
A Dichotomy Theorem for the Resolution Complexity of Random

Constraint Satisfaction Problems

Siu On Chan∗

Department of EECS
UC Berkeley

siuon@cs.berkeley.edu

Michael Molloy
Department of Computer Science

University of Toronto
molloy@cs.toronto.edu

August 8, 2012

Abstract

We consider random instances of constraint satisfaction problems where each variable has
domain size O(1), each constraint is on O(1) variables and the constraints are chosen from a
specified distribution. The number of constraints is cn where c is a constant. We prove that
for every possible distribution, either the resolution complexity is almost surely polylogarithmic
for sufficiently large c, or it is almost surely exponential for every c > 0. We characterize the
distributions of each type. To do so, we introduce a closure operation on constraint sets which
yields the set of all constraints that, in some sense, appear implicitly in the random CSP.

1 Introduction

Constraint satisfaction problems (CSP’s) form an active area of research in many areas of computer
science. They generalize SAT by allowing variables to take values from a domain more general
than {true, false}, and having more general restrictions on values jointly taken by variables in each
clause. The widespread interest in random k-SAT has spread to its generalisations, such as random
instances of 1-in-k-SAT [3], NAE-k-SAT [3, 5], k-XOR-SAT [19, 33] and (2 + p)-SAT [4]. All of
these can be expressed as CSP’s. As a result, the interest has spread to random instances of CSP’s,
rigorously in e.g. [37, 20, 36, 35] and experimentally even earlier (see [25] for a survey).

Unsatisfiability of k-SAT and CSP instances can be demonstrated by resolution proof systems,
and many natural algorithms for k-SAT and CSP can be simulated as resolution proof procedures.
In fact, virtually every complete1 SAT-solver or CSP-solver used in practice is resolution based.
The running time of any such algorithm is lower-bounded by the resolution complexity of the input.
In a seminal paper [15], Chvátal and Szemerédi consider the resolution complexity of random k-
SAT formulas, k ≥ 3; i.e. the asymptotic order of the length of a shortest resolution refutation.
As the clause-variable ratio c grows, the resolution complexity decreases monotonically, but is still
almost surely2 (a.s.) exponential for any constant c. This explained the empirical observation that

∗This work is part of the first author’s master research paper prepared at University of Toronto under the super-
vision of the second author. A preliminary version appeared in the proceedings of FOCS 2008.

1A solver is complete if it can recognize every satisfiable and every unsatisfiable input.
2We say that an event A occurs almost surely if limn→∞ P(A) = 1.

1

SAT-solvers take a very long time on these formulas when the number of clauses is a bit higher
than (what appears to be) the threshold at which the formula is a.s. unsatisfiable [34]. Their
result has been generalized and extended in many directions, to super-constant clause-variable ratio
[24, 11, 10], and to general classes of CSP’s [36, 39]. There are also a.s. exponential lower bounds
on the resolution complexity of specific graph problems, such as k-colorability and k-independent
sets [9, 8], when the clause-variable ratio is an arbitrarily high constant.

In contrast, many other random models a.s. have at most polynomial resolution complexity
when the clause-variable ratio is a sufficiently large constant; we call this property POLY. It is
natural to ask which models of random CSP’s have Property POLY, and for which models the
resolution complexity a.s. remains exponentially high for every constant clause-variable ratio. This
question has been resolved for several specific models and families of models in the past (see below).
Our main contribution is to resolve this question for every model from a very broad family which
contains, in some sense, all random models with constant clause and domain size.

Practitioners have long been using random CSP’s to gain insights into difficult problems. This
paper may shed some insight into what can cause CSP’s to have high resolution complexity, even
for a very high linear number of constraints. It is well-understood that long paths in the CSP which
constrain the joint assignments to pairs of distant variables can cause low resolution complexity;
for example, this is what causes the resolution complexity of 2-SAT to be small. We introduce a
path-like structure, called a petal, and prove that for a high linear random number of constraints,
polynomial resolution complexity only occurs for models in which many long petals constrain the
joint assignments of pairs of distant variables.

We study the family of models of random k-ary CSP’s introduced by the second author[37]
and independently, in slightly less generality, by Creignou and Daudé[18]. Roughly speaking, the
models are as follows (formal definitions will appear in Section 1.2): One begins by randomly
selecting k-tuples of n variables on which to place a constraint. Then, for each chosen k-tuple, one
chooses a random constraint. The distribution P from which this random constraint is chosen is
what specifies the model. For example, with one distribution, the model is random k-SAT, with
another it is random k-XOR-SAT and with yet another it is d-colorability of random graphs. We
denote a random instance by CSPn,M (P), where M is the number of k-tuples selected.

The main result of this paper is a characterization of exactly which models have property POLY.
Denote by suppP the support of P, i.e. suppP = {C | P(C) > 0}. Informally, suppP is the set of
“types” of constraints that appear in the random CSP. It turns out that whether POLY holds for
CSPn,M (P) depends only on the set suppP and not on the actual distribution over suppP.

For a particular P, let C denote suppP. It is a bit deceptive to focus only on C. The reason is
that long paths of constraints can induce a constraint, C ′, on their endpoints. If those endpoints
lie in a constraint C ∈ C then, in effect, they are constrained by the more restrictive constraint:
C ′∪C. So we determine all constraints C that are likely to be induced by long paths, and for each,
we form C′ by adding C ′ ∪C for each C ∈ C. Naturally, we need to iterate until we reach what we
call the closure of C, cl(C). We say that cl(C) is complete if it contains the unsatisfiable constraint;
i.e. the constraint that forbids every k-tuple of values. These definitions appear more formally in
Section 2.

This closure may be applicable to other problems regarding random CSP’s, since it contains
the constraints which appear implicitly in the CSP as opposed to the constraints of C that ap-
pear explicitly. For the purposes of this paper, focussing on cl(C) rather than C yields a simple
characterization of those P that have the property POLY:

2

Theorem 1.1. If cl(suppP) is complete then there exists constants c and a such that a.s. the
resolution complexity of CSPn,M=cn(P) is O(loga n).

Theorem 1.2. If cl(suppP) is incomplete then for every c > 0, there exists ζ > 0 such that with
uniformly positive probability3 (w.u.p.p.) the resolution complexity of CSPn,M=cn(P) is at least 2ζn.

The above two theorems together form a dichotomy theorem. Given P it is easy to determine
cl(suppP) and hence to decide POLY in finite time (see Lemma 3.15).

Note that Theorem 1.1 is stronger than what we aimed for: It implies not only a.s. polynomial,
but a.s. polylogarithmic, resolution complexity. So we have the following interesting corollary:

Corollary 1.3. For every P: if for c sufficiently large, CSPn,M=cn(P) a.s. has subexponential
resolution complexity then for c sufficiently large, CSPn,M=cn(P) a.s. has polylogarithmic resolution
complexity.

For the case where POLY does not hold, i.e. the case covered by Theorem 1.2, we determine
whether CSPn,M (P) in fact a.s. (rather than just w.u.p.p.) has exponential resolution complexity.
A cyclic CSP is a CSP whose constraint hypergraph forms a cycle (the formal definition appears
in Subsection 2). See Definition 2.6 for the meaning of “null-constraining”.

Theorem 1.4. Suppose cl(suppP) is incomplete.

(a) If for some null-constraining subdomain D′, every cyclic CSP formed from suppP is satisfiable
using only values from D′ then for every c > 0, there exists ζ > 0 such that a.s. the resolution
complexity of CSPn,M=cn(P) is at least 2ζn;

(b) else there exists constants c and a such that w.u.p.p. the resolution complexity of CSPn,M=cn(P)
is O(loga n).

So in case (b) there is some ε > 0 such that with probability at least ε, CSPn,M=cn(P) has
at most polylogarithmic resolution complexity and with probability at least ε, CSPn,M=cn(P) has
exponential resolution complexity. The proof implies that, in this case, small resolution complexity
must be caused by problematic cycles of length O(1).

Having small resolution complexity by itself does not imply that a resolution proof can be found
efficiently. For example, a resolution proof of logarithmic size may take quasipolynomial time to
locate by exhaustive search. However, the resolution proofs that appear in our proofs are structured
and can be found quickly.

Theorem 1.5. There is a polynomial time algorithm which, for sufficiently large c:

(a) will a.s. find a poly(log n) resolution refutation of CSPn,M=cn(P) under the condition of
Theorem 1.1;

(b) will w.u.p.p. find a poly(log n) resolution refutation of CSPn,M=cn(P) under the condition of
Theorem 1.4(b).

The above poly(log n) terms depend only on k, d and the distribution P.

In the course of proving Theorem 1.1, we study a certain convergence property of random walks
on general directed graphs (Theorem 4.2). This result may be of independent interest.

3We say that an event occurs with uniformly positive probability if lim inf P(A) > 0.

3

1.1 Related Work

The first result along these lines was by Chvátal and Szemerédi [15] who proved that random 3-
SAT a.s. has exponentially high resolution complexity for every constant c; i.e. it does not have
property POLY. This result was extended to the case where c grows with n in Beame and Pitassi[11]
and Beame et al.[10] and the proof was simplified greatly by Ben-Sasson and Wigderson in [12]
where they introduced their Width Lemma (which we use here). Achlioptas et al [2] began with
the easy observation that random (2 + p)-SAT, a mixture of random 2-SAT and random 3-SAT
has polynomial resolution complexity if the number of clauses is so high that the 2-clauses alone
are unsatisfiable; thus random (2 + p)-SAT has POLY. They then proved that for any smaller
clause-density, the resolution complexity is exponentially high, thus establishing a sharp threshold
for exponential resolution complexity in this model. They also showed how this can explain the
empirical observation that resolution-based SAT-solvers have a difficult time with random 3-SAT
slightly below the generally conjectured value of the satisfiability threshold (see also [1] for random
k-SAT with k > 3).

Mitchell [36, 35] extended the (by then standard) techniques for proving such theorems about
random k-SAT to the more general setting of random CSP’s. He used these techniques to study
the (d, k, t)-model – where the domain size is d and the constraints are uniformly random amongst
those with k variables and t restrictions. He proved that for a wide range of triples (d, k, t), the
model does not have property POLY. Molloy and Salavatipour [39] determined precisely which
triples (d, k, t) have property POLY; moreover, for those that do have POLY they determined a
sharp threshold for exponential resolution complexity. See also [8, 16] for other examples of specific
models of random CSP’s that are shown to not have property POLY.

All of these models are specific instances of the general family of models considered in this
paper. Thus Theorems 1.1 and 1.2 imply all the results described above, except for those that
actually determine the sharp threshold for exponential resolution complexity and those where c is
superlinear.

There is also a body of work studying some random CSP’s where the constraint-sizes and/or
the domains grow with n (see e.g. [42, 23, 20, 22]). Such models do not fall into our general family
(in fact, they are very different - see Remark 1.7), so this paper says nothing about them. For
example, our theorems do not imply the resolution lower bounds in [42].

1.2 The Random Model

We use the family of models introduced by the second author in [37]. The same family, in a slightly
less general form, was introduced independently by Creignou and Daudé [18]. The variables of our
problem all have the same domain of permissible values, D = {1, . . . , d}, and all constraints will
have size k, for some fixed integers d, k. Given a k-tuple of variables, (x1, . . . , xk), a restriction
on (x1, . . . , xk) is a k-tuple of values (δ1, . . . , δk) where each δi ∈ D. A set of restrictions on a
k-tuple (x1, . . . , xk) is called a constraint. A constraint satisfaction problem (CSP) consists of a
domain-size d, a constraint-size k, a collection of variables, and a set of constraints on k-tuples of
those variables. We say that an assignment of values to the variables of a constraint C satisfies C
if that assignment is not one of the restrictions on C. An assignment of values to all variables in a
CSP satisfies that CSP if every constraint is simultaneously satisfied.

The constraint hypergraph of a CSP is the k-uniform hypergraph whose vertices correspond to
the variables, and whose hyperedges correspond to the k-tuples of variables which have constraints.

4

Of course, when k = 2, the constraint hypergraph is simply a graph, and so we often call it the
constraint graph.

It will be convenient to consider a set of canonical variables X1, . . . , Xk which are used only to
describe the “pattern” of a constraint. These canonical variables are not variables of the actual
CSP. For any d, k there are dk possible restrictions and 2d

k
possible constraints over the k canonical

variables. We denote this set of constraints as Cd,k. For our random model, one begins by specifying
a particular probability distribution, P, over Cd,k. Different choices of P give rise to different
instances of the model.

The Random Model: Specify M , n and P (typically M = cn for some constant c; note
that P implicitly specifies d, k). First choose a random constraint hypergraph with M hyperedges,
in the usual manner; i.e., where each k-uniform hypergraph with n vertices and M hyperedges is
equally likely. (To be clear: each hyperedge contains k distinct vertices, and no two hyperedges
contain the same k vertices.) Next, for each hyperedge e, we choose a constraint on the k variables
of e as follows: we take a random permutation from the k variables onto {X1, . . . , Xk} and then
we select a random constraint according to P, mapping it onto a constraint on our k variables in
the obvious manner. We use CSPn,M (P) to denote a random CSP drawn from this model with
parameters n,M,P.

Remark 1.6. We could have chosen the constraint hypergraph by making an independent choice
for each potential hyperedge, deciding to put it in the hypergraph with probability p = c×k!

nk−1 . We
use CSPn,p(P) to denote such a random CSP. CSPn,p(P) is, in many senses, equivalent to the
model described above. In particular, standard arguments (see eg. Section 1.4 of [26]) show that
the theorems in this paper translate to this alternate model, and allow us to often move back and
forth between the models. We will make use of this equivalence in the proofs of Lemmas 3.22 and
3.23, where we analyze CSPn,p(P) to prove things about CSPn,M (P).

A constraint set C is symmetric if for any permutation σ of {1, . . . , k}, any C ∈ C, we have
σ̃(C) ∈ C, where σ̃ is the map induced by σ with the obvious definition: σ̃(C) = {(δσ(1), . . . , δσ(k)) |
(δ1, . . . , δk) ∈ C}. Since the random model takes a random permutation from the k variables in
a hyperedge to the k canonical variables before selecting the constraint, P can be assumed to be
symmetric, i.e. P(C) = P(σ̃(C)) for all σ̃ and all C.

Remark 1.7. When d and/or k grow with n, the satisfiability threshold will typically occur at a
superlinear number of constraints (see e.g. [42, 23, 22]). The structure of the constraint hypergraph
in that case is very different than that of one with a linear number of constraints. This is why we
restrict our attention to the case d, k = O(1).

1.3 Resolution Complexity

The resolution complexity of a boolean CNF-formula φ, denoted RES(φ), is the length of the
shortest resolution proof that φ is unsatisfiable. (If φ is satisfiable, then RES(φ) = ∞.) Mitchell
[35] discusses two natural ways to extend the notion of resolution complexity to the setting of
CSP, C-RES and NG-RES. All commonly used resolution-type CSP algorithms correspond
nicely to the C-RES complexity of the input, but there are some that do not correspond to the
NG-RES complexity. For that reason, we focus in this paper on the C-RES complexity, as did
Mitchell in [35], but our results also translate to NG-RES complexity - see Remarks 3.26, 5.11.
Given an instance I of a CSP, Mitchell constructs an equivalent boolean CNF-formula CNF(I)

5

in a specific natural manner (Definition 1.8), and defines the resolution complexity C-RES(I) =
RES(CNF(I)).

