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Abstract

We determine the exact value of the freezing threshold, rk, for k-colourings of a random graph when
k ≥ 14. We prove that for random graphs with density above rk, almost every colouring is such that
a linear number of vertices are frozen, meaning that their colours cannot be changed by a sequence of
alterations whereby we change the colours of o(n) vertices at a time, always obtaining another proper
colouring. When the density is below rk, then almost every colouring is such that every vertex can be
changed by a sequence of alterations where we change O(logn) vertices at a time.

Frozen vertices are a key part of the clustering phenomena discovered using methods from statistical
physics. The value of the freezing threshold was previously determined by the non-rigorous cavity method.

1 Introduction

Over the past decade, some groundbreaking hypotheses arising from statistical physics have driven much of
the progress on random constraint satisfaction problems (CSP’s). In particular, the 1-Step Replica Symmetry
Breaking hypothesis (1RSB) (see eg. [51]) says that, at a certain constraint density, called the clustering
threshold, w.h.p.1 the solution space shatters into an exponential number of clusters of solutions, where each
cluster is well-connected and any two clusters are well-separated. Furthermore, at a higher density, called
the freezing threshold, there are a linear number of frozen variables in almost every cluster; i.e. variables that
are fixed throughout the cluster.

These hypotheses have had an enormous impact on study of random CSP’s in the math and computer
science communities. An understanding of these hypotheses has led to substantial new results, eg [21, 50,
14, 67, 37, 61, 22, 24, 34, 1, 46, 36]. Furthermore, much work has gone towards rigorously proving aspects of
these hypotheses, eg [2, 3, 61, 6, 39, 29, 72, 25, 26, 28, 23, 12, 30, 27]. The main contribution of this paper
is of the latter type.

In this paper, we rigorously prove a major hypothesis concerning frozen variables for k-COL; i.e. k-
colourability of the Erdős-Rényi random graph Gn,M . This is one of the two most widely studied random
CSP’s, the other being k-SAT. We prove, for k sufficiently large, that frozen variables (i.e. vertices) do,
indeed, arise. Furthermore, we prove the exact location of the freezing threshold; this had previously been
estimated non-rigorously using the cavity method. We also determine the number of frozen variables, up to
a o(n) term.

Our main tool is the planted model which Achlioptas and Coja-Oghlan[21] proved could be used to analyze
certain random CSP’s (see also [61]), and Babst etal.[11] refined for k-colouring. Our approach should apply
to determine the freezing threshold of any random CSP for which we can use the planted model. We chose to
begin with k-COL, because it is the most well-studied such CSP. Subsequently to this work, with Restrepo
we were able to apply the same approach to NAE-SAT and hypergraph 2-colourability[59].

∗A shorter version of this paper appeared in the proceedings of STOC 2012.
†Dept of Computer Science, University of Toronto, molloy@cs.toronto.edu. Research supported by an NSERC Discovery

Grant.
1We say that a property holds with high probability (w.h.p.) if it holds with probability tending to one as the number of

variables tends to infinity.
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To prove our theorem, we strip the random graph down to what we call a Kempe core, and prove that
almost all of the vertices in the Kempe core are frozen. This is very much like the approach [3] took for
random k-SAT, and that paper was an important inspiration for this one.

It has long been observed that most random CSP’s appear to be very difficult to solve for a wide range of
constraint densities. This was first observed for k-SAT in [20, 53]. For many CSP’s, there is an “algorithmic
barrier” substantially lower than the density at which they are w.h.p. unsatisfiable. For example: Random
instances of k-SAT are known to pass from being w.h.p. satisfiable to w.h.p. unsatisfiable at constraint
density 2k ln 2 + O(k)[9, 26, 30], but no algorithm has been proven to w.h.p. find a satisfying solution for

problems of density higher than O( 2k ln k
k )[21]. The random graph Gn,M is known to pass from being w.h.p.

k-colourable to w.h.p. not k-colourable at edge-density k ln k +Ok(1)[8, 28, 23], but no algorithm has been
proven to w.h.p. find a k-colouring of a random graph with edge-density higher than 1

2k ln k(1+ok(1))[5, 38].
These barriers are asymptotically (in k) equal to the hypothesized location of the clustering threshold, and
this was given rigorous grounding in [21]. To be clear: this is not a barrier for all efficient algorithms;
eg. Survey Propogation appears to succeed past this point (see below). But it appears to be a barrier for
algorithms that are simple enough for rigorous analysis using current techniques, specifically simple greedy
algorithms.

In [73, 71, 47] it is argued that these algorithmic difficulties are not brought on by the clustering threshold,
but rather by the freezing threshold. In other words, the clusters do not pose significant difficulties until
they have frozen variables. In fact, Achlioptas and Moore[7] prove that a simple greedy algorithm finds 3-
colourings of random graphs above the hypothesized clustering threshold but below the hypothesized freezing
threshold. While the clustering threshold is hypothesized to be strictly less than the freezing threshold, the
gap tends to zero as k grows. In particular, the freezing threshold is also asymptotic to the observed
algorithmic barrier.

