our bounds above, yields:

|Exp(X)−Med(X)| < 14c
√
rMed(X) + 64c2r

< 20c
√
rExp(X) + 64c2r,

where the last inequality makes use of the fact that X ≥ 0 and so Exp(X) ≥ 1
2
Med(X). 2

We apply again the fact that X ≥ 0 and so Exp(X) ≥ 1
2
Med(X) to obtain: Med(X)+

t ≤ 2(Exp(X) + t). By Lemma 43, if |X − Exp(X)| ≥ t + 20c
√
rExp(X)) + 64c2r then

|X −Med(X)| ≥ t. Therefore:

Pr(|X − Exp(X)| > t+ 20c
√
rExp(X) + 64c2r) ≤ Pr(|X −Med(X)| > t)

≤ 4e
− t2

4c2r(Med(X)+t)

≤ 4e
− t2

8c2r(Exp(X)+t)

as required. 2

McDiarmid’s Inequality[19] extends Talagrand’s original inequality to the setting of in-
dependent permutations, with a minor loss in the constant in an exponent (see Corollary 2.8
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of [19]). Theorem 1.1 of [19] shows that, under the conditions of our statement from Section
3, (10) holds, after replacing a “4” with a “16”, i.e.:

Pr(|X −Med(X)| > t) ≤ Pr(C ∪ C ′) ≤ 4e
− t2

16c2r(Med(X)+t)

The same arguments used to prove Lemma 43 yield a similar bound again, just with some-
what worse constants:

|Exp(X)−Med(X)| ≤ 25c
√
rExp(X) + 128c2r.

Our reworking of McDiarmid’s Inequality from Section 3 then follows in the same manner
as our reworking of Talagrand’s Inequality.
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