Definition 1.8. Given an instance I of a CSP in which every variable has domain {1, . . . , d}, we
construct a boolean CNF-formula CNF(I) as follows. For each variable x of I, there are d variables
in CNF(I), denoted x : 1, . . . , x : d, and there is a domain clause (x : 1 ∨ · · · ∨ x : d). For each
restriction (δ1, . . . , δk) on variables (x1, . . . , xk), in any constraint of I, CNF(I) has a conflict clause
(x1 : δ1 ∨ · · · ∨ xk : δk).

It is easy to see that CNF(I) has a satisfying assignment iff I does - if I has a satisfying
assignment, then we produce one for CNF(I) by setting x : δ to true iff x = δ; if CNF(I) has a
satisfying assignment, then we produce one for I by setting x = δ where δ is any one of the values
for which x : δ is true.

It is natural to consider adding an extra set of constraints for each variable x which specify
that x : δ can be true for at most one value of δ. But it is easily verified that each of the results of
this paper (in particular, Lemma 5.8) holds regardless of whether we include these clauses; to be
specific, we do not include them.

2 The Closure Operation

In this section, we formally define the closure of a constraint set. Then we characterize those
constraint sets which have a complete closure in terms of the existence of a subdomain of values
which easily satisfies long paths. Such a subdomain will be shown to cause exponential resolution
complexity. We begin with some definitions.

A constraint C on variables x1, . . . , xk permits (xi : δ, xj : γ) if at least one of the dk−2

possible tuples (δ1, . . . , δk) with δi = δ and δj = γ is not a restriction of C. Otherwise C forbids
(xi : δ, xj : γ). The constraint {(δ1, . . . , δk) ∈ Dk | δi = δ∧δj = γ} forbidding precisely (xi : δ, xj : γ)
is called the (xi : δ, xj : γ)-forbidder and is denoted F (xi : δ, xj : γ).

A path of length r in a hypergraph H is a sequence 〈x0, . . . , xr〉 of distinct vertices together
with a sequence 〈e1, . . . , er〉 of edges such that (1) the edges ei are mutually vertex disjoint except
at {x1, . . . , xr−1}; (2) among {x0, . . . , xr}, the only vertices in ei are xi−1 and xi, for 1 ≤ i ≤ r.
x0, . . . , xr are the connecting variables and x0, xr are the endpoints of P .4 A cycle is defined the
same way as a path with the exception that x0 = xr. The length of a path P , |P |, is the number
of hyperedges.

A pendant path of length r in a hypergraph H is a path in which no vertices other than the
endpoints lie in any edges of H off the path. In other words, there is no restriction on the degrees
on the endpoints, each other connecting variable has degree 2 in H, and every other vertex in the
path has degree 1 in H. (The degree of a vertex is the number of hyperedges in which it lies.)

A (pendant) path P of length r in a CSP is a sequence of r constraints whose underlying edges
form a (pendant) path of length r in the constraint hypergraph. A path over C is a path whose
constraints all lie in the constraint set C. To emphasize that it is a path formed by constraints,
we sometimes refer to it as a constraint path. If P1, P2 are constraint paths, then P1P2 is their
concatenation; i.e. the constraint path formed by identifying the last endpoint of P1 with the first
endpoint of P2. For i ≥ 0, P i denotes the constraint path PP . . . P consisting of i concatenated
copies of P . A constraint path is empty if it has length zero.

4We consider the endpoints as connecting variables, to simplify statements in counting arguments below.

6

If at least one assignment α to the variables of P satisfies all the constraints of P with α(x0) = δ
and α(xr) = γ, we say that P permits (x0 : δ, xr : γ); otherwise P forbids (x0 : δ, xr : γ). Sometimes
we say P permits/forbids (δ, γ), omitting the endpoints.

A cyclic CSP is a CSP whose constraint hypergraph is a cycle.
We now come to the key definitions. Some of them (∼C , closure and completeness) will be

motivated in the discussion preceding Example 3.1 in Section 3.

Definition 2.1. For any D′ ⊂ D, an assignment α of a CSP J is a D′-assignment if it only uses
values in D′. J is D′-satisfiable if it is satisfied by some D′-assignment. A constraint path P with
endpoints (x0, xr) D′-permits a pair of values (δ, γ) ∈ D′2 if there is a D′-assignment α that satisfies
all constraints of P and has α(x0) = δ and α(xr) = γ.

Definition 2.2. For a constraint set C and values δ, γ ∈ D, we write δ ∼C γ if there is some t such
that every constraint path over C with length at least t permits (δ, γ).

Proposition 2.3. For every C, ∼C is transitive. If C is symmetric then ∼C is symmetric as well.

Proof. Suppose δ1 ∼C δ2 and δ2 ∼C δ3. Then there are t1, t2 such that all paths of length at least
t1 permit (δ1, δ2), and all paths of length at least t2 permit (δ2, δ3). Then all paths of length at
least t1 + t2 permit (δ1, δ3), so ∼C is transitive. If C is symmetric, then ∼C is clearly symmetric,
i.e. δ ∼C γ implies γ ∼C δ.

Definition 2.4. A symmetric constraint set C is closed if for any δ, γ ∈ D such that δ 6∼C γ, any
canonical variables Xi, Xj and any C ∈ C, we have that C also contains the constraint obtained
from C by forbidding (Xi : δ,Xj : γ). Formally, C ∪ F (Xi : δ,Xj : γ) ∈ C. The closure cl(C) of a
constraint set C is the smallest closed constraint set containing C.

Given a constraint set C, its closure cl(C) can be generated as follows: Let C0 = C and h = 0.
We initially set Ch+1 = Ch. For any δ 6∼Ch γ, any C ∈ Ch and any canonical variables Xi, Xj ,
add C ∪ F (Xi : δ,Xj : γ) to Ch+1. Then increase h and repeat. The sequence {Ch} cannot grow
indefinitely, so Ch′ = Ch′+1 for some h′, and we have Ch′ = cl(C). Clearly, every closed set containing
C must contain Ch′ and so cl(C) is well-defined.

Definition 2.5. A closed, symmetric constraint set C is complete if δ 6∼C γ for all δ, γ ∈ D.
Equivalently, it is complete if it contains the constraint that forbids all dk of the k-tuples. A
constraint set which is not complete is incomplete.

The key lemma of this section is the following characterization of incomplete constraint sets. It
says that a constraint set is incomplete precisely when, in some sense, long paths can impose no
constraint on a particular subdomain of values. This subdomain is called null-constraining.

Definition 2.6. Given C, a subdomain D′ ⊆ D is null-constraining if there is some t such that
for every constraint path P over C with length at least t and every pair of values δ, γ ∈ D′, P
D′-permits (δ, γ).

Lemma 2.7. Let C be closed and symmetric. C is incomplete iff some nonempty subdomain D′ ⊆ D
is null-constraining.

7

Proof. If some nonempty subdomain D′ is null-constraining, then in particular δ ∼C δ for every
δ ∈ D′, so C is incomplete.

Suppose C is incomplete. There are δ1, δ2 ∈ D such that δ1 ∼C δ2 (possibly δ1 = δ2). Define
D′ = {δ ∈ D | δ1 ∼C δ}, which is nonempty. By Proposition 2.3, δ ∼C γ for all δ, γ ∈ D′; that is,
there is a t such that every constraint path P of C with length at least t permits (δ, γ), possibly
using some values from D \ D′ for non-endpoint variables. It remains to show that such a path P
still permits (δ, γ) if values can only be chosen from D′.

Claim 2.8. Any constraint C of P can be replaced by a stronger constraint C ′ ∈ C, such that if
some variable xi in C ′ takes a value from D′, all other variables must take values from D′ as well.

Proof. Let C ′ be a superset of C that is maximal in C, i.e. C ′ is not properly contained in any
constraint in C. Assume C ′ permits (xi : δ, xj : γ) for some δ ∈ D′, γ 6∈ D′. We must have δ 6∼C γ,
for otherwise δ ∼C γ and δ1 ∼C δ implies δ1 ∼C γ and hence γ ∈ D′, contradicting the assumption
that γ 6∈ D′. Since C is closed, C ′ ∪F (xi : δ, xj : γ) ∈ C. This contradicts the maximality of C ′.

By the above claim, we can replace every constraint in P by a stronger constraint from C, none
of which permits any (δ, γ) ∈ D′ × (D \ D′). The end result is a path P ′ over C of length at least
t. Recall that all paths of length at least t permit (δ, γ) for any δ, γ ∈ D′. Therefore P ′ D′-permits
(δ, γ), hence so does P .

Corollary 2.9. If cl(C) is incomplete then some non-empty subdomain D′ ⊆ D is null-constraining
in C.

Proof. Since C ⊆ cl(C), any constraint path over C is also a constraint path over cl(C). Thus if
D′ is null-constraining for cl(C) then it is null-constraining for C. So the corollary follows from
Lemma 2.7.

Proposition 2.10. If there is a (δ, γ)-forbidding constraint path P over C with |P | ≥ 2|D| then
there are infinitely many (δ, γ)-forbidding constraint paths over C, one of which has length at most
2|D|.

Proof. Let the constraints of P be β1, . . . , βr. Let x0 ∈ β1, xr ∈ βi be the endpoints, and let
x1, ..., xr−1 be the other connecting variables, where xi ∈ βi ∩ βi+1. Suppose x0 takes the value δ,
and let D0 = {δ}. Define Di to be the set of values that xi can take without violating constraints in
P , for 1 ≤ i ≤ r. Then γ 6∈ Dr because P is (δ, γ)-forbidding. Since r+ 1 > 2|D|, two Di’s coincide,
i.e. Di = Dj for some 0 ≤ i < j ≤ r. It is straightforward to observe that removing the constraints
βi+1, . . . , βj and identifying xi and xj yields a shorter (δ, γ)-forbidding path. Such shortenings can
be repeated until the resulting path has length at most 2|D|. On the other hand, if we repeat the
subpath between xi and xj many times, we can obtain arbitrarily long (δ, γ)-forbidding paths.

Corollary 2.11. If δ 6∼C γ then there are constraint paths PA, PB, PC over C, with PB non-empty,
such that for every i ≥ 0, PAP

i
BPC is (δ, γ)-forbidding.

Proof. If δ 6∼C γ, then there is a (δ, γ)-forbidding path of length greater than 2|D|, by definition
of ∼C . Now we follow the notation from the previous proof. PA, PB, PC are the subpaths with
constraints (β1, . . . , βi), (βi+1, . . . , βj), (βj+1, . . . , βr) respectively.

Corollary 2.12. δ 6∼C γ if and only if there is a (δ, γ)-forbidding path of length t with 2|D| < t <
2 · 2|D|.

8

Proof. The “if” part follows from Proposition 2.10.
For the “only if” part, when δ 6∼C γ, we get from Corollary 2.11 three subpaths PA, PB, PC , such

that PAP
q
BPC are all (δ, γ)-forbidding. The final path PAPC , obtained after all constraint removals,

must have length at most 2|D|. We may also ensure 0 < |PB| ≤ 2|D| by removing constraints from
(and identifying vertices in) PB whenever |PB| > 2|D|. Once this is done, PAP

q
BPC will be a

(δ, γ)-forbidding path of the desired length for an appropriate q ≥ 0.

Lemma 2.13. If C is closed, symmetric and incomplete then D can be partitioned into D1, ...,Dt,W
such that

(a) each Di is null-constraining, and

(b) for any δ, γ ∈ D such that δ, γ don’t both lie in the same Di, we have δ 6∼C γ.

Proof. Let D′ ⊆ D be a maximal null-constraining set; i.e. D′ is null-constraining and if D′ (D′′
then D′′ is not null-constraining. Consider any δ ∈ D′, γ /∈ D′. We will argue that δ 6∼C γ.
This implies that any two maximal null-constraining sets are disjoint, and implies the lemma by
letting D1, ...,Dt be the maximal null-constraining sets. (Note that there is at least one such set
by Lemma 2.7.)

To the contrary, suppose that there exists t1 such that every constraint path over C of length
at least t1 permits (δ, γ). Since D′ is null-constraining, there exists t2 such that for each γ′ ∈ D′,
every constraint path over C of length at least t2 permits (γ, γ′). It follows that every constraint
path over C of length at least t1 + t2 permits (δ, γ′) - we can assign δ to the first variable, γ to the
(t1 + 1)th variable and γ′ to the last. So δ ∼C γ′ and by Proposition 2.3, γ′ ∼C δ. Thus D′ ∪ {δ} is
null-constraining, which contradicts the fact that D′ is maximal null-constraining.

We close this section by sketching how Lemma 2.7 implies some of our theorems. If a constraint
set has complete closure, then for high clause-variable ratio, the CSP will a.s. contain a small un-
satisfiable subproblem, causing polylogarithmic resolution complexity (see Section 3). This proves
Theorem 1.1. If a constraint set has incomplete closure, then by Lemma 2.7, there is a nonempty
null-constraining subdomain. This will cause exponential resolution complexity, provided there are
no short unsatisfiable cycles in CSPn,M (P) (see Section 5). This will imply Theorem 1.2.

3 Petals and Flowers

In this section, we consider distributions P for which cl(suppP) is complete. We will show that
CSPn,M (P) a.s. contains a small, structured, unsatisfiable subproblem, called a forbidding flower.
This structured subproblem generalizes the flower from [39], which in turn was inspired by the
snakes of [14].

3.1 Forbidding Flowers

A forbidding flower is a union of petals. Petals are recursive structures: Each petal functions like a
(δ, γ)-forbidding path for appropriate (δ, γ), and subpetals may be attached to adjacent connecting
variables along the main path of a petal.

Given a constraint set C, subpetals are used to simulate constraints in cl(C)\C. Indeed, if C ∈ C
is a constraint, xi, xj two of its variables, and P a (δ, γ)-forbidding path from xi to xj , then P

9

. . .

x0 x1 x2 xr−1 xr

(1, 1)

(1, 3) (2, 3)

Figure 1: The left figure depicts the (1, 1)-forbidding petal from Example 3.1. The thick line
segment between xi and xi+1 represents a C1 constraint. Each of the thin paths above the thick
line segment represents a path of C2 constraints of length q. Note that the second thin path is
redundant; it is only required so that this petal can be represented by a configuration tree. The
right figure depicts that configuration tree (nodes’ labels are shown next to the nodes).

essentially strengthens C to forbid (xi : δ, xj : γ) as well. More precisely, the constraint plus the
path restricts (xi, xj) like C ∪ F (xi : δ, xj : γ). Repeating this, we can simulate any C ∈ cl(C).
These simulated constraints can then be used to simulate (δ, γ)-forbidding paths for any δ 6∼cl(C) γ.
If cl(C) is complete, then all (δ, γ)-forbidding paths can be simulated. If these simulated paths
share two common endpoint variables x1 and x2, all assignments of x1, x2 are forbidden from being
satisfying, thus yielding a small unsatisfiable CSP. It is straightforward to show that this CSP has
a short resolution proof of unsatisfiability.