For small values of k, the algorithm Survey Propogation[14] seems empirically to be able to find solutions
for random k-SAT and k-colourability when the density is very close to the satisfiability threshold. It
appears that this algorithm can only find solutions which have no frozen variables, despite the fact that
the density is far above the freezing threshold and so almost all solutions have frozen variables. It appears
that the second freezing threshold, above which every solution has frozen variables, is a second algorithmic
barrier above which no known algorithm can find a solution, even empirically. Recent estimates[13] place this
barrier substantially higher than the clustering/freezing thresholds, but still much lower than the satisfiability
threshold for large k.

We close this section by noting that the cavity method has been used to predict many thresholds and
other important results concerning random CSP’s, including satisfiability thresholds (see eg. [51] for many
examples). The quest to “rigourize” applications of the cavity method has been one of the most important
trends in the study of random structures over the past decade. Very roughly speaking, the cavity method
focuses on analyzing the distance-d neighbourhood of a randomly selected vertex for arbitrarily large, but
constant, d, making use of the fact that this neighbourhood is w.h.p. a tree. It then hypothesizes the
manner in which the remainder of the graph should affect the analysis; this is typically the point which is
very difficult to do rigorously as it concerns the long-range dependencies between vertices in the graph. In
this paper, we effectively show that as far as freezing is concerned, the effect of the long-range dependencies
is negligible; the freezing threshold is exactly what the tree-analysis predicts. It is hoped that our techniques
will lead to other results along this line.

2 Clusters and Frozen Variables

We study Gn,M , the random graph with n vertices and M edges, where each such graph is equally likely.
We are interested in the range M = rn where r is constant. This model was introduced by Erdos and Renyi
in two seminal papers[31, 32]. In these papers, they posed several natural questions about random graphs.
All but one have since been answered; the remaining question is: What is the chomatic number of Gn,M=rn

for r > 1
2? It is widely believed that for each k ≥ 3, there is a constant φk such that for r < φk, Gn,M=rn

is w.h.p. k-colourable while for r > φk, Gn,M=rn is w.h.p. not k-colourable. The determination of φk is
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one of the most important open problems, and indeed the oldest open problem, in random graph theory.
Thus far, we do not even know whether φk exists. Achlioptas and Friedgut[4] proved something close - the
existence of a function φk(n). Achlioptas and Naor[8] proved that φk(n) = k ln k+O(ln k). Coja-Ohlan and
Vilenchik[28] and Coja-Oghlan[23] improved this to φk(n) = (k − 1

2 ) ln k + Ok(1). Coja-Oghlan et al.[25]
determine the k-colourability threshold for random regular graphs (when k is large); note that this threshold
is not sharp in the Erdos-Renyi sense, as the edge-density parameter is integer-valued.

The 1-RSB hypothesis arose from statistical physics and provides a very strong picture of the solutions
of random constraint satisfaction problems. It was first applied to k-COL by Mulet et.al.[63] (see eg. [66, 71]
for further work). One of the central concepts is that when the density is above the freezing threshold almost
all solutions will have frozen variables. In the setting of k-COL, these are vertices whose colours cannot be
changed using a sequence of local alterations where we change the colours of a small number of variables at
a time. Instead, to change the colour of a frozen vertex requires a global alteration where we change the
colours of a linear proportion of the vertices at once. Formally:

Definition 2.1. An `-path of k-colourings of a graph G is a sequence σ0, σ1, ..., σt of k-colourings of G,
where for each 0 ≤ i ≤ t − 1, σi and σi+1 differ on at most ` vertices. We say that two k-colourings σ, σ′

are `-connected if they can be joined by an `-path σ = σ0, ...., σt = σ′ for some t ≥ 0.

We emphasize that there is no restriction on the length of the path. So two `-connected colourings might
differ on arbitrarily many vertices, and we may require an arbitrarily long `-path to join them.

Definition 2.2. Given a k-colouring σ of a graph G, we say that a vertex v is `-frozen with respect to σ if
for every `-path σ = σ0, σ1, ..., σt of k-colourings of G, we have σt(v) = σ(v).

In other words, it is not possible to change the colour of v by changing at most ` vertices at a time.
Usually, when we say that a vertex is frozen we mean that it is `-frozen for some ` = Θ(n).

We define

rfk = min
x>0

(k − 1)x

2(1− e−x)k−1
. (1)

For any r > rfk we let xk(r) denote the largest positive solution to r = (k−1)x
2(1−e−x)k−1 .

Our main theorem is that, for k sufficiently large, rfk is the precise threshold for most colourings to have
a linear number of `-frozen vertices, where ` is linear in n:

Theorem 2.3. For any k ≥ 14, let σ be a uniformly random k-colouring of Gn,M=rn.

(a) For any rfk < r < (k − 1) ln(k − 1) there exists positive constants Q = Q(r, k) and α = α(r, k) such
that:

(i) w.h.p. there are (k−1)xk(r)
2r n+ o(n) vertices that are αn-frozen with respect to σ.

(ii) w.h.p. there are (1− (k−1)xk(r)
2r )n+ o(n) vertices that are not Q log n-frozen with respect to σ.

(b) For any r < rfk , there exists positive constant Q = Q(r, k) such that w.h.p. no vertices are Q log n-frozen
with respect to σ.

Remark: When k ≥ 14, we have rfk < (k − 1) ln(k − 1) so part (a) is meaningful. The upper bound
(k − 1) ln(k − 1) on r comes from Theorem 4.3 below; it is possible that a more careful analysis of the
arguments from [11, 8] could allow us to weaken that upper bound and so extend the result to smaller values

of k. Analysis from statistical physics shows (non-rigorously) that the freezing theshold is equal to rfk for

k ≥ 9 and is less than rfk for k ≤ 8. So we will not be able to extend the result below k = 9.

Hypothesized values for rfk are provided in [71, 66] for 3 ≤ k ≤ 10, using the cavity method to determine

an expression for rfk and using population dynamics to estimate the value of that expression2. They begin

2Those papers report the threshold in terms of the average degree, rather than edge-density and so their values are exactly
twice ours. Also note that what we call the freezing threshold is called the rigidity threshold in [71].
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by obtaining a formula for the freezing threshold on the “tree factor graph”, which is hypothesized to be
equal to the freezing threshold in Gn,p so long as one is below the condensation threshold. For 3 ≤ k ≤ 8 the
freezing threshold appears to be greater than the condensation threshold, and so they adjust their formula
accordingly. Their formula for the tree factor graph is different than our expression (1), but can be shown
to be equivalent3.

Asymptotically, we have:

rfk =
1

2
k(ln k + ln ln k + 1 + o(1)). (2)

This rigorously confirms the asymptotics obtained using the cavity method; see (44) of [71] and (78) of [66].
In fact, we prove something stronger than Theorem 2.3. In Section 5, we define a subset of the vertices

which we call the Kempe core. rfk is the threshold for the appearance of a Kempe core. We will prove that
w.h.p. all but o(n) vertices of the Kempe core are frozen and at most o(n) vertices outside of the Kempe
core are frozen. Thus, given a uniform k-colouring σ of Gn,M=rn, we w.h.p. specify precisely which vertices
are frozen with respect to σ up to an error of o(n) vertices.

2.1 Frozen Clusters

The key feature of the 1-RSB hypothesis is that when the density exceeds the clustering threshold, almost
all of the solutions can be partitioned into clusters. One can travel amongst the solutions in a cluster by
making local changes where one changes a small number of variables at a time. But to travel to a solution
outside the cluster, requires a global change.4

More specifically, in the context of k-COL: Let Ωk(G) denote the set of k-colourings of a graph G. It is
believed that at some density r ≈ 1

2k ln k, i.e. roughly half the k-colourability threshold, w.h.p. Ωk(G) can
be partitioned into sets S1, ..., Sx such that one can move within Si by changing the colours of only o(n)
vertices at a time, but to move from Si to Sj requires changing a linear number of vertices. More formally:

Definition 2.4. For a partition Ωk(G) = S1 ∪ ... ∪ Sx, we call the parts (a, b)-clusters if

(a) for all i 6= j, no pair σ ∈ Si, σ′ ∈ Sj is a-connected; and

(b) for all i, every pair σ, σ′ ∈ Si is b-connected.

Condition (a) says that the clusters are well-separated. Condition (b) says that the clusters are well-
connected.

If a = b+ 1 then (a, b)-clusters exist trivially in every graph. Remarkably, it appears that in Gn,M=cn we
have (a, b)-clusters when a is much greater than b: a = Θ(n), b = o(n). The clustering hypothesis[63, 51, 71]
is:
Hypothesis A: For r > rck ≈ 1

2k ln k, there exists a constant α > 0 and a function β(n) = o(n) such that
w.h.p. almost all of Ωk(Gn,M=rn) can be partitioned into an exponential (in n) number of (αn, β(n))-clusters.
Furthermore, each cluster contains an exponential number of colourings. This does not happen for r < rck.

We note that further details are also hypothesized; eg. the clusters change substantially after the con-
densation threshold[48]. See [51] for a good overview. A freezing hypothesis[66, 71] is:

Hypothesis B: For r > rfk ≈
1
2k ln k: W.h.p. almost all5 clusters Si have a linear number of frozen vertices

v, with the property that for all σ, σ′ ∈ Si we have σ(v) = σ′(v). This does not happen for r < rfk
Note that if Hypothesis A holds then for every β(n) < ` ≤ αn, the frozen vertices in the cluster

containing σ are exactly the vertices that are `-frozen with respect to σ. In particular, every vertex that is
αn-frozen according to Definition 2.2, is also frozen in the sense of Hypothesis B, assuming Hypothesis A.
So if Hypothesis A holds then Theorem 2.3 implies Hypothesis B for k ≥ 14.