Example 3.1 (Simulated constraints). Consider D = {1, 2, 3}, k = 2 and C = {C1, C2}, where
C1 = {(1, 1), (2, 2), (3, 3)} and C2 = ({1, 2} × {3}) ∪ ({3} × {1, 2}). It is easy to see that all
constraint paths of length at least 2 permit (1, 1). On the other hand, we will show that 1 6∼cl(C)
1. First note that every path made of the constraint C2 forbids (1, 3), hence 1 6∼C 3, implying
1 6∼cl(C) 3. Every such path forbids (2, 3) as well, so similarly 2 6∼cl(C) 3. By definition of cl(C),
C ′ = C1 ∪ {(1, 3), (2, 3)} ∈ cl(C). Any path of odd length made of the constraint C ′ forbids (1, 1),
so 1 6∼cl(C) 1.

Note that odd paths made of C ′ do not exist in our CSP since C ′ 6∈ C. However, our CSP can
forbid (1, 1), using a different structure, depicted in Figure 3.1. Consider the path P = 〈x0, . . . , xr〉
consisting of r copies of C1, for some odd integer r. To every adjacent pair of connecting variables
(xi, xi+1) in P , attach two paths from xi to xi+1, each consisting only of copies of C2. The two
paths along with C1 effectively forbid (xi : 1, xi+1 : 3) and (xi : 2, xi+1 : 3).5 The resulting graph
P ′ forbids (x0 : 1, xr : 1).

Petals are defined recursively to form structures like the one from Example 3.1 that forbid pairs
of values from being assigned to their endpoints. At this point, some readers will find it easy to
see how one can define a petal forbidding (x0 : δ, xr : γ) for any δ 6∼cl(C) γ. To do so formally is a
bit cumbersome. We start by introducing configuration trees and forests. These trees and forests

5For the purpose of forbidding (xi : 1, xi+1 : 3) and (xi : 2, xi+1 : 3), one actually only needs to attach a single
“C2 path” between xi and xi+1. We attach two such paths in order to be consistent with Definition 3.5.

10

serve only to describe the structure of the forbidding flowers; they are not actual subproblems in
CSPn,M (P).

Definition 3.2. A configuration tree T is a nonempty rooted tree, each of whose nodes v gets a
label from D2 (i.e. an ordered pair of values in D), call it (δ(v), γ(v)).

Labels in a configuration tree T specify which pairs of values the petals and subpetals forbid.
A petal forbids the label at height 0, i.e. the label of the root. Subpetals are attached to every
adjacent pair of connecting variables along the main path of the petal. They forbid labels that
are at height 1 in the configuration tree. These subpetals could in turn have subsubpetals along
their main paths, forbidding values at height 2, and so on. As an example, P ′ in Example 3.1
corresponds to a configuration tree with three vertices; the root is labelled (1, 1) and its children
are labelled (1, 3) and (2, 3) respectively (see Figure 1). In fact P ′ also forbids (2, 2), and thus also
corresponds to another configuration tree with root (2, 2). The relation between configuration trees
and petals is defined more formally in Definition 3.5.

Definition 3.3. Given a constraint path P with endpoints x0, xr and other connecting variables
x1, ..., xr−1, and a subset ∆ ⊆ D2 of pairs of values, the path P augmented with ∆, denoted P ∪∆,
is the constraint path with the same underlying hyperedges as P but where for each 0 ≤ i ≤ r− 1,
the constraint C between (xi, xi+1) is strengthened to forbid all (δ, γ) ∈ ∆, i.e. C is replaced with
C ∪

⋃
(δ,γ)∈∆ F (xi : δ, xi+1 : γ).

Notation 3.4. If a node v in a configuration tree has children v1, . . . , vs, we use ∆(v) to denote
the set of labels of v’s children; i.e. ∆(v) = {(δ(vi), γ(vi)) | 1 ≤ i ≤ s} .

Definition 3.5. Given a configuration tree T and constraint set C, a (T , C)-forbidding petal is
defined recursively as follows:

1. If T has only one vertex v labelled (δ, γ), a (T , C)-forbidding petal is a (δ, γ)-forbidding path
Pv over C.

2. If T has more than one vertex, let v be its root, let v1, . . . , vs be v’s children, and let T1, . . . , Ts
be the subtrees rooted at v1, . . . , vs. Then a (T , C)-forbidding petal consists of:

(i) a path Pv = 〈y0, . . . , yr〉 over C, such that Pv augmented with the children’s labels (i.e.
Pv ∪∆(v)) is (δ(v), γ(v))-forbidding; and

(ii) for each 1 ≤ j ≤ s: a (Tj , C)-forbidding petal between every adjacent pair of connecting
variables (yi, yi+1), 0 ≤ i < r.

Pv is the main path of the petal.
For any child vi of v: each of the (Tj , C)-forbidding petals in 2(ii) is a subpetal of the (T , C)-

forbidding petal, and it has type vi. Every subpetal of each of these subpetals is also a subpetal
of the (T , C)-forbidding petal. The (T , C)-forbidding petal itself is considered to be a subpetal of
type v.

The main path of any subpetal is called a petal path. The type of the petal path is defined to
be the type of the subpetal. Thus, the petal is the union of all of its petal paths.

The endpoints of the (T , C)-forbidding petal are the endpoints of Pv; i.e. y0, yr.
This (T , C)-forbidding petal is said to be untangled if (a) Pv and the (Tj , C)-forbidding petals,

1 ≤ j ≤ s are mutually vertex-disjoint except at the endpoints of the petals, and (b) each of the
(Tj , C)-forbidding petals, 1 ≤ j ≤ s is untangled.

11

x y

Figure 2: An example of a petal and its configuration tree (the labels are not included). Here,
k = 2; i.e., the underlying hypergraph is a graph. The endpoints of the petal are x, y and the thick
edges indicate the main path. Each pair of vertices that are adjacent in the main path form the
endpoints of two petal paths. Each pair of vertices that are adjacent in the uppermost of those two
petal paths form the endpoints of another petal path.

Remark 3.6. The following, less formal, description may be helpful. To build an untangled petal,
start with a constraint path between y0, yr; this is the main path, and hence is a petal path. Then
iteratively: choose any petal path P and add a new constraint path between each consecutive pair
of connecting variables/endpoints on P ; these are petal paths. The eventual result is that P will
be strengthened to forbid more pairs of values at (y0, y`). Moreover, the original path will become
strengthened to the point where it forbids (δ, γ) at its endpoints (y0, yr). See Figure 2 for another
example.

If cl(C) is complete, we shall argue later (Proposition 3.13) that forbidding petals exist for every
(δ, γ) ∈ D2. A forbidding flower is a collection of such petals, all with the same two endpoints.
Formally:

Definition 3.7. A configuration forest F = {T(δ,γ)} is a collection of |D|2 configuration trees, one
with root labelled (δ, γ) for each (δ, γ) ∈ D2.

Definition 3.8. Given a configuration forest F and constraint set C, an (F , C)-forbidding flower
between (x1, x2) is a collection of (T(δ,γ), C)-forbidding petals between (x1, x2), one for each (δ, γ) ∈
D2. The flower is said to be untangled if (a) each of these petals is untangled, and (b) the petals
are mutually vertex-disjoint except at x1, x2.

Clearly, an (F , C)-forbidding flower between (x1, x2) is unsatisfiable, because all possible assign-
ments to (x1, x2) are forbidden by one of the petals.

Consider a distribution P for which C = supp(P) has a complete closure. Following [14, 39],
we will show that an (F , C)-forbidding flower a.s. exists in CSPn,M=cn(P) for sufficiently large c,
using first and second moment calculations. In the first moment calculation, we need to know the
probability that a particular flower exists. To this end, we need to study the probability that a path
of length r is (δ, γ)-forbidding (Definition 3.9) and that a petal is is (δ, γ)-forbidding (see Definition
3.12).

Definition 3.9. For a distribution P and values δ, γ ∈ D, let πPr (δ, γ) be the probability over P
that a random constraint path of length r forbids (δ, γ). Define βP(δ, γ) = lim supr π

P
r (δ, γ)1/r.

12

The definition of βP(δ, γ) takes a lim sup over a sequence, rather than simply a limit, because
the sequence may fail to converge. An example is suppP = {C}, where C = {(1, 1), (2, 2)} and
D = {1, 2}. In this case πr(1, 1) alternates between 0 and 1 as r increases. More generally, for
any arithmetric progression Υ, one can build examples where πPr (δ, γ)1/r only converges to βP(δ, γ)
along r ∈ Υ. Lemma 3.16, below, shows that for every D, δ, γ there exists an arithmetric progression
along which we have this convergence.

Proposition 3.10. If δ ∼suppP γ, then βP(δ, γ) = 0, otherwise βP(δ, γ) > 0.

The proof is deferred to Section 4.

Definition 3.11. For a distribution P and a subset ∆ ⊆ D2, the distribution of P augmented with
∆, denoted P∪∆, is the distribution obtained by “strengthening” every constraint C ∈ C = suppP
with ∆. Formally: for any constraint C ′ (not necessarily in C), define (P∪∆)(C ′) =

∑
P(C), where

the sum runs over all C ∈ C such that C ∪
⋃

(δ,γ)∈∆ F (x1 : δ, x2 : γ) = C ′. (Since P is symmetric by

assumption, the sum may as well run over all C ∈ C such that C ∪
⋃

(δ,γ)∈∆ F (xi : δ, xj : γ) = C ′

with arbitrary i 6= j.)

Definition 3.12 (Weights). Let P be a distribution. For a node v in a configuration tree T , define

πPr (v) = π
P∪∆(v)
r (δ(v), γ(v)) and βP(v) = lim supr π

P
r (v)1/r. For a configuration tree T , define its

weight wP(T) as max{1/(βP(v)k!) | v ∈ V (T)}. For a configuration forest F , define its weight
wP(F) as the maximum of the weights of its trees.

Proposition 3.13 (Petals exist). Let P be a distribution and set C = suppP. For any δ0 6∼cl(C) γ0,
there is a configuration tree T whose root is labeled (δ0, γ0) for which (T , C)-forbidding petals exist.
Furthermore, wP(T) <∞.

Proof. Let C0 = C and h = 0. If Ch is not closed then we define Ch+1 as follows: We initially set
Ch+1 = Ch. For any δ 6∼Ch γ, any C ∈ Ch and any canonical variables Xi, Xj , add C ∪F (Xi : δ,Xj :
γ) to Ch+1. Then increase h and repeat.

Intuitively, Ch represents the set of constraints that can be simulated by a constraint from C
and some level h petals. Since δ0 6∼cl(C) γ0, then by the definition of cl(C), (δ0, γ0) ∈ Ch0 for some
h0.

For any h ≥ 0, define ∆h = {(δ, γ) | δ 6∼Ch γ}. For any (δ, γ) ∈ ∆h \ ∆h−1 (where we set
∆−1 = ∅), we recursively define: If h = 0 then T(δ,γ) has one vertex, and it is labelled (δ, γ). If
h > 0 then T(δ,γ): (i) has a root v labelled (δ, γ) and (ii) for each (δ′, γ′) ∈ ∆h−1, v has a child that
roots a subtree T(δ′,γ′). Note that F has height at most d2 and degree at most d2, and so it has at

most d2d2 vertices.
It is straightforward to see that (T(δ,γ), C)-forbidding petals exist. Indeed, if h = 0 then a

(T(δ,γ), C)-forbidding petal is just a (δ, γ)-forbidding path with constraints from C, which exists
since δ 6∼C γ. If h > 0 then consider a (δ, γ)-forbidding path P with constraints from Ch. For
each constraint C ∈ P , we (i) replace C with its corresponding constraint C ′ ∈ C; (ii) for every
(δ′, γ′) ∈ ∆h−1, add a (T(δ,γ), C)-forbidding petal joining the two connecting variables of C. This
will strengthen C ′ so that it is equivalent to C. Thus the main path of the resulting petal will be
equivalent to P and so will forbid (δ, γ).

If (δ, γ) ∈ ∆h \∆h−1 then supp(P ∪∆(v)) = Ch. Since δ 6∼Ch γ, Proposition 3.10 implies that
T(δ,γ) has finite weight. Therefore wP(T) <∞.

13

Corollary 3.14. Let P be a distribution for which C = suppP has a complete closure. Then there
is a configuration forest F with wP(F) <∞ for which (F , C)-forbidding flowers exist.

We close this section by noting that it is simple to test whether C satisfies various conditions,
and construct certain paths and cycles, since |C| = O(1).

Lemma 3.15. Given a distribution P with C = suppP, there is a simple deterministic algorithm
to:

(a) test whether cl(C) is complete;

(b) test, for each δ, γ ∈ D, whether δ ∼C γ and whether δ ∼cl(C) γ;

(c) for each δ, γ ∈ D with δ 6∼cl(C) γ, construct constraint paths PA, PB, PC over C such that
PAP

i
BPC is (δ, γ)-forbidding for all i ≥ 0;

(d) for each δ, γ ∈ D with δ 6∼cl(C) γ, construct a configuration tree T(δ,γ) corresponding to a
(T(δ,γ), C)-forbidding petal;

(e) for any null-constraining set D′ ⊆ D, test whether there is a cyclic CSP formed from C that
is not D′-satisfiable, and if so, construct one.

Proof. Corollary 2.12 gives a finite-time subroutine to test whether δ ∼C γ for δ, γ ∈ D: Simply
generate all paths over C of length between 2|D| and 2 · 2|D| − 1 and see if any of them is (δ, γ)-
forbidding. Once such a path P is found, one can construct (as in the proof of Corollary 2.12)
constraint paths PA, PB, PC from P such that PAP

i
BPC is (δ, γ)-forbidding for all i ≥ 0.

Using the above subroutine that tests δ ∼C γ, one can generate cl(C) given C, as in the discussion
that follows Definition 2.4. Hence one can also test whether δ ∼cl(C) γ and whether cl(C) is complete

(the latter condition is equivalent to cl(C) containing the constraint that forbids all dk k-tuples of
partial assignments).

Given δ, γ ∈ D with δ 6∼C γ, we construct a configuration tree T(δ,γ) as in Proposition 3.13
(using the above subroutine to test δ 6∼Ch γ when computing ∆h).

Given a nonempty null-constraining subdomain D′ ⊆ D, it is easy to construct a cyclic CSP
that is not D′-satisfiable (if it exists): Simply enumerate all cycles of length at most |D′| · 2|D| + 3,
and output any one with the desired property. This is because, as we will argue, if some cyclic
CSP is D′-UNSAT, then there is a D′-UNSAT cyclic CSP that is shorter than |D′| · 2|D| + 3. To
see this, consider any such cyclic CSP of length r > |D′| · 2|D| + 3. Call its connecting variables
x0, x1, . . . , xr and constraints β1, . . . , βr, with xr = x0. For each i and each δ ∈ D′, we define a
subset Di,δ ⊆ D′ of values that xi can take without violating β1, . . . , βi and under the restriction
that x0 = δ. Since r > |D′| · 2|D|, there are 0 ≤ i < j ≤ r such that Di,δ = Dj,δ for all δ ∈ D′.
Further, we can choose such i, j with j − i ≤ |D′| · 2|D|. Remove βi+1, . . . , βj and identify xi and
xj to obtain a shorter path. This shorter path is also not D′-satisfiable (because the sets Dr,δ for
δ ∈ D′ remain unchanged). The resulting path has length r − (j − i) ≥ 3, and can be realised as a
cycle (there is no cycle shorter than length 3 when k = 2).

3.2 Supercritical Phase

We turn to the proof of a.s. appearance of forbidding flowers in CSPn,M=cn(P), when c is sufficiently
large. Consider any distribution P for which C = suppP has a complete closure.

14

We choose a particular configuration forest F with wP(F) < ∞, for which (F , C)-forbidding
flowers exist, as guaranteed by Corollary 3.14. For each vertex w ∈ F , we will define a length
r(w) = rn(w) = Θ(log n). We will focus on (F , C)-forbidding flowers for which every petal path of
type w has length r(w).

We have to be careful when choosing the lengths r(w). Fix w ∈ F and consider the sequence
ar = πPr (w)1/r. Recall that lim sup ar = βP(w). We wish to choose a length r(w) for which ar(w)

is close to βP(w). To do so, we find a nice subsequence of the integers along which ar converges to
βP(w), and we choose r(w) from that subsequence. As described following Definition 3.9, we can
always find a suitable subsequence that forms an arithmetric progression.

Lemma 3.16 (Convergence along AP). For any δ, γ ∈ D, there is an arithmetric progression Υ
such that πPr (δ, γ)1/r converges to βP(δ, γ) along r ∈ Υ.

Using Lemma 3.16, we fix a constant λ (to be specified later) and define:

rn(w) = the length of the largest member of Υ which does not exceed λ log n.

Thus rn(w) = (λ+ o(1)) log n. We often drop the subscript n from the notation, just saying r(w).

Definition 3.17. A (F , C)-forbidding flower H is said to have petal lengths r(·) if for every vertex
w ∈ F , every petal path of type w has length r(w).

Observation 3.18. Suppose that H is an untangled (F , C)-forbidding flower with petal lengths r(·).
Then

(a) Every hyperedge in the constraint hypergraph of H contains exactly two connecting variables.

(b) If H ′ is a (F , C)-forbidding flower with petal lengths r(·) then the constraint hypergraph of H ′

is isomorphic to the constraint hypergraph of H.

(c) Each variable lies in at most 2|F| constraints of H, where |F| denotes the number of vertices
in F .

Proof. Parts (a,b) follow trivially from the definition of an untangled (F , C)-forbidding flower. For
part (c), note that for any vertex w ∈ F each variable lies in at most two constraints that are from
petal paths of type w. Since every constraint lies in a petal path, this implies that the number of
constraints a variable can lie in is at most twice the number of vertices in F .

Lemma 3.19. Let H be an untangled (F , C)-forbidding flower with petal lengths r(·). Then H has
polylog(n) many constraints and connecting variables.

Proof. Let h denote the number of constraints in H, and u denote the number of connecting
variables in H. For each node w ∈ F , let q(w) denote the number of petal paths in H of type w.

Since each such petal path contains r(w) constraints, and the petal paths are edge-disjoint in
H, we have h =

∑
w∈F q(w)r(w). To compute u, we begin with the endpoints of the flower and

then add the petal paths one at a time, as in Remark 3.6. Each time we add a petal path of type
w, we add r(w) − 1 new connecting variables, since the endpoints of the petal path have already
been selected, so u = 2 +

∑
w∈F q(w)(r(w)− 1).

We have specified r = Θ(log n). Note that q(w) = 1 if w is a root and q(w) = r(w′)q(w′) if w′

is the parent of w. Consequently, q(w) =
∏
a r(a), where a runs through all proper ancestors of w,

i.e. nodes on the path in F from the root to w (but excluding w). Since F , and hence its height,
are fixed and do not depend on n, this yields q(w) = polylog(n). Therefore u, h = polylog(n).

15

We shall establish the almost sure existence of forbidding flowers by first and second moment
calculations. It will be convenient to work with the CSPn,p(P) model, with p = ck!/nk−1. The
results carry over to the CSPn,M (P) model by Remark 1.6.

Let A be a particular untangled (F , C)-forbidding flower with petal lengths r(·). The variables
of A are not variables of CSPn,p(P); rather we think of A as a template for some forbidding flowers
of CSPn,p(P).

Definition 3.20. A potential flower, A, consists of a hypergraph on the variables of CSPn,p(P)
along with an isomorpism from that hypergraph to A. A potential flower A is realized if (i) its
hyperedges are all selected for constraints of CSPn,p(P), and (ii) for every petal path P ∈ A, the
path in A that maps onto P is a petal path of the same type as P .

Thus a realized potential flower A is an untangled (F , C)-forbidding flower with petal lengths
r(·). The constraints of A may differ from those in A, but the petal paths must be of the same
type.

Let X be the random variable counting the number of realized potential flowers in CSPn,p(P).

Remark 3.21. If the constraint hypergraph of A has nontrivial automorphisms, then the underly-
ing hypergraph of a potential flower A will have multiple isomorphisms to A and hence will be the
underlying hypergraph of multiple potential flowers. For example, this would be the case if A were
Example 3.1. Thus X can be greater than the number of (F , C)-forbidding flowers of CSPn,p(P).
Nevertheless, it suffices to prove that a.s. X > 0.

Here f(n) ∼ g(n) means f(n) = (1 + o(1))g(n).

Lemma 3.22 (First moment). If c > wP(F) then E[X]→∞.

Proof. For each potential flower A on the variables of CSPn,p(P), we define XA to be the indicator
variable for the event that A is realized.

We start by counting the number of potential flowers. As in the proof of Lemma 3.19, we
define u, h and q(w) to be the number of connecting variables, constraints and petal paths of
type w in A. Thus, we must choose u connecting variables and h(k − 2) other variables. Since
u+ h(k − 2) = poly(log n), the number of choices is: (1 + o(1))nu+h(k−2).

Next we compute the probability that a particular potential flower is realized. The probability

that all the required hyperedges are chosen for the constraint hypergraph is
(
c×k!
nk−1

)h
. Recalling

Definition 3.9, the probability that the constraints are chosen so as to create petal paths of the
correct type is

∏
w∈F π

P
r(w)(w). Putting this all together, we obtain:

E[X] ∼ nu+h(k−2)

(
c× k!

nk−1

)h ∏
w∈F

πPr(w)(w).

Recall from the proof of Lemma 3.19 that h =
∑

w∈F q(w)r(w) and u = 2 +
∑

w∈F q(w)(r(w)− 1).
This yields:

E[X] = n2
∏
w∈F

(
(c× k!)r(w)πPr(w)(w)

n

)q(w)

.

16

Recalling Definition 3.12, since c > wP(F), there is some ε > 0 such that c > (1 + ε)/(k!βP(w))
for all w ∈ F . Together with πPr(w)(w)1/r = βP(w) + o(1) (by Lemma 3.16 and the fact that r(w)

grows with n), we have

E[X] ∼ n2
∏
w∈F

(
(c× k!(βP(w) + o(1)))r(w)

n

)q(w)

(1)

≥ n2
∏
w∈F

(
(1 + ε+ o(1))(λ+o(1)) logn

n

)q(w)

(2)

= n2
∏
w∈F

(
n(λ+o(1)) log(1+ε+o(1))−1

)q(w)
. (3)

Consider the exponent of n in (3). The term log(1 + ε − o(1)) is positive for large n, so since
λ > 0, the exponent of n will be positive. Therefore (3) tends to infinity.

Lemma 3.23 (Second moment). If wP(F) <∞, then E(X2) = (1 + o(1))E(X)2 provided c and λ
are sufficiently large.

Proof. Let A be a potential flower. It is well known (see e.g. Corollary 4.3.5, [6]) that we only need
to show ∑

B:E(B)∩E(A)6=∅

P[XB = 1|XA = 1] = o(E[X]). (4)

Writing EB as the event that all k-tuples of E(B) are selected as constraints for CSPn,p(P), we get

P[XB = 1 | XA = 1] = P[EB | XA = 1]P[XB | EB, XA = 1]

The first term P[EB | XA = 1] equals P[EB]/p|E(B)∩E(A)|, where p = ck!/nk−1. We bound the second
term with the following claim, whose proof (as well as the proofs of other claims that follow) is
deferred until after the second moment calculation.

Claim 3.24. Letting α = minC∈suppP P(C),

P[XB = 1 | EB, XA = 1] ≤ P[XB = 1 | EB]/α|E(B)∩E(A)|. (5)

Therefore∑
B:E(B)∩E(A)6=∅

P[XB = 1 | XA = 1] ≤
∑

B:E(B)∩E(A)6=∅

P[EB | XA = 1]P[XB = 1 | EB, XA = 1] (6)

≤
∑

B:E(B)∩E(A)6=∅

P[EB]P[XB = 1 | EB]

(αp)|E(B)∩E(A)| (7)

= P[XB0 = 1]
∑

B:E(B)∩E(A)6=∅

1

(αp)|E(B)∩E(A)| , (8)

where B0 is any fixed potential flower. We will show below that∑
B:E(B)∩E(A)6=∅

1

(αp)|E(B)∩E(A)| ≤ o(n
u+h(k−2)). (9)

17

Recall from the proof of Lemma 3.22 that the number of potential flowers is (1 + o(1))nu+h(k−2).
So plugging (9) into (8) gives the desired bound in (4), thus completing our proof. So let us show
(9).

Let h be any vector (h1, . . . , hJ) with every hi ≥ 1. (Note that h implicitly specifies J .) For any
potential flower B, we say E(B) ∩ E(A) |= h if the hyperedges of E(B) ∩ E(A) form J connected
components H1, ...,HJ such that each Hj has hj hyperedges. We will upper bound the number of
potential flowers B with E(B) ∩ E(A) |= h.

First we count the number of choices of the subgraphs H1, ...,HJ ⊆ A. To choose a connected
subhypergraph of A with exactly hj hyperedges, we consider the line graph L(A); i.e. the graph
whose vertices are the hyperedges of A and where two vertices are adjacent iff the corresponding
hyperedges intersect. The number of choices for Hj is at most the number of connected subgraphs
of L(A) with hj vertices. Pick a vertex u ∈ L(A). The number of connected subgraphs of size
hj containing u is at most the number of subtrees of L(A) of size hj rooted at u. It follows from
Exercise 11 on page 396 of [29] that the number of such subtrees is at most (eD)hj where D is the
maximum degree of L(A). By Observation 3.18(c), we have D ≤ 2k|F|. By Lemma 3.19, there are
polylog(n) choices for u. Therefore, the number of choices for Hj is at most polylog(n)Khj where

K = 2ek|F|.

Given Hj , the number of choices of which vertices of A correspond to Hj in our choice of B is also
at most polylog(n)Khj .

Given the choice of H1, ...,HJ , we let uj be the number of variables in Hj that are connecting
in A. Thus the total number of variables in Hj is uj +(k−2)hj . To choose the rest of B, we simply
specify which variables map onto the remaining u−

∑
uj + (k−2)(h−

∑
j hj) variables of A; there

are at most nu−
∑
uj+(k−2)(h−

∑
j hj) such choices.

If Hj has no cycles, then uj = hj + 1. Since the petal paths have length Θ(log n), so must any
cycles. This allows us to prove:

Claim 3.25.

uj ≥ hj + 1− 2hj
λ log n

.

Take λ large enough so that n2/(λ logn) ≤ 2. Thus we have

nu−
∑
uj+(k−2)(h−

∑
j hj) ≤ nu+(k−2)h−

∑
j((k−1)hj+1)2

∑
j hj

and so the total number of potential flowers B with E(B) ∩ E(A) |= h is at most

nu+(k−2)h−
∑

j((k−1)hj+1)2
∑

j hj

∏
j

poly(log n)Khj

2

kJ(k − 1)!
∑

j hj

< nu+(k−2)h
∏
j

poly(log n)k
(K2 × (k − 1)!)hj

n(k−1)hj+1
.

18

Therefore, for a specific h we have (after absorbing k = O(1) into the poly(log n) term):∑
E(B)∩E(A)|=h

1

(αp)|E(B)∩E(A)|

≤ nu+(k−2)h
∏
j

poly(log n)

n

(
K2 × (k − 1)!

nk−1

)hj (
α · c× k!

nk−1

)−hj

= nu+(k−2)h
J∏
j=1

poly(log n)

n

(
K2

ckα

)hj

< nu+(k−2)h
J∏
j=1

poly(log n)

n
2−hj ,

for c > 2K2/kα. Summing over all h of length J ; i.e. over all subhypergraphs with J components,

∑
B:E(B)∩E(A) has J components

1

(αp)|E(B)∩E(A)| ≤ n
u+(k−2)h

J∏
j=1

polylog(n)

n

∑
hj≥1

2−hj

≤ nu+(k−2)h

(
polylog(n)

n

)J
.

Finally summing over all J ≥ 1 (since E(B) ∩ E(A) 6= ∅ implies J ≥ 1), we get (9). This
completes the proof except for Claims 3.24 and 3.25, whose proofs we turn to next.

Proof of Claim 3.24. Let CA be the collection of all possible assignments of constraints to E(A)
that would make XA = 1. Abusing notation, we also denote by CA the event that the k-tuples of
E(A) are given an assignment from CA. For any set of hyperedges A′ ⊂ E(A), we denote by CA′

the event that the hyperedges of A′ are assigned the restriction of an assignment of CA to A′. We
have

P[XB = 1 | EB] ≥ P[XB = 1 | CE(B)∩E(A), EB] Pr[CE(B)∩E(A)].

Now the first term on the right equals P[XB = 1 | CA, EB] = P[XB = 1 | XA = 1, EB]. For
the second term, take an arbitrary C ∈ CE(B)∩E(A), and we have Pr[CE(B)∩E(A)] ≥ Pr[C] ≥
(minC∈suppP P(C))|E(B)∩E(A)|.

Proof of Claim 3.25. It will be convenient to view the constraint hypergraph of an untangled forbid-
ding flower as a planar graph. To do so, replace each hyperedge by an edge between its connecting
variables. Considering Remark 3.6, a straightforward recursive argument shows that this yields a
planar graph and that we can associate each internal face with a petal path, specifically a petal
path whose addition (in the construction described in Remark 3.6) led to the creation of that face.

This replacement transforms Hj into a connected subgraph H ′j of that planar graph, where H ′j
has uj vertices and hj edges. By Euler’s formula for planar graphs, the number of internal faces of
H ′j is exactly hj − uj + 1. Hj contains the petal path associated with each of those faces, and each

path contains (λ + o(1)) log n > 1
2λ log n hyperedges. Thus hj ≥ (hj − uj + 1) × 1

2λ log n, and the
claim follows.