3Our thanks to a referee of a preliminary version of this paper[56] for showing this.
4Between the clustering and freezing thresholds, the picture is more subtle than this. There may be a path of small local

changes from one cluster to another, but such paths are very “thin”, and a random walk would require exponential time to find
one.

5Here, “almost all” means for all but a vanishing proportion of the clusters when they are weighted by their size.
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3 Related work

A previous version of this paper appeared in the Proceedings of STOC 2012[56]. The theorems here are
somewhat stronger, mainly because we are able to make use of the recent work concering the planted
model in [11]. The Q log n terms in Theorem 2.3 were o(n) terms in [56], and the phrase “no vertices” in
Theorem 2.3(b) was “o(n) vertices”.

As discussed above, the solution space geometry for k-colourings of Gn,M was first studied in [63].
The freezing threshold was studied in great depth in [71, 66, 73]. These studies were non-rigorous, but
mathematically sophisticated. The results in this paper confirm predictions made in those papers, and does
not contradict anything found there. [71] was the first paper to argue that freezing may be the cause of the
algorithmic barrier.

Achlioptas and Ricci-Tersenghi[10] were the first to rigorously prove any form of freezing in a random
CSP. They studied random k-SAT and showed that for k ≥ 8, for a wide range of edge-densities below the
satisfiability threshold and for every satisfying assignment σ, the vast majority of variables are 1-frozen w.r.t
σ. Equivalently, such vertices are frozen in what they call 1-clusters, which are equivalent to (2, 1)-clusters
of Definition 2.4. Such clusters are trivially connected, but they are not known to be Θ(n)-separated and
hence to satisfy Hypothesis A. However, it is plausible that they are in some sense close to being the clusters
of Hypothesis A.

[3, 2, 61] prove the asymptotic value of the freezing threshold for various random CSP’s6. For k-COL,
[2] establishes that the threshold is ( 1

2 + o(1))k ln k, which agrees with (2).
As mentioned above, [10] studies 1-clusters for random k-SAT. [61] studies analogous clusters for other

CSP’s. Such clusters are connected, but are not know to be Θ(n)-separated. [3, 2] also studies what they call
cluster-regions, which are proven to be Θ(n)-separated but are not shown to be well-connected. [2] proves
that for r < ( 1

2−ε)k ln k w.h.p. almost all k-colourings are in a single cluster region, while for r > ( 1
2 +ε)k ln k

the solution space shatters into an exponential number of Θ(n)-separated cluster-regions, each containing an
exponential number of colourings. They, and also [61], prove analgous results for other CSP’s. While these
cluster-regions do not satisfy Hypothesis A, note that, intuitively, the well-connected property of clusters
does not seem to be critical to the problems that they pose for algorithms. So these results help to explain
why the asymptotic order of the algorithmic barrier is 1

2k ln k.
After the preliminary version of this work[56], the author and Restrepo extended the techniques to prove

analogous results for a general class of CSP’s including hypergraph 2-colouring and NAE-SAT[59].
The clusters of k-XOR-SAT are very well-understood[6, 39, 36]. We know the clustering threshold which

is also the freezing threshold, and have a very good description of the clusters and the frozen variables. The
picture is much simpler here; for example, the same variables are frozen in every cluster. The simple linear
algebraic characterization of the solution space is very helpful.

4 The planted model

Definition 4.1. The uniform model Un,M is a random pair (G, σ) where G is taken from the Gn,M=rn

model and σ is a uniformly random k-colouring of G.

The biggest hurdle to theorems such as Theorem 2.3 used to be that there was no representation of the
uniform model that lends itself to analysis. This hurdle, along with the corresponding hurdles for a few other
random CSP’s, was overcome by Achlioptas and Coja-Oghlan[2] who proved that, under certain conditions,
one can work instead with the much simpler planted model. Those conditions were weakened substantially
by Babst etal[11].

Definition 4.2. The planted model Pn,M is a random pair (G, σ) chosen as follows: Take a uniformly
random partition σ of {1, ..., n} into k parts A1, ..., Ak. Then choose M random edges, uniformly and
without replacement, from all edges whose endpoints are in two different parts.

6In fact, they focus on what [2] calls rigid variables, but it is simple to extend their argument to frozen variables.
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In other words, Pn,M is chosen by first choosing a uniformly random k-colouring σ of the vertices {1, ..., n},
and then choosing a graph that is uniform amongst all graphs with that vertex set and with M edges, for
which σ is a k-colouring. This clearly has a different distribution than what one obtains by carrying those
steps out in the other order; i.e. first choosing Gn,M and then taking a uniformly random k-colouring of G.
But remarkably, [2, 11] proves that one can transfer w.h.p. properties:

Theorem 4.3. [11] For every k ≥ 3 and every r < (k − 1) ln(k − 1):
Let E be any property of pairs (G, σ) where σ is a k-colouring of G. If Pn,M=rn w.h.p. has E then Un,M=rn

w.h.p. has E.

Remark: The first transfer result of this type appeared in [2]. That result had the additional requirement
that (essentially7) for any function f(n) = o(n) the probabilty that E does not hold it Pn,M=rn must be at
most e−f(n). A previous version of this paper relied on [2] and, as a result, the statement corresponding to
Theorem 2.3 was somewhat weaker; Most notably, part (b) only said that o(n) vertices are frozen.

It will be more convenient to work in the Gn,p version of the planted model, which we define as follows:

Definition 4.4. The planted model Pn,p is a random pair (G, σ) chosen as follows: Take a uniformly
random partition σ of {1, ..., n} into k parts A1, ..., Ak. Each pair of vertices in two different parts is joined
with an edge with probability p, where the edge-choices are independent.

The following standard lemma permits us to work in Pn,p rather than Pn,M . We say that a property E is
convex if: for every three graphs G1, G2, G3 on the same partition σ with G1 ⊆ G2 ⊆ G3, if (G1, σ), (G3, σ)
both have E then (G2, σ) has E .

Lemma 4.5. Consider any convex property E of pairs (σ,G) where σ is a k-colouring of G, and any constant
r. Setting c = 2k

k−1r, we have:
If Pn,p=c/n w.h.p. has E then Pn,M=rn w.h.p. has E.

The (omitted) proof is almost identical to the proof of Theorem 2.2(b.ii) in [16], which implies the same
statement for Gn,p and Gn,M .

We define

ck = min
y>0

ky

(1− e−y)k−1
.

For any c > ck we let yk(c) denote the largest solution to c = ky
(1−e−y)k−1 . Note that ck = 2k

k−1rk. We define:

λk(c) = yk(c)/c.

Definition 4.6. We say that v is an `-frozen variable of (G, σ) if v is `-frozen with respect to σ.

So, roughly speaking, our goal is to prove that ck is the threshold for Pn,p=c/n to have a linear number
of αn-frozen variables.

5 Kempe cores

Given a k-colouring σ of a graph G, with colour classes A1, ..., Ak, a Kempe chain is a component of the
subgraph induced by two colour classes. Suppose C is a non-empty Kempe chain on colour classes Ai, Aj .
Then exchanging the colours i, j on the vertices of C will result in a new k-colouring of G. Note that a single
vertex of colour i will constitute a Kempe chain if it has no neighbours of colour j, for some j 6= i. Kempe
chains were introduced by Kempe[44] in his work on the Four Colour Problem.

It is clear that a vertex that is in a Kempe chain of size at most ` is not `-frozen. This inspires us to
remove all “small” Kempe chains from our graph, in order to look for frozen vertices. A bit of thought will
make it clear that w.h.p. most vertices in Kempe chains of size at most ` in the remaining graph are not

7In fact, this only has to hold for a specific f(n), but we have no knowledge about f(n) other than that it is o(n).
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`-frozen either. This follows from branching properties of the random graph: if C is a small Kempe chain in
the remaining graph, w.h.p. the small Kempe chains that were removed from the original graph each have
at most one edge to C. Furthermore none of those chains adjacent to C are adjacent to each other. Thus we
can flip the vertices on some subset of those chains without them interfering with each other, thus enabling
C to be flipped. This intuition inspires us to remove small Kempe chains iteratively.

Of course, we need to specify what we mean by “small”. It turns out that typically8 there will be no
Kempe chains of size between O(log n) and Θ(n); i.e. every Kempe chain will either be small or giant. To
be specific, we will take small to mean: of size at most log2 n. Thus, we apply the following procedure:

Kempe-Strip
Input: a graph G and a k-colouring σ = A1, ..., Ak of G.

While there are any Kempe chains of size at most log2 n
Remove the vertices of one such Kempe chain from G.

Definition 5.1. The (possibly empty) Kempe-core is what remains after running Kempe-Strip.

Note that, as with most core stripping procedures, the output does not depend on the order in which we
choose to remove Kempe chains. So the Kempe-core is well-defined.

Clearly no vertex in the Kempe-core can have its colour changed by changing the vertices of a small
Kempe chain. It is much less clear that almost every vertex in the Kempe-core cannot have its colour
changed by changing a small subset of vertices which involve more than two colours.

To gain some intuition as to why this may be the case, note first that (almost) every very small subgraph,
i.e. of size O(1), is a tree. It is a simple exercise (see the proof of Lemma 7.6) to note that if we can change
the colours of a subtree to obtain another colouring, then that tree must contain a subtree which is a Kempe
chain. Thus, (almost) any valid change of O(1) vertices can be simulated by a sequence of Kempe chain
switches. It follows that we cannot obtain another colouring by changing O(1) vertices of the Kempe-core
(unless they do not form a subtree, in which case they must form a flippable unicycle). Much of the work in
this paper is to establish that the same is true for changes of up to αn vertices for small α > 0.