19

And now we can finally prove:
Proof of Theorem 1.1 Because C = suppP has a complete closure, Proposition 3.13 implies

that there is a forest F of finite weight such that there are (F , C)-forbidding petals. Pick any
such a forest F . Lemmas 3.22, 3.23, Chebychev’s Inequality (see eg. [26]) and Remark 1.6 assert
that a.s. a (F , C)-flower exists in CSPn,M=cn(P) for large c. Let I be the sup-CSP formed by the
(F , C)-flower. Recall the boolean CNF formula CNF(I) defined in Definition 1.8. We will prove
that RES(CNF(I)) =polylog(n), hence establishing Theorem 1.1.

We first note that all forbidden pairs of values of each constraint of I can be resolved in O(1)
steps. Indeed, if a constraint in I forbids (xi : δ, xi+1 : γ), the clause (xi : δ ∨ xi+1 : γ) is implied
by O(1) clauses of CNF(I) and therefore can be derived from CNF(I) with O(1) resolutions. We
resolve petal paths in the flower sequentially, starting with paths corresponding to the leaves of F .
For each constraint e in a path, we have already resolved the paths corresponding to its children in
F , and hence have already obtained the restrictions implied by the subpetals whose endpoints are
the connecting vertices of e. Hence, we can obtain the forbidden pair of values on those endpoints
in an additional O(1) steps. After obtaining the forbidden pair of values for every constraint in the
path, we can obtain the forbidden pair on the endpoints of the path with a number of resolution
steps that is proportional to the length of the path. So overall, we can resolve a petal path of length
r in O(r) steps. This yields a resolution refutation of CNF(I) of length at most a constant times
the number of constraints in I, which is polylog(n) by Proposition 3.19. �

Consequently, given a path in I of length r between (x1, x2), all clauses corresponding to its
forbidding value pairs (i.e. the clauses (x1 : δ ∨ x2 : γ)) can be derived from CNF(I) with O(r)
resolutions.

Remark 3.26. Theorem 1.1 still holds if we measure resolution complexity by NG-RES. Indeed,
if a constraint forbids (xi : δ, xj : γ), the nogood (xi 6= δ, xj 6= γ) can be derived with O(1) nogood
resolutions (for the definition of nogood and nogood resolution, see [35]). Using the same argument
as above, a flower has polylog NG-RES.

4 Random Walks on Directed Graphs

This section is mainly devoted to proving Lemma 3.16, which says that πPr (δ, γ)1/r converges to
βP(δ, γ) along some arithmetic progression. The behavior of πPr (δ, γ)1/r is best studied as a random
walk on a related digraph, thus we are led to the analysis of convergence of such a random walk
(Theorem 4.2).

Let G = (V,E) be a fixed digraph with positive edge weights. so that at any vertex, the sum of
the outgoing edge weights is 1. A random walk on G from u is one which starts at u, and at any
stage of the walk at a vertex v, we go to a neighbor w of v with probability the weight of the arc
vw.

Definition 4.1. For any u ∈ V (G), V ′ ⊆ V (G), we define πr(u, V
′) to be the probability that a

random walk from u of length r lands on a vertex in V ′. We define R(u, V ′) = lim supr πr(u, V
′)1/r.

If V ′ = {v} then we use the notations πr(u, v), R(u, v).

Theorem 4.2. πr(u, V
′)1/r converges to R(u, V ′) along some arithmetic progression.

The theorem may be of independent interest. Quite possibly it has appeared elsewhere, but we
could not find it. It will be proved using the following sequence of propositions.

20

Proposition 4.3. Let T be a finite set. Assume every t ∈ T is associated with a sequence {ar(t)},
such that ar(t) ≥ 0 and lim supr(ar(t))

1/r = a(t). Let br =
∑

t∈T ar(t) and b = lim supr b
1/r
r . Then

b = maxt∈T a(t).

Proof. Pick s ∈ T so that a(s) is maximized. Clearly br ≥ ar(s). Taking r-th root and then
lim supr on both sides, we get b ≥ a(s). On the other hand, ar(t) ≤ (a(t)+o(1))r for any t, yielding
br ≤ |T |(a(s) + o(1))r. Taking r-th root and then lim supr on both sides, we get b ≤ a(s).

Proposition 4.4. R(u, V ′) = max{R(u, v) | v ∈ V ′}.

Proof. Apply Proposition 4.3 with T = V ′ and ar(v) = πr(u, v). Observe that br becomes πr(u, V
′).

It turns out R(u, v) depends only on the strongly connected components of u and v.

Proposition 4.5. Assume u, u′ belong to the same strongly connected component, and so do v, v′.
Then R(u, v) = R(u′, v′).

Proof. Let p be a path from u to u′, and q a path from v′ to v. Let a > 0 be the probability of
traversing p, and b > 0 that of traversing q. Let ` be the sum of lengths of p and q. One way to
go from u to v in r + ` steps is to go along p, then go from u′ to v′ in r steps and finally go along
q. Hence πr+`(u, v) ≥ abπr(u

′, v′). Taking (r + `)-th root and then lim supr on both sides, we get
R(u, v) ≥ R(u′, v′). Reversing the roles of (u, v) and (u′, v′), we get R(u′, v′) ≥ R(u, v).

For a vertex u in G, we denote by [u] the strongly connected component of u. If we let
R([u], [v]) = R(u, v), the previous proposition shows that R([u], [v]) is well-defined. For convenience,
we let6 R([u]) = R([u], [u]). For the given digraph G, let us denote by GC the component digraph
of G. It is obtained from G by contracting every strongly connected component. For a strongly
connected component [u] in G, we denote by uC its corresponding vertex in GC. For a walk w in G,
its induced (simple) path wC is the path in GC obtained by contracting every strongly connected
component of G along w.

Definition 4.6. Let p be a (simple) path starting from uC in GC. πr(p) is defined to be the
probability that a random walk in G from u of length r has p as its induced path. We define
R(p) = lim supr πr(p)1/r.

Proposition 4.7. For any simple path p starting from uC in GC,

R([u], [v]) = max{R(p) | p is a uC, vC-path in GC}.

Proof. Apply Proposition 4.3 with ar(p) = πr(p) for any uC, vC-path p. Observe that br =
πr([u], [v]).

Lemma 4.8. Let p be a path from uC to vC in GC. Then R(p) = max{R([w]) | wC ∈ V (p)}.
6Readers familiar with quasi-stationary distributions of absorbing Markov processes (see e.g. [21, 30]) may have

realized that R([u]) is the spectral radius of the probability transition matrix on [u].

21

Proof. Suppose p is a uC, vC-path in GC. Assume w0 in G maximizes R([w]) among wC ∈ V (p).
Take a u,w0-path p and a w0, v-path q in G, and let ` be their sum of lengths. A possible walk of
length r + ` with its induced path being p is like this: It begins with p, then goes from w0 to w0

in r steps, finally ends with q. Let a > 0 be the probability of traversing p and b > 0 be that of
q. Then πr+`(p) ≥ abπr(w0, w0). Taking (r + `)-th root and then lim supr on both sides, we get
R(p) ≥ R(w0, w0) = R([w0]).

For the reverse inequality, assume v(1)C, . . . , v(t)C are the vertices of p. Let w be a walk such
that wC = p. Renaming if necessary, we may assume w enters [v(i)] at the vertex v(i). For
1 ≤ i ≤ t, let s(i) be the number of steps that w makes within [v(i)]. Now for any 1 ≤ i ≤ t, the
probability of w staying in [v(i)] for s(i) steps is πs(i)(v(i), [v(i)]) ≤ (R([v(i)]) + f(s(i)))s(i), where
f(s(i)) = o(1). Note that t − 1 +

∑
i s(i) = r, and let Sr = {(s(1), . . . , s(t)) | t − 1 +

∑
i s(i) = r}

be the set of all such t-tuples. We have

πr(p) ≤
∑
s∈Sr

∏
1≤i≤t

(R([v(i)]) + f(s(i)))s(i). (10)

Let R0 = R([w0]) (hence R0 ≥ R([v(i)]) for any i). There are |Sr| ≤ rt terms in the sum in (10) (a
loose upper bound suffices).

Claim 4.9. πr(p) ≤ rt(R0 + o(1))r−t+1.

Proof. Define g(r) by

(R0 + g(r))r−t+1 = max
s∈Sr

∏
1≤i≤t

(R0 + f(s(i)))s(i) (11)

so that ∏
1≤i≤t

(R0 + f(s(i)))s(i) ≤ (R0 + g(r))r−t+1. (12)

Hence an upper bound to the right hand side of (10) is rt(R0 + g(r))r−t+1.
We claim that g(r) = o(1). Indeed, take any sequence {sr} of t-tuples, with sr = (sr(1), . . . , sr(t)) ∈

Sr. It suffices to show ∏
1≤i≤t

(R0 + f(s(i)))s(i) ≤ (R0 + o(1))r−t+1, (13)

where s(i) = sr(i). Taking (r − t+ 1)-th root, we need to show∏
1≤i≤t

(R0 + f(s(i)))s(i)/(r−t+1) ≤ R0 + o(1). (14)

Fix ε > 0. There is an s0 such that f(s) < ε for all s ≥ s0, and a B such that f(s) ≤ B
for all s < s0. Then choose r0 such that (R0 + B)s/(r−t+1) ≤ (1 + ε)(R0 + ε)s/(r−t+1) for all
s < s0 and r ≥ r0. For each i, consider its contribution to the product in (14). If s(i) ≥ s0,
then (R0 + f(s(i)))s(i)/(r−t+1) < (R0 + ε)s(i)/(r−t+1). If s(i) < s0, then (R0 + f(s(i)))s(i)/(r−t+1) ≤
(R0 +B)s(i)/(r−t+1) ≤ (1+ ε)(R0 + ε)s(i)/(r−t+1) whenever r ≥ r0. Hence the left hand side of (14) is
at most (1 + ε)t(R0 + ε) for r ≥ r0. Since t is a constant and ε is arbitrary, their total contribution
is R0 + o(1), and the claim follows.

From the claim, we take r-th root and then lim supr on both sides, getting R(p) ≤ R0 =
R([w0]).

22

Lemma 4.10. For any vertex v in G, πr(v, v)1/r converges to lim supr πr(v, v)1/r along multiples
of an integer.

Proof. Let ar = πr(v, v)1/r. If ar = 0 for all r > 0, the conclusion is trivial, so assume some ar > 0.
Let S = {r | ar > 0}. For any m,n ∈ N, πm+n(v, v) ≥ πm(v, v)πn(v, v), hence

ar+s ≥ ar/(r+s)r as/(r+s)s . (15)

This implies S is closed under addition. It follows that S contains all sufficiently large multiples
of d, where d = gcd(S). Equation (15) also implies ar are supermultiplicative, and by Fekete’s
Lemma (e.g. [41, Lemma 11.6]), ar converges to lim supr ar along multiples of d.

Proof of Theorem 4.2. The theorem is trivial if V ′ is not reachable from u, so let us assume this is
not the case. Propositions 4.4, 4.7 and Lemma 4.8 together imply R(u, V ′) = R(w,w) for some w
lying on some path from u to V ′. Lemma 4.10 asserts that πr(w,w)1/r converges to R(w,w) along
some arithmetic progression S ⊆ N. We consider paths p from u to w and q from w to V ′, and
use the same analysis as in the first part of Proposition 4.8 to show that πr(u, V

′)1/r converges to
R(u, V ′) along S + `.

We are now ready to prove Lemma 3.16.

Proof of Lemma 3.16. Consider a constraint path P = 〈x0, . . . , xr〉 with constraints chosen ran-
domly according to P. Suppose x0 is allowed to take values from D0. Let Di be the set of values
that xi can take without violating constraints in P , for 1 ≤ i ≤ r. Then 〈D0, . . . , Dr〉 corresponds
naturally to a random walk on a digraph G defined as follows. The vertex set V (G) is the power
set of D. For any subdomain D′ ⊆ D and any C ∈ suppP, consider two canonical variables X1, X2

in a constraint C. Define θ(C,D′) to be the set of values δ2 such that there is δ1 ∈ D′ such that C
permits (X1 : δ1, X2 : δ2). Then we put an arc (D′, θ(C,D′)) of weight P(C) in G.

Now let D0 = {δ} and V ′ = {D′ ⊆ D | γ 6∈ D′}. It is easy to see that πPr (D0, V
′) is the

probability over P that a constraint path of length r on suppP is (δ, γ)-forbidding. The result
follows by Theorem 4.2.

We close this section by proving Proposition 3.10.

Proof of Proposition 3.10. If δ ∼C γ, πPr (δ, γ) = 0 for all sufficiently large r, hence βP(δ, γ) = 0.
If δ 6∼C γ, let P be a (δ, γ)-forbidding path over C of length at least 2|D|. Consider the digraph G
defined in the proof of Lemma 3.16. P corresponds to a walk w from {δ} in the digraph. Since G
has only 2|D| vertices, w visits some vertex (at least) twice, say w. Then the portion of w between
the two visits is a circuit from w to itself, say of length s ≥ 1. Hence πs(w,w) > 0. The numbers
ar = πr(w,w)1/r are supermultiplicative by (15), hence R(w,w) ≥ πs(w,w)1/s > 0. If u = {δ} and
V ′ = {D′ ⊆ D | γ 6∈ D′}, then R(u, V ′) ≥ R(w,w) by Propositions 4.4, 4.7 and Lemma 4.8. Hence
βP(δ, γ) = R(u, V ′) > 0.

5 Incomplete Closures

In this section, we turn to constraint sets whose closures are incomplete (Theorems 1.2 and 1.4).
Consider any distribution P where C = suppP has an incomplete closure. By Corollary 2.9,

some nonempty subdomain D′ ⊆ D is null-constraining. In other words, there is some integer t

23

such that all constraint paths over C with length at least t D′-permit all (δ, γ) ∈ D′ × D′. This
implies, in particular, that all cycles of length at least t are D′-satisfiable.

In subsection 5.1, We prove that a.s. there is no subexponential resolution proof that the
random CSP is not D′-satisfiable unless it contains a cycle that is not D′-satisfiable. The constraint
hypergraph will w.u.p.p. have girth at least t and hence have no such cycle. This implies Theorems
1.2 and 1.4(a).

That part of the proof follows a standard approach: There is some α > 0 such that a.s. every
non-cyclic sub-CSP of size at most αn has either (i) a constraint where all but one variable has
degree one or (ii) a path of length at least t in which all internal variables do not lie in any other
constraint. If that sub-CSP is not D′-satisfiable then neither is the sub-CSP formed by deleting
the constraint of (i) or the constraints of the path of (ii). It follows recursively that the sub-CSP is
indeed D′-satisfiable unless it contains a D′-unsatisfiable cycle. Furthermore, if it has size at least
1
2αn then there must be Θ(n) such constraints and/or paths and they can serve as the boundary;
this allows us to apply the Width Lemma of [12].

We prove Theorem 1.4(b) in subsection 5.2.