Key idea. We are now ready to present one of key ideas behind this paper. One natural way to analyze
the Kempe core involves determining the effect of removing each individual Kempe chain, and then tracking
those effects throughout Kempe-Strip. This is daunting, in part because of the large number of possible
Kempe chains. Instead, we recall that the planted model is the union of

(
k
2

)
random bipartite graphs, one

on each pair of colours. Note that the Kempe chains are precisely the components of these bipartite graphs.
W.h.p. each bipartite graph will have at most one giant component, and the remaining components will all
have size O(log n). So, at least intuitively, Kempe-Strip is equivalent to the following procedure: repeatedly
remove all but the giant component from each of the bipartite graphs (see STRIP in section 8.1). That
procedure is much more amenable to analysis.

The following lemma is one of the main steps in this paper, and is proven in Section 8. (See also Lemma
6.3(a)).

Lemma 5.2. For k ≥ 3:

(a) If c < ck then w.h.p. the Kempe-core of Pn,p=c/n is empty.

(b) If c > ck then w.h.p. the Kempe-core of Pn,p=c/n has size kλk(c) + o(n).

Lemmas 5.2, 4.5 and Theorem 4.3 immediately yield:

Corollary 5.3. For k ≥ 14:

(a) If r < rfk then w.h.p. the Kempe-core of Un,M=rn is empty.

8This will always be true unless the density of a particular subgraph is equal to the giant component threshold.
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(b) If rfk < r < (k − 1) ln(k − 1) then w.h.p. the Kempe-core of Un,M=rn has size (k−1)xk(r)
2r n+ o(n).

Proof Straightforward but tedious calculus and computation show: (i) at k = 14, rfk < (k−1) ln(k−
1) and (ii) for k ≥ 14, rfk grows more slowly than (k − 1) ln(k − 1) (we omit the details). Note that the
property of having a Kempe-core of size kλk(c)+o(n) is convex since the size of the Kempe-core is monotone
increasing under the addition of edges; more formally, for any h(n) = o(n) the property of having a Kempe-
core of size in the range kλk(c)± h(n) is convex. So Theorem 4.3 and Lemma 4.5 allow us to translate our
results from Pn,p=c/n to Un,M=rn, with r = k−1

2k c. Note that x(r) = y(c). So the corollary follows from
Lemmas 5.2 and 5.3, and the fact that

kλk(c) =
kyk(c)

c
=

kxk(r)

2kr/(k − 1)
=

(k − 1)xk(r)

2r
. (3)

�

Having analyzed the Kempe-core, the next step is to show that it is, essentially, the set of frozen vertices.
In Section 9, we show:

Lemma 5.4. For k ≥ 3, in Pn,p=c/n:

(a) If c > ck then w.h.p. at most o(n) vertices outside of the Kempe-core are log n-frozen.

(b) If c < ck then there exists Q = Q(c, k) such that: w.h.p. no vertex is Q log n-frozen.

In Section 7 we show that almost all of the Kempe-core is frozen. To be precise, we define:

Definition 5.5. A unicycle is a connected graph with exactly one cycle. A flippable unicycle in (G, σ) is
an induced subgraph9 U ⊆ G such that (i) U is a unicycle and (ii) there is a proper colouring σ′ of G where
V (U) is the set of vertices on which σ, σ′ differ.

Lemma 5.6. W.h.p., the expected total size of all flippable unicycles in the Kempe-core of Pn,p=c/n is O(1).

It follows that w.h.p. all flippable unicycles in the Kempe-core are very small, and so any vertex on a
flippable unicycle is not frozen. However, we will show that all other vertices in the Kempe-core are frozen.
The main step is to show that the Kempe core is internally rigid:

Lemma 5.7. For k ≥ 3, c > ck, there exists constant α = α(c, k) > 0 such that w.h.p. the Kempe-core K of
Pn,p=c/n has the following property:
If v ∈ K is not in a flippable unicycle then any k-colouring of K which differs from σ on v must differ from
σ on at least 2αn vertices of K.

This internal rigidity is enough to imply:

Corollary 5.8. For k ≥ 3, c > ck, there exists constant α = α(c, k) > 0 such that w.h.p.: All vertices of the
Kempe-core K of Pn,p=c/n, other than those in flippable unicycles, are αn-frozen.

Proof Let Θ ⊆ K be the Kempe-core vertices that do not lie on flippable cycles. So by Lemma 5.6
and Markov’s Inequality, w.h.p. |K\Θ| = o(n). Lemma 5.7 says that every v ∈ Θ has the property that any
k-colouring of K which differs from σ on v must differ from σ on at least 2αn vertices of K, and thus on at
least 2αn− o(n) > αn vertices of Θ. Consider any sequence of k-colourings of K, σ = σ0, σ1, ..., σt such that

(i) for all v ∈ Θ and 0 ≤ i ≤ t− 1, we have σi(v) = σ(v).

(ii) for some v ∈ Θ we have σt(v) 6= σ(v).