5.1 Exponential Complexity

Since C = suppP has an incomplete closure, Definition 2.6 and Corollary 2.9 imply that we can
choose some D′ ⊆ D and t > 0 such that:

Fact 5.1. Every constraint path over C with length at least t D′-permits all (δ, γ) ∈ D′ ×D′. Note
this implies that every cyclic CSP of length at least t whose constraints are from C is D′-satisfiable.

We denote by Ω(suppP) the set of all CSP instances whose constraints are drawn only from
suppP. As in many other results concerning exponential resolution complexity, we define certain
sub-CSP’s to be boundaries.

Definition 5.2. Let I ∈ Ω(suppP).

1. The first boundary of I, denoted B1(I), is the set of constraints of I which contain at most
one variable of degree greater than 1.

2. The second boundary of I, denoted B2(I), is the set of pendant paths of length t in I.

3. The boundary of I is B(I) = B1(I) ∪ B2(I).

Recall that a pendant path in a CSP is defined (in Section 2) to be the set of constraints cor-
responding to a pendant path in the underlying hypergraph. Thus, every element of the boundary
on I is a set of constraints of I.

Lemma 5.3. Suppose I ∈ Ω(suppP) and X ∈ B(I). Any satisfying D′-assignment α of I − X
can be extended to a satisfying D′-assignment of I.

Proof. Suppose X ∈ B1(I), and let x0 be the variable in X with maximum degree (all other
variables have degree 1). No variable other than x0 is assigned a value by α. It is easy to see that
for any value δ, there is a satisfying D′-assignment for X with x0 = δ; such an assignment extends
α to a D′-assignment of I. To see this, note that otherwise one can construct an arbitrarily long
path, whose constraints are all isomorphic to X, that does not permit (δ, γ) for any γ (indeed the

24

first constraint cannot be satisfied if the first endpoint recieves δ); this contradicts the fact that D′
is null-constraining.

Suppose X ∈ B2(I). The lemma follows from Fact 5.1.

We next prove a lemma (Lemma 5.8) which will imply exponential resolution complexity. It
says that if every small subproblem is satisfiable and every subproblem with non-negligible size
has many boundaries, then the CSP has large resolution complexity. This lemma is of a standard
type for proving exponential resolution complexity, and its proof is essentially identical to that of
Lemma 7 in [39] (which in turn follows Mitchell’s framework [36]).

There is a slight twist, however. Instead of simply requiring all small subproblems to be sat-
isfiable, we require them to be D′-satisfiable. The idea is that any resolution refutation for the
unsatisfiability of I also proves that I is D′-unsatisfiable. Therefore exponential resolution com-
plexity of I follows from exponential resolution complexity of I �D′ , the CSP derived from I with
its domain restricted to D′ (i.e. variables can take values only from D′).

Recall our definition of CNF(I) from Section 1.3.

Definition 5.4. For a CNF-clause C and a variable x, the restriction of C on x = false, denoted
C �x=false, is defined as follows: If the literal x appears in C, it is {true}, the clause which is always
true. Otherwise, it is C \ x, the clause obtained from C by removing the variable x. For a formula
φ and a variable x, the restriction of φ on x = false is {C �x=false| C ∈ φ}.

Definition 5.5. CNF(I) �D′ is the restriction of CNF(I) on xi : δ = false for all xi and all δ 6∈ D′.
It is easy to see that CNF(I �D′) = CNF(I) �D′ .

A useful property of restriction is that it distributes over disjunction: (C1 ∨ C2) �D′= C1 �D′
∨C2 �D′ .

We now make formal the fact that a resolution refutation for unsatisfiability also proves D′-
unsatisfiability. This is achieved by restricting resolution proofs on some variables and values.

Definition 5.6. For a derivation π = 〈C1, . . . , Cs〉 of CNF(I), the D′-restriction of π is π �D′=
〈C ′1, . . . , C ′s〉, where C ′i = Ci �D′ for 1 ≤ i ≤ s.

In the restricted derivation π �D′ , it will be convenient to introduce a weakening rule in which
a clause C ′i may be derived from an earlier clause C ′j , j < i, by applying: C ′i = C ′j ∨ C for some
arbitrary clause C. Given any resolution proof using the weakening rule, it is straightforward to
transform it to a shorter one without using the weakening rule, so the use of weakenings does not
reduce resolution complexity.

Proposition 5.7. The D′-restriction of any refutation of I is a refutation of I �D′ of no greater
length.

Proof. Let π = 〈C1, . . . , Cs〉 be a resolution refutation of I, and let π′ = π �D′ be its D′-restriction.
By definition π′ is not longer than π. It remains to check that π′ is a valid resolution refutation of
CNF(I �D′). Consider a clause Ci in π. If Ci ∈ CNF(I), then the corresponding clause C ′i = Ci �D′
is in CNF(I) �D′= CNF(I �D′). If Ci is derived from Cj = A ∨ y and Cj′ = B ∨ y by resolving a
variable y, there are two cases depending on whether y is restricted by �D′ . If y is not restricted,
then C ′i = (A ∨ B) �D′= A �D′ ∨B �D′ is a valid resolution step, because it comes from earlier
clauses C ′j = (A ∨ y) �D′= A �D′ ∨y and C ′j′ = (B ∨ y) �D′= B �D′ ∨y. If y is restricted under
�D′ , then y must be restricted to be false, and the clause C ′i = A �D′ ∨B �D′ is derived from the

25

earlier one C ′j = (A ∨ y) �D′= A �D′ via a weakening step. Finally, the last clause C ′s = Cs �D′ is
the empty clause. Thus π �D′ is indeed a resolution refutation of CNF(I �D′).

Lemma 5.8. Consider any I ∈ Ω(suppP) on n variables. If for some α, ξ > 0, we have

(a) every subproblem on at most αn variables is D′-satisfiable, and

(b) every subproblem I ′ on v variables where 1
2αn ≤ v ≤ αn has |B(I ′)| ≥ ξn,

then C-RES(I) ≥ 2Ω(n).

Proof. Consider any resolution refutation of CNF(I �D′). Mitchell ([36], Lemma 1) proves that
hypothesis (a) implies there must be a clause C in the refutation and a subproblem J of I �D′ on
between 1

2αn and αn variables, such that J minimally implies C in the following sense: (i) Every
satisfying D′-assignment of J satisfies C, and (ii) for any subproblem J ′ of J , there is a satisfying
D′-assignment of J ′ that does not satisfy C.

We will prove that C must have at least ξn/t variables (where t is defined at the beginning of
this section, and is the length of the pendant paths in B2). Using this, the standard “width lemma”
of Ben-Sasson and Wigderson ([12], Corollary 3.6) implies that C-RES(I �D′) ≥ 2Ω(n). Propostion
5.7 implies that C-RES(I) ≥ 2Ω(n) as well.

Consider any clause X ∈ B1(J); we will show that some variable of X appears in C. To see
this, consider any D′-assignment α which satisfies J −X but not C. By Lemma 5.3, it is possible
to extend α to a D′-satisfying assignment α′ of J , and since J implies C, α′ satisfies C. Thus,
there is some variable of C that is assigned a value in α′ but not α. This variable must be in X.

A similar argument shows that C contains a non-endpoint variable of every member of B2(J); we
use the fact that every D′-assignment to the endpoints of a member X of B2(J) can be completed
to a satisfying D′-assignment of X. No variable can be a non-endpoint variable of more than t
members of B2(J). So |C| ≥ |B1(J)| + |B2(J)|/t. Now by hypothesis (b), B(J) ≥ ξn, we have
|C| ≥ |B(J)|/t, as required.

We need the following two lemmas from [39].

Lemma 5.9 (Lemma 11, [39]). Let H be a non-empty k-uniform hypergraph on n vertices and m
edges that does not have any component which is a cycle. Let B1 be the set of edges which have
at most one vertex of degree greater than 1, and B2 be the set of pendant paths of length t. If
|B1|+ |B2| ≤ n/(72t2k3), then m ≥ n(1+δ

k−1) for δ = 1
3tk2

.

Lemma 5.10 (Lemma 10, [39]). Let c > 0 and k ≥ 2, and let H be the random k-uniform
hypergraph with n > 0 vertices and m = cn edges. Then for any δ > 0, there exists α = α(c, k, δ) > 0
such that a.s. H has no subgraph with 0 < h ≤ bαnc vertices and at least (1+δ

k−1)h edges.

We can finally prove Theorem 1.2. The proof closely resembles that of Theorem 1 from [39].

Proof of Theorem 1.2. Recall t from Fact 5.1. It is well known that the probability that the con-
straint hypergraph of CSPn,M (P) has no cycle of length less than t is at least some ε > 0 depending
only on c and t. (See eg. Theorem 3.19 of [26]).

We will show that condition (a) of Lemma 5.8 holds with probability at least ε+ o(1), and that
condition (b) holds a.s. with α = α(c, k, δ = 1/(3tk2)) from Lemma 5.10 and ξ = min{1/(72t2k3), α/3k}.

26

We begin with condition (a). Suppose J is a minimallyD′-unsatisfiable subproblem of CSPn,M (P).
Thus, |B1(J)| = |B2(J)| = 0, and the constraint hypergraph of J is connected. Furthermore, with
probability at least ε, CSPn,M (P) is such that the constraint hypergraph of J cannot be a cycle
of length less than t and hence cannot be a cycle at all since, by Fact 5.1, every cycle of length
greater than t is D′-satisfiable. Therefore Lemma 5.9 applies to the constraint hypergraph of J
and so J has clause-variable ratio at least (1 + δ)/(k − 1). Thus Lemma 5.10 implies that with
probability at least ε+o(1), CSPn,M (P) has no minimally unsatisfiable subproblems of size at most
αn. Equivalently, all subproblems of size at most αn are satisfiable.

Next, condition (b). We will use the well-known fact that a.s. the underlying random hyper-
graph of CSPn,M (P) has fewer than log n cycles of length at most t (this follows from a simple
application of Markov’s inequality, or from a proof nearly identical to that of Theorem 3.19 of
[26]). Suppose, by contradiction, that J is a subproblem of CSPn,M (P) with v variables where
1
2αn ≤ v ≤ αn, and with |B1(J)| + |B2(J)| ≤ ξn. Let H ′ be the subhypergraph obtained by
removing all the cycle components from the constraint hypergraph of J . By Lemmas 5.10 and
5.9, a.s. for every such subproblem J , H ′ is empty, and so every component in the constraint
hypergraph of J is a cycle. But any such cycle of length ` > t will contain at least ` mem-
bers of B2(J) and so there are at most kξn vertices in those cycles. And, as mentioned above,
there are a.s. at most t log n vertices which lie in cycles of length at most t in CSPn,M (P). Since
kξn+ t log n < 1

2αn ≤ |J |, we have a contradiction.

Consider a constraint set C with incomplete closures such that there are unsatisfiable cyclic
CSP’s of size ` whose constraints are from C. Note that we can take ` = O(1) since ` depends on
C and not on n. For the case k = 2 (i.e. graphs), Theorem 3.19 of [26] (found originally in [13]
and [27]) implies that the constraint hypergraph of CSPn,M w.u.p.p. contains a cycle of length `.
It is straightforward to adapt the proof of Theorem 3.19 of [26] to random hypergraphs and hence
to prove that the same holds for any fixed k. Under any P with supp(P) = C, such a cycle will
receive the constraints from C that make it unsatisfiable w.u.p.p. If this occurs, then there will be
an O(1)-length resolution proof that the O(1)-sized cyclic sub-CSP is unsatisfiable and hence that
the entire CSP is unsatisfiable. Consequently, w.u.p.p. CSPn,M (P) has O(1) resolution complexity.
Thus “with uniformly positive probability” in the statement of Theorem 1.2 cannot be changed to
“almost surely”.

An example of such a C is the following: Take D = {1, . . . , d}, k = 2, C = {(δ, γ) | γ−δ 6≡ 1 or 2
(mod d)} and consider the constraint set C formed by C and its reflection. Then the cycle consisting
of ` copies of C is unsatisfiable for any ` ≤ (d− 1)/2. On the other hand, D is null-constraining -
consider all constraint paths of length at least t = d− 1.

Nevertheless, if we assume there is some null-constraining subdomain D′ such that all cyclic
CSP’s are D′-satisfiable, we can prove a.s. exponential resolution complexity for all c > 0; this is
Theorem 1.4.

Proof of Theorem 1.4(a). The proof is the same as that of Theorem 1.2, except that the hypothesis
ensures that a minimally unsatisfiable subproblem cannot be cyclic. This implies that condition
(a) a.s. holds.

Remark 5.11. Theorems 1.2 and 1.4 also hold when we measure resolution complexity by NG-RES.
Indeed, Mitchell [35] shows that C-RES(I) ≤ poly(NG-RES(I)). Hence an exponential lower
bound for C-RES translates to another for NG-RES.

27

5.2 Polylogarithmic Complexity

Let C = supp(P) and cl(C) be the closure of C. Suppose that for every null-constraining D′ ⊆ D,
there is a D′-unsatisfiable cyclic CSP formed from cl(C). We will prove here that if c is a sufficiently
large constant then CSPn,M=cn(P) w.u.p.p. has polylogarithmic resolution complexity; i.e. we will
prove Theorem 1.4(b).

It will often be convenient to study the CSP formed by taking the union of several independent
random CSP’s. The following technical lemma will be useful:

Lemma 5.12. Consider any constants c, t and any M1 + ... + Mt = M = cn. Let F1, ..., Ft be
random CSP’s drawn from CSPn,M1(P), ...,CSPn,Mt(P), and consider the CSP F = ∪ti=1Fi. If a
property holds a.s. for F then it holds a.s. for CSPn,M (P).

Proof. Let E1 be the event that no k-tuple of variables is selected for a constraint in two of F1, ..., Ft.
Thus, F conditional on E1 has the same distribution as CSPn,M . We argue below that P(E1) ≥ ζ
for some constant ζ > 0. It follows then that if a property holds a.s. for F then it must hold a.s.
for F conditioned on E1; i.e. for CSPn,M .

The probability that Fi does not contain any k-tuples from F1, ..., Fi−1 is((n
k

)
− (M1 + ...+Mi−1)

Mi

)
/

((n
k

)
Mi

)
> ψ,

for some constant ψ > 0 dependent on c, k. Therefore P(E1) > ζ = ψt, as required.

Remark: If k ≥ 3 then in fact P(E1) = 1 − o(1) and so we obtain something even stronger.
But we do not use that in this paper.

We will make use of the following easy concentration bound:

Lemma 5.13. Consider selecting s independent and uniform subsets X1, ..., Xs of {v1, ..., vn},
where |Xi| is fixed to be xi. Let Z be a random variable determined by X1, ..., Xs with the property
that for every i, a ∈ Xi, b /∈ Xi, removing a from and adding b to Xi can affect Z by at most c.
Then for any t > 0

P(|Z − E(Z)| > t) ≤ 2e−t
2/2c2

∑
xi .

The proof follows easily from, eg. Azuma’s Inequality[7] (or see [6]) by choosing each Xi one
element at a time, without replacement.

We will begin our proof by showing that if δ 6∼C γ then for c sufficiently large, a.s. CSPn,M=cn(P)
contains many (δ, γ)-forbidding petals.