9U is an induced subgraph if U contains every edge in G that joins two vertices of U .
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In other words, t is the first step where a member of Θ changes colour.
By (ii), σt must differ from σ on at least αn vertices of Θ. Thus by (i), σt must differ from σt−1 on

those same αn vertices. Therefore, σ = σ0, σ1, ..., σt is not a αn-path. But if at least one vertex of Θ is not
αn-frozen, then there must be such a αn-path; consider the vertex v ∈ Θ whose colour can be changed by
the shortest possible αn-path. So all of the vertices of Θ must be αn-frozen. �

This yields our main theorem:
Proof of Theorem 2.3: As in the proof of Corollary 5.8, Theorem 4.3 and Lemma 4.5 allow us to

translate our results from Pn,p=c/n to Un,M=rn, with r = k−1
2k c. The theorem then follows from Lemmas 5.2,

5.4 and 5.6, Corollary 5.8 and (3). �

5.1 Whitening and magic subgraphs

In the random graph setting of this paper, the Kempe-core is essentially equivalent to what arises from the
whitening procedure described in [71]. The whitening procedure for the case k = 3 was created independently
in [69] where what remains at the end was called the magic subgraph. The procedure can be described as
follows:

Begin with a properly k-coloured graph. Transform the graph into a directed graph by replacing each
edge with two directed edges, one in each direction. We then iteratively delete edges as follows:

Consider an edge u→ v. If there is at least one colour a ∈ {1, ..., k} such that (i) a is not on u; and (ii)
a does not appear on any vertex w 6= v such that the edge w → u remains, then we delete the edge u→ v.

(Rather than deleting u → v, [71] colours it white, and condition (ii) is modified to say “.... such that
the edge w → u is not white.)

Note that u→ v is deleteable iff after removing v from the graph, it is possible to change the colour of u
without changing any other vertex.

When no remaining edges are deletable, the set of vertices that have an inneighbour of every colour other
than their own is (nearly) equal to the Kempe core.

To see this, first note that in our random graph models almost all Kempe chains that are removed by
Kempe-Strip will be trees (this is made more explicit in Observation 8.3 below and some of the analysis
that follows in Section 8). Next note that if a Kempe-chain is a tree then both directions of all its edges
will be removed by the whitening procedure, starting with the leaves, working inwards and then back out to
the leaves again. After the edge pointing to a leaf is removed then so are all edges pointing from that leaf
to vertices outside of the Kempe chain. The vertices in this Kempe-chain now have outdegree zero, and so
will have no effect on future steps. So one might as well delete them. Following this reasoning, we see that
every Kempe chain removed by Kempe-Strip will have outdegree zero in the magic subgraph (ignoring the
neglibile effects of the few small chains that are not trees).

With a bit more thought, one can see that vertices of the Kempe-core will all have outdegree at least
one after the whitening procedure halts. In Section 8, we will see that a non-empty Kempe-core induces a
single connected component between each pair of colour classes; this component is not a tree, and so has
a 2-core. The reader can easily verify that no directed edges in each 2-core will be deleted. Amongst the
pendant trees (see Definition 7.9 below), all edges pointing towards the 2-core will eventually be deleted, and
all edges pointing away away from the 2-core will remain. Since this is true of every pair of colour classes,
each vertex has an inneighbour of every colour (other than its own) and so no more edges can be deleted.

The whitening procedure was studied in [71] and other papers in statistical physics and is a key ingredient
to much of their analysis of k-colourings of random graphs. The magic subgraph was analyzed in [69]
to provide a non-rigorous analysis of planted 3-colourings in a random graph. Both papers provided a
(unproven) formula for the freezing threshold in the planted model[71]/threshold for a magic subgraph[69]
which is different from, but equivalent to, (1).

9



6 Kempe-cores in the planted model

6.1 Properties of the Kempe-core

Let K be the Kempe-core of Pn,p=c/n for some c > ck, and for each 1 ≤ a ≤ k, we let Ka = K ∩ Aa be
the vertices of K with colour a. For each a 6= b, we let Ka,b denote the bipartite subgraph of K induced by
(Ka,Kb).

Lemma 6.1. Consider any two connected bipartite graphs H,H ′, each with vertex set (Ka,Kb), and with
|E(H)| = |E(H ′)|. Then Pr(Ka,b = H) = Pr(Ka,b = H ′).

Proof Consider any (G, σ) for which the procedure Kempe-Strip yields a Kempe core with Ka,b = H.
Form G′ by replacing the subgraph H in G with H ′. Then applying Kempe-Strip to (G′, σ) will yield a
Kempe core with Ka,b = H ′. Furthermore, G,G′ arise with the same probability in Pn,p=c/n, since they
have the same number of edges. This gives a bijection from graphs which yield Ka,b = H and graphs which
yield Ka,b = H ′, where each pair of graphs occur with the same probability. This implies the lemma. �

Definition 6.2. The 2-core of a graph is what remains after iteratively deleting any vertices of degree less
than 2.