Lemma 5.14. Suppose that δ 6∼cl(C) γ. Then there exists constants c, a such that a.s. CSPn,M=cn(P)

contains at least n2

4 pairs of variables x, y that have a (δ, γ)-forbidding petal from x to y of size
O(loga n).

Before proving this lemma, we show how it implies our theorem:
Proof of Theorem 1.4(b) By Lemma 2.13, D can be partitioned into D1, ...,Dt,W such that

(i) each Di is null-constraining and (ii) for every pair δ, γ ∈ D not both lying in the same Di, we
have δ 6∼cl(C) γ. Label the pairs from (ii) as (δ1, γ1), ..., (δ`, γ`) for some ` ≤ d2.

We first choose ` random CSP’s from CSPn,M=cn(P): F1, ..., F`, each on the same set of variables,
and we let F be the CSP formed by the union of the constraints from F1, ..., F`. We will analyze
F rather than CSPn,M=`cn(P), using Lemma 5.12.

28

By Lemma 5.14 there exists c such that a.s. for each 1 ≤ i ≤ `, Fi contains at least n2

4 pairs of
variables x, y with a (δi, γi)-forbidding petal from x to y of size O(loga n). Since no variable lies in
more than n such pairs, it follows that there is a set Xi of n

100` variables, such that for each x ∈ Xi

there are at least n
8 variables y such that Fi contains a (δi, γi)-forbidding petal from x to y. Set

α = 1
2(1

9)`.
Claim A.s. there is a variable x, and a set of variables Z of size at least αn such that: for

each 1 ≤ i ≤ `, and for any z ∈ Z, Fi has a (δi, γi)-forbidding petal from x to z.
Proof of Claim: For each 1 ≤ i ≤ ` we can choose Fi by first selecting a CSP F ′i from

CSPn,M=cn(P) and then take a uniformly random permutation of its variables; note that this yields
the correct distribution for Fi. Select all the F ′i ’s and suppose that they each contain a set X ′i with
the properties of Xi described above (as they a.s. do). Then we expose the random permutations
in parts. First map the variables of each X ′i thus yielding Xi. It is straightforward to argue that
a.s. there is a variable x that lies in every Xi. Let Y ′i be the set of variables u /∈ X ′i such that F ′i
contains a (δi, γi)-forbidding petal from x to u. Note that |Yi| ≥ n

8 − |X
′
i| > n

9 . Let Z+ denote the
set of variables that do not lie in Xi for any 1 ≤ i ≤ `; note that |Z+| ≥ n−

∑
|Xi| = 99

100n. Next,
for each i, choose the mappings of the variables of Y ′i , thus yielding Yi. We set Z = ∩`i=1Yi; the
expected size of Z is at least |Z+| × (1

9)` > 3
2α. A straightforward concentration argument, using

the independence of the sets Yi, shows that a.s. |Z| ≥ αn. Note that Z meets the condition of our
claim. �

Now we choose a random CSP from the distribution CSPM=(`+t)cn(P) as follows. First pick a
random CSPn,M=`cn(P) and label it H0. Next, for each 1 ≤ j ≤ t, we let Hj be a random CSP with
cn constraints whose variables are drawn uniformly and without replacement from the k-tuples of
variables that do not form constraints in H0 ∪ ... ∪Hj−1, and whose constraints are selected from
P. Thus H0 ∪ ... ∪Ht has the same distribution as CSPM=(`+t)cn

By our Claim, and Lemma 5.12, a.s. H0 has a variable x and a set Z as described in the Claim.
For each 1 ≤ j ≤ t, the hypothesis of our theorem states that there is a Di-unsatisfiable cyclic

CSP formed from the constraints of C. Note that its size is independent of n. A standard and
straightforward method of moments analysis along the lines of that from, eg. the aforementioned
Theorem 3.19 of [26], implies: There is an ε > 0 such that for each 1 ≤ j ≤ t, with probability at
least ε, Hj contains a copy Cj of that cyclic CSP with its variables all lying in Z. So the probability
that this holds for every 1 ≤ j ≤ t is at least εt; suppose this does indeed hold. Let z be any variable
from Z. Then we define F ∗ ⊂ F to be the CSP formed by:

• x, z, C1, ..., Ct;

• for each 1 ≤ j ≤ t and each δ ∈ Dj and γ /∈ Dj , the (δ, γ)-forbidding petals from x to each
vertex in Cj ;

• for each δ ∈W and γ ∈ D, the (δ, γ)-forbidding petal from x to z.

Note that F ∗ is not satisfiable. Indeed, if x takes a value from some Dj then, since Cj ⊂ Z
the petals from our Claim imply that each variable in Cj must take a value from Dj ; but Cj is
Dj-unsatisfiable. The only other possibility is for x to take a value from W , but then the petals
from our Claim forbid z from taking any value. Furthermore, the fact that these petals each have
size O(loga n) easily implies that F ∗ has a resolution refutation of size O(loga n), very similar to
the refutation from the proof of Theorem 1.1. �

29

Remark: Note that when t = 0 the proof still holds, and in fact, we get a.s. rather than
w.u.p.p. Thus, this provides an alternate proof for Theorem 1.2, albeit for a much higher value of
c.

We complete the proof by proving Lemma 5.14. First, we need some definitions and lemmas.
Suppose we are given a directed graph H whose vertices are a subset of the variables of a

CSP, F . Consider any constraint path P = β1, ..., βh in F where the constraint βi is on variables
xi,1, ..., xi,k, the endpoints are x1,1, xh,k and the other connecting variables are xi,k = xi+1,1 for
1 ≤ i ≤ h− 1. We define the first and last variables of βi to be xi,1, xi,k.

Definition 5.15. We say that βi respects H if there is an edge in H from its first variable to its
last variable. We say that P respects H if every βi respects H.

This definition will be useful in constructing petals: H will represent pairs of vertices that are
joined by certain petals, and so a path respecting H can be the main path of a larger petal.

Recall that a P i-path in a CSP is defined (in Section 2) to be the constraint path PPP...P
consisting of i concatenated copies of P .

Lemma 5.16. Let H be any fixed directed graph where V (H) ⊆ {v1, ..., vn} and H has minimum
indegree and minimum outdegree at least 1

2n. Let P be any constraint path over C. There exists
constants c,Q and η > 0 such that a.s., CSPn,M=cn(P) (on variables v1, ..., vn) contains two sets
of variables X,Y with |X|, |Y | ≥ ηn such that for every x ∈ X, y ∈ Y there is a P i-path from x to
y that respects H for some i ≤ Q log n.

Proof. It will be convenient to work in the CSPn,p model; Remark 1.6 permits us to do so.
Suppose that the constraints of P are β1, ..., βh.
We use a variation of a standard branching process argument (see eg. Section 5.2 of [26], or

[28] where such arguments were introduced to random graph theory). We explore the random CSP
via two parallel breadth-first type searches from an arbitrary vertex v ∈ V (H), in which we search
for P i-paths starting at v or ending at v. We initialize L1 = {v}, R1 = {v} and T = ∅. For the
first iteration, we expose all β1 constraints respecting H in which v is the first variable, add those
constraints to T , and let L2 be the set of last vertices from these constraints. We also expose all βh
constraints respecting H in which v is the last variable, add those constraints to T , and let R2 be
the set of first vertices from these constraints. During iteration i: for each u ∈ Li (one-at-a-time)
we expose all βi(mod h) constraints whose first variable is u and whose other variables do not lie in
any constraints of T . We add all of those constraints to T and we add the last vertices to Li+1. We
then process each u ∈ Ri and build Ri+1 in the obvious analogous way. We repeat until |T | ≥ n

3
or Li = ∅ or Ri = ∅. In the first case we halt. In each of the last two cases, we pick another vertex
u ∈ V (H) \ V (T) and set i = 1, L1 = R1 = {u} and Lj = Rj = ∅ for all j > 1; i.e. we restart the
process except that we do not remove anything from T .

We define the height of a variable in T to be its distance, in T , to the root of its component;
i.e. the variable that was selected to initiate that component. We set L = ∪i≥0Li, R = ∪i≥0Ri.

Consider processing a particular variable u ∈ Li. H has minimum indegree and outdegree at
least 1

2n, and |T | ≤ 1
3n. Therefore, there are at least 1

2n −
1
3n choices for the last variable of a

constraint from u, and at least
(2

3
n

k−2

)
choices for the other variables of the constraint. Thus there

are O(nk−1) potential constraints, and so if c is sufficiently large, then the expected number of new
vertices added to L is larger than one, say at least two, and similarly for R. It follows that the
number of unexplored vertices in L,R after j vertices have been processed is at least as high, in

30

distribution, as two variables `j , rj following the random walks (Po(2) denotes a Poisson variable
with mean 2):

`0 = r0 = 1; `j+1 = `j − 1 + Po(2); `j+1 = `j − 1 + Po(2);

and if either `j = 0 or rj = 0 then both `j+1 = rj+1 = 1. At each restart `j+1 = 1, since the
drift is positive, the probability that ` does not return to zero is a positive constant, and the
probability that neither ` nor r returns to zero is the square of that constant. So a.s. after O(1)
expected restarts, our process will continue until |T | = n

3 , and a.s. the component being exposed
at that point will have Θ(n) unexplored vertices in each of L,R. Once the number of unexplored
vertices becomes linear, the size of each successive level Li, Ri becomes highly concentrated (as it
is essentially a binomial variable). The sizes of these levels tend to grow by a constant factor, and
so we a.s. reach |T | ≥ n

3 before reaching level i = Q log n for some constant Q. It follows that for
some constants Q, η > 0 a.s.

(i) at least ηn vertices in R have a height that is divisible by h and is at most Q log n;

(ii) at least ηn vertices in L have a height that is divisible by h and is at most Q log n;

The two groups (i) and (ii) form the sets X,Y required by our lemma.

We now build on Lemma 5.16 to obtain the following strengthening:

Lemma 5.17. Let H be any fixed directed graph where V (H) ⊆ {v1, ..., vn} and H has minimum
outdegree and minimum indegree at least 1

2n. Let PA, PB, PC be any constraint paths over C. For
any constant ϕ > 0, there exists c,Q such that CSPn,M=cn(P) (on variables v1, ..., vn) a.s. contains
a set of variables Z with |Z| ≥ (1− ϕ)n such that for each z ∈ Z:

(i) there are at least (1−2ϕ)n variables x such that there is an H-respecting constraint path from
x to z of the form PAP

i
BPC for some i ≤ Q log n; and

(ii) there are at least (1−2ϕ)n variables y such that there is an H-respecting constraint path from
z to y of the form PAP

i
BPC for some i ≤ Q log n.

Proof. We will first form a random CSP F by taking the union of three random CSP ’s FA, FB, FC
each distributed like CSPn,M=c1n, for some sufficiently large c1.

First, we note that for some ξ > 0, there are a.s. at least ξn disjoint copies of PA in FA. One
way to see this is: the expected number of components of the underlying hypergraph which are
isomorphic to PA is easily determined to be linear in n (indeed, this is true of components isomorphic
to any constant-sized sub-CSP whose underlying hypergraph is a hypertree). The number of such
components is concentrated around its mean by a very simple second moment argument. The
same argument shows that there are a.s. at least ξn disjoint copies of PC in FC .

Lemma 5.16, with P = PB and H equal to the complete directed graph, implies that for some
constants Q, η > 0: FB a.s. contains X,Y with |X|, |Y | = ηn such that for every x ∈ X, y ∈ Y
there is a P iB-path from x to y for some i ≤ Q log n.

Expose FA, FB, FC and assume that the a.s. events described above all hold. Then take uni-
formly random permutations of the variables of FA, FB, FC ; note that this does not affect the
distribution of these CSP’s and hence of F .

31

We wish to lower-bound the number of PA paths in FA that end at a variable in X. The vertices
of X are determined by FB. Upon taking the random permutation of variables in FA, the endpoints
of those PA paths form a random subset of the variables, of size at least ξn. Since |X| ≥ ηn, the
expected number of those endpoints that are in X is at least ξηn. Lemma 5.13 implies that number
is a.s. at least 1

2ξηn. Similarly, a.s. at least 1
2ξηn of the PC paths in FC begin at a variable in Y .

Each of the 1
4ξ

2η2n2 pairs of such paths can be completed to a PAP
i
BPC path for some i ≤ Q log n.

Letting X ′ be the variables at the beginnings of those PA paths and Y ′ be the variables at the ends
of those PC paths, we have |X ′|, |Y ′| ≥ 1

2ξηn and every pair x ∈ X ′, y ∈ Y ′ is joined by a path of
the form PAP

i
BPC for some i ≤ Q log n.

Set η′ = 1
2ξη; we can assume that η′ is a sufficiently small positive constant. Set s = 100/(η′)3,

and form a random CSP F ∗ by taking the union of s different random CSP’s F1, ..., Fs each
distributed as F , above; thus we have Fi = Fi,A ∪Fi,B ∪Fi,C , as above. As above, we expose every
Fi,A, Fi,B, Fi,C and then take independent random permutations of the variables in each; note that
this does not affect the distribution of F ∗. Let X ′i, Y

′
i denote the sets that we proved above to a.s.

exist in Fi.
For a variable v, the number of sets X ′i containing v is at least as high, in distribution, as the

binomial distribution BIN(s, η′). This is because the random permutations of the variables imply
that Pr(v ∈ X ′i) = |X ′i|/n ≥ η′, and these events are independent for each i. That binomial has
mean sη′ = 100/(η′)2. For sufficiently small η′, the probability that this binomial is at least 1/(η′)2

is greater than 1−ϕ/4. Since the X ′i’s are independent subsets of the variables, Lemma 5.13 yields
that a.s. at least (1 − ϕ/2)n variables lie in at least 1/(η′)2 sets X ′i; let X∗ denote this set of
variables.

For any variable v, let Y (v) denote ∪i:v∈X′iY
′
i . Having fixed the variables of each Fi,B, each

X ′i is determined by Fi,A and each Y ′i is determined by Fi,C . Thus, for each v ∈ X∗, Y (v)
contains the union of at least 1/(η′)2 independent random subsets, each of size at least η′n. So
E(|Y (v)|) ≥ (1 − (1 − η′)1/(η′)2)n ≥ (1 − ϕ/4)n for η′ sufficiently small, and Lemma 5.13 implies
that a.s. Y (v) ≥ (1− ϕ/2)n for each v ∈ X∗.

For any variable u, let X(u) denote ∪i:u∈Y ′iX
′
i. The same argument shows that a.s. there is a

set Y ∗ with |Y ∗| ≥ (1 − ϕ/2)n where each u ∈ Y ∗ has |X(u)| ≥ (1 − ϕ/2)n. Let Z = X∗ ∩ Y ∗,
thus |Z| ≥ (1 − ϕ)n. For any z ∈ Z, |X(z) ∩ Z| ≥ |X(z)| − ϕn > (1 − 2ϕ)n and similarly,
|Y (z) ∩ Z| ≥ (1− 2ϕ)n. This establishes that the lemma holds for F ∗; Lemma 5.12 implies that it
holds for CSPn,M=cn(P) with c = 3sc1.

Proof of Lemma 5.14: If δ 6∼cl(C) γ, then by Proposition 3.13 we can form arbitrarily long

(δ, γ)-forbidding petals using the constraints of C. Let P ∗ be such a petal of length greater than 2d;
so P ∗ is a (Tδ,γ , C)-petal for some configuration tree Tδ,γ . We will prove by induction on the height
of this configuration tree that:

Claim 5.18. For any ϕ > 0 there exists c, a such that CSPn,M=cn(P) a.s. contains a set of variables
Z with |Z| ≥ (1− ϕ)n where for every z ∈ Z:

(i) there are at least (1− 2ϕ)n variables x such that there is a (δ, γ)-forbidding petal from x to z
of size O(loga n); and

(ii) there are at least (1− 2ϕ)n variables y such that there is a (δ, γ)-forbidding petal from z to y
of size O(loga n).

32

Clearly this claim implies the lemma.
Let P be the main path of the petal. Let ∆ be the set of labels of the children of the root of

Tδ,γ . (∆ = ∅ if the root has no children.) Thus P ∪ ∆ (recall Definition 3.3) is (δ, γ)-forbidding.
Since |P | > 2d, the proof of Corollary 2.11 implies that P must be decomposable into PAPBPC
such that for any i ≥ 0, PAP

i
BPC ∪∆ is (δ, γ)-forbidding

For height 1, P ∗ = P and the Claim follows from Lemma 5.17 where H is the complete directed
graph. For height t > 1, let u1, ..., us be the children of the root and let (δi, γi) be the label of ui;
thus ∆ = {(δ1, γ1), ..., (δs, γs)}. For any given ϕ > 0, we inductively apply the claim substituting
ϕ/s for ϕ to obtain that (since s = O(1)) there exists c1, a1, such that CSPn,M=c1n a.s. contains,
for each 1 ≤ i ≤ s, a set Zi of size at least (1− ϕ/s)n such that for every z ∈ Zi:

(i) there are at least (1− 2ϕ/s)n variables x such that there is a (δi, γi)-forbidding petal from x
to z of size O(loga1 n); and

(ii) there are at least (1− 2ϕ/s)n variables y such that there is a (δi, γi)-forbidding petal from z
to y of size O(loga1 n).

We define a directed graph H as follows: Set V (H) = ∩si=1Zi, so |V (H)| ≥ (1 − ϕ)n. We direct
an edge from u to v if for every 1 ≤ i ≤ s, there is a (δi, γi)-forbidding petal from u to v of size
O(loga1 n).

Since |Zi − V (H)| < ϕn for every i, it follows from (ii) above that every vertex in H has
outdegree at least n − ϕn − s × (2ϕ/s) > 1

2n. Similarly it follows from (i) that every vertex in H
has indegree at least 1

2n.
Note that any H-respecting constraint path of the form PAP

i
BPC is the main path of a (δ, γ)-

forbidding petal, and the size of that petal will be O(loga1 n) times the length of the path. Therefore,
the claim follows inductively from Corollary 5.17. �

Remark: Note that this proof yields that the exponent a in Theorems 1.1 and 1.4(b) is equal
to the height of the configuration tree Tδ,γ .

We close by showing how to find these poly(log n) resolution proofs in polynomial time, when
c is sufficiently large.

Proof of Theorem 1.5: By Lemma 2.13, D can be partitioned into D1, ...,Dt,W such that
(i) each Di is null-constraining and (ii) for every pair δ, γ ∈ D not both lying in the same Di, we
have δ 6∼C γ. By Lemma 3.15, we can find this decomposition in O(1) time.

Consider any δ, γ ∈ D such that δ 6∼C γ. By Lemma 3.15, in O(1) time we can construct
constraint paths PA, PB, PC over C such that for every i ≥ 0, PAP

i
BPC is (δ, γ)-forbidding. It

is straightforward to determine, in polynomial time, all pairs of variables in a CSP F that are
joined by such paths. Indeed, since |PA| = O(1), it is easy to construct a directed graph GA such
that (x, y) is an edge in GA iff there is a PA-path from x to y in F , and similarly to construct
GB, GC . From those graphs, construct a directed graph G∗ such that (x, y) is an edge in G∗ iff
there exist z1, z2 such that: (i) (x, z1) ∈ E(GA); (ii) there is a path from z1 to z2 in GB; and (iii)
(z2, y) ∈ E(GC). E(G∗) is the set of all pairs of variables that are joined by paths of the form
PAP

i
BPC .

Now consider any δ′, γ′ ∈ D such that C can form a (δ′, γ′)-forbidding petal from a configuration
tree T with height 2. Using a techniques similar to that of the previous paragraph, and using the
graphs G∗ formed in the previous paragraph it is straightforward to find all pairs of variables linked
by a petal of the type described by T . The main difference is that we need to list pairs joined by,
eg. PA-paths in which the first and last variables of each constraint are linked by a path that allows

33

us to build the main path up into a petal. The graphs G∗ formed in the previous paragraph allows
us to check quickly whether the first and last variables of a potential constraint are so linked.

Carrying on iteratively, for every δ, γ ∈ C with δ 6∼cl(C) γ, we can list all pairs of variables that
are linked by a (δ, γ)-forbidding petal of the sort used to prove Theorem 1.4(b) above.

If t = 0 (i.e. if δ 6∼cl(C) γ for all δ, γ ∈ D) then these lists will easily allow us to identify a
forbidding flower - simply find a pair of variables that appears in every list. Note that this does not
reveal every possible forbidding flower; only the sort whose paths are of the form used in the proof
of Theorem 1.4(b). But that proof shows that for c sufficiently large, CSPn,M=cn(P) will a.s. have
such a flower. (In fact, a careful examination of the proof of Theorem 1.1 will show that the flowers
guaranteed in that proof also have this form; so they will also be discovered by this algorithm.)

For t ≥ 1, we apply Lemma 3.15 to produce a list of cyclic CSP’s C1, ..., Ct such that each Ci is
not D′-satisfiable. Since each Ci has size O(1), there are at most a polynomial number of them in F ,
and they can be found by exhaustive search in polytime. For any choice of occurences of C1, ..., Ct
in F and pair of variables x, y, we can check whether they form the structure H described in the
proof of Theorem 1.4(b) using the lists of variables that are joined by petals. For c sufficiently
large, such an H occurs w.u.p.p. and if it does occur then this algorithm will find it. �

6 Future Work

Corollary 1.3 might, in fact, extend to the stronger statement that for every P and every c, with
the possible exception of some “threshold values” of c, a.s. the shortest resolution refutation of
CSPn,M=cn(P) is either exponential or polylogarithmic. This is true for random 2-SAT and for all
models studied in [39].

For those models that have property POLY, it is natural to ask for their thresholds of polynomial
resolution complexity. [2] and [39] actually determine, for each of their random models for which
POLY holds, a precise value c∗, above which the random CSP has a.s. polynomial resolution
complexity and below which it has a.s. exponential resolution complexity. We would like to
determine such a value for every CSPn,M=cn(P) for which POLY holds; i.e. for which cl(suppP)
is complete. Upon reading Section 3, some readers may guess that c∗ is the threshold for the
appearance of the first forbidding flower. This is the case for random 2-SAT and for all the models
in [2] and [39]. However, we have examples of other models for which it is not the case.

Quite possibly, with sufficient labour, a branching process argument along the lines of that in
Section 5.2 might yield the threshold for the appearance of the first forbidding flower.

7 Acknowledgement

We would like to thank anonymous referees and Toniann Pitassi for helpful comments on an earlier
draft of this paper.

References

[1] Dimitris Achlioptas, Paul Beame, and Michael Molloy. Exponential bounds for dpll below the satisfi-
ability threshold. In Proceedings of the 15th ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 132–133, 2004.

34

[2] Dimitris Achlioptas, Paul Beame, and Michael Molloy. A sharp threshold in proof complexity yields
lower bounds for satisfiability search. Journal of Computer and System Sciences, 2004. An earlier
version appeared in the 33rd Annual ACM Symposium on the Theory of Computing (STOC) 2001.

[3] Dimitris Achlioptas, Arthur Chtcherba, Gabriel Istrate, and Cristopher Moore. The phase transition in
1-in-k SAT and NAE 3-SAT. In Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 721–722, 2001.

[4] Dimitris Achlioptas, Lefteris M. Kirousis, Evangelos Kranakis, and Danny Krizanc. Rigorous results
for random (2 + p)-SAT. Theoretical Computer Science, 265(1-2):109–129, 2001.

[5] Dimitris Achlioptas and Cristopher Moore. Random k-sat: Two moments suffice to cross a sharp
threshold. SIAM Journal on Computing, 36(3):740–762, 2006.

[6] Noga Alon and Joel H. Spencer. The Probabilistic Method. Wiley-Interscience, 2nd edition, 2000.

[7] K. Azuma. Weighted sums of certain dependent random variables. Tokuku Math. Journal, 19:357–367,
1967.

[8] Paul Beame, Joseph Culberson, David Mitchell, and Cristopher Moore. The resolution complexity of
random graph k-colorability. Discrete Applied Mathematics, 153(1):25–47, 2005.

[9] Paul Beame, Russell Impagiazzo, and Ashish Sabharwal. Resolution complexity of independent sets in
random graphs. In 16th Annual IEEE Conference on Computational Complexity (CCC), pages 52–68,
2001.

[10] Paul Beame, Richard M. Karp, Toniann Pitassi, and Michael E. Saks. The efficiency of resolution and
Davis-Putnam procedures. SIAM Journal on Computing, 31(4):1048–1075, 2002. An earlier version
appeared in the 30th Annual ACM Symposium on the Theory of Computing (STOC) 1998.

[11] Paul Beame and Toniann Pitassi. Simplified and improved resolution lower bounds. In Proceedings of the
37th Annual IEEE Symposium on Foundations of Computer Science (FOCS), page 274, Washington,
DC, USA, 1996. IEEE Computer Society.

[12] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow–resolution made simple. Journal of the
ACM, 48(2):149–169, 2001.

[13] B. Bollobás. Random graphs. In Combinatorics, Proceedings Swansea, London Math. Soc. Lecture Note
Ser. 52, pages 80–102, 1981.

[14] Vašek Chvátal and Bruce Reed. Mick gets some (the odds are on his side). In Proceedings of the 33rd
Annual IEEE Symposium on Foundations of Computer Science (FOCS), 1992.

[15] Vašek Chvátal and Endre Szemerédi. Many hard examples for resolution. Journal of the ACM,
35(4):759–768, 1988.

[16] Harold Connamacher and Michael Molloy. The exact satisfiability threshold for a potentially intractable
random constraint satisfaction problem. In Proceedings of the 45th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS), 2004.

[17] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the 3rd Annual
ACM Symposium on the Theory of Computing (STOC). ACM, New York, 1971.

[18] Nadia Creignou and Hervé Daudé. Generalized satisfiability problems: minimal elements and phase
transitions. Theoretical Computer Science, 302(1-3):417–430, 2003.

[19] O. Dubois and J. Mandler. The 3-XORSAT threshold. In Proceedings of the 43rd Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages 769–778, 2002.

[20] Martin Dyer, Alan Frieze, and Michael Molloy. A probabilistic analysis of randomly generated binary
constraint satisfaction problems. Theoretical Computer Science, 290(3):1815–1828, January 2003.

35

[21] Seneta Eugene. Non-negative Matrices and Markov Chains. Springer-Verlag, New York, 1981.

[22] Alan M. Frieze and Michael Molloy. The satisfiability threshold for randomly generated binary constraint
satisfaction problems. Random Structures and Algorithms, 28(3):323–339, 2006. An earlier version
appeared in the International Workshop on Randomization and Approximation Techniques in Computer
Science (RANDOM) 2003.

[23] Alan M. Frieze and Nicholas C. Wormald. Random k-SAT: A tight threshold for moderately growing
k. Combinatorica, 25:297–305, 2005.

[24] Xudong Fu. On the complexity of proof systems. PhD thesis, University of Toronto, Toronto, Ont.,
Canada, Canada, 1996.

[25] Ian P. Gent, Ewan Macintyre, Patrick Prosser, Barbara M. Smith, and Toby Walsh. Random constraint
satisfaction: Flaws and structure. Constraints, 6(4):345–372, 2001.

[26] Svante Janson, Tomasz Luczak, and Andrzej Ruciński. Random Graphs. Wiley-Interscience, 1st edition,
2000.

[27] M. Karoński and A. Ruciński. On the number of strictly balanced subgraphs of a random graph. In
Graph Theory, Proceedings, Lagow, 1981, Lec. Notes in Math. 1018, pages 79–83.

[28] R. Karp. The transitive closure of a random digraph. Random Structures and Algorithms, 1:73–94,
1990.

[29] D. Knuth. The Art of Computer Programming, Vol. 1. Addison Wesley, 1969.

[30] James Ledoux, Gerardo Rubino, and Bruno Sericola. Exact aggregation of absorbing markov processes
using the quasi-stationary dsitribution. Journal of Applied Probability, 31:626–634, 1994.

[31] Colin McDiarmid. On the span of a random channel assignment problem. Combinatorica, 27(2):183–203,
2007.

[32] M. Mézard, G. Parisi, and R. Zecchina. Analytic and algorithmic solution of random satisfiability
problems. Science, 297:812–815, August 2002.

[33] M. Mézard, F. Ricci-Tersenghi, and R. Zecchina. Two solutions to diluted p-spin models and XORSAT
problems. Journal of Statistical Physics, 111(3–4):505–533, May 2003.

[34] David Mitchell, Bart Selman, and Hector Levesque. Hard and easy distributions of SAT problems. In
Proceedings of the 10th National Conference on Artificial Intelligence, 1992.

[35] David G. Mitchell. Resolution Complexity of Constraint Satisfaction. PhD thesis, University of Toronto,
2002.

[36] David G. Mitchell. Resolution complexity of random constraints. In Proceedings of Principles and
Practices of Constraint Programming, 2002.

[37] Michael Molloy. Models and thresholds for random constraint satisfaction problems. SIAM Journal of
Computing, pages 935–949, 2003.

[38] Michael Molloy. When does the giant component bring unsatisfiability? Combinatorica, 28(6):693–734,
Nov 2008.

[39] Michael Molloy and Mohammad R. Salavatipour. The resolution complexity of random constraint
satisfaction problems. SIAM Journal of Computing, 37(3):895–922, 2007. An earlier version appeared
in the 44th Annual IEEE Symposium on Foundations of Computer Science (FOCS) 2003.

[40] R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and L. Troyansky. Determining computational
complexity from characteristic ‘phase transitions’. Nature, 400:133–137, July 1999.

36

[41] Jacobus Hendricus van Lint and Richard Michael Wilson. A Course in Combinatorics. Cambridge
University Press, 2nd edition, 2001.

[42] Ke Xu and Wei Li. Many hard examples in exact phase transitions with application to generating hard
satisfiable instances. Theoretical Computer Science, 355:291–302, 2006.

37