Remark: It is easy to see that the order in which we delete vertices does not affect what remains at the
end, so the 2-core is well-defined.

For any c ≥ ck we let yk(c) denote the largest positive solution y to c = ky
(1−e−y)k−1 . Recall from Section

4 that ck is defined as the minimum c such that yk(c) exists. We define:

λk(c) = yk(c)/c

ξk(c) =
yk(c)(1− e−yk(c)(1 + yk(c)))

c(1− e−yk(c))

µk(c) =
yk(c)e−yk(c)

c(1− e−yk(c))

∑
i≥2

yk(c)i

(i− 1)!

τk(c) =
yk(c)e−yk(c)

c(1− e−yk(c))

yk(c)2

2

We prove the next lemma in Section 8:

Lemma 6.3. For any c > ck w.h.p. we have that for every a, b, the subgraph induced by Ka,b is connected
and:

(a) |Ka| = λk(c)n+ o(n);

(b) the 2-core of Ka,b has ξk(c)n+ o(n) vertices in Ka and ξk(c)n+ o(n) vertices in Kb;

(c) the 2-core of Ka,b has µk(c)n+ o(n) edges;

(d) the 2-core of Ka,b has τk(c)n+ o(n) degree 2 vertices in Ka and τk(c)n+ o(n) degree 2 vertices in Kb.

The following bounds are crucial to our analysis. Essentially, they establish that certain branching
parameters are subcritical; those parameters concern (a) the proportion of non-2-core vertices in each Ka,
and (b) the degree two vertices in the 2-core of Ka,b:

Lemma 6.4. For every c > ck, there is ζ = ζ(c) > 0 such that:

(a) 1− ξk(c)
λk(c) <

1
k−1 (1− ζ);

(b) 2τk(c)
µk(c) <

1
k−1 (1− ζ).
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Proof At c = ck, y = yk(c) is the point that minimizes h(y) = ky
(1−e−y)k−1 . Setting ∂

∂yh(y) = 0

yields:
(1− e−y)k−1 = (k− 1)ye−y(1− e−y)k−2, which yields ey − 1 = (k− 1)y. Thus ey−1

y = k− 1 > e− 1 and

so y > 1. Thus ey > k− 1 and so ey − 1 grows faster than (k− 1)y for y ≥ yk(c). Since yk(c) increases with
c, we have that for every c > ck:

eyk(c) − 1 > (k − 1)yk(c).

Part (a):

ξ(c)

λk(c)
=

1− e−yk(c)(1 + yk(c))

1− e−yk(c)
=
eyk(c) − 1− yk(c)

eyk(c) − 1
>
eyk(c) − 1− 1

k−1 (eyk(c) − 1)

eyk(c) − 1
= 1− 1

k − 1
.

This implies (a) since the LHS and RHS do not change with n.
Part (b) follows similarly from:

2τk(c)

µk(c)
=

yk(c)2∑
i≥2

yk(c)i

(i−1)!

=
yk(c)∑
i≥1

yk(c)i

i!

=
yk(c)

eyk(c) − 1
<

1

k − 1
.

�

7 The Kempe-core is mostly frozen

In this section, we prove Lemma 5.7. Recall that we are working in the Pn,p model. So we have a uniformly
random partition σ of the vertices into A1, ..., Ak, and a graph G formed by selecting each of the potential
edges between different parts with probability p = c/n. Our focus will be on the Kempe-core, K, of (G, σ).

Definition 7.1. A ∆-set is the symmetric difference of σ and another k-colouring of the Kempe-core, K.
Specifically, given such a colouring σ′, the set of vertices u ∈ K with σ(u) 6= σ′(u) is a ∆-set, which we
sometimes denote by σ∆σ′.

Note that “v ∈ σ∆σ′” means the same thing as “σ(v) 6= σ′(v)”.
Recall that the subgraph induced by a set S of vertices is the subgraph consisting of S and all edges

whose endpoints are both in S. With this notation (and after ruling out flippable trees - see Lemma 7.6),
Lemma 5.7 is equivalent to:

Lemma 7.2. W.h.p. every ∆-set which induces a connected subgraph with more than one cycle has size at
least 2αn

The remainder of this section is devoted to the proof of Lemma 7.2.

7.1 The structure of ∆-sets

To prove Lemma 7.2 we first study the structure of ∆-sets. When we say the 2-core of a ∆-set, we mean
the 2-core of the subgraph of the Kempe-core induced by that set. Similarly, when we say a component of
a ∆-set, we mean a component of the subgraph of the Kempe-core induced by that set.

Observation 7.3. Every component of a ∆-set is a ∆-set.

Proof Let C be a component of σ∆σ′ and consider changing the colour of every v ∈ C from σ(v)
to σ′(v). Since C is a component of σ∆σ′, every vertex u adjacent to C has σ(u) = σ′(u). It follows that
for every edge uv, either u, v have colours σ(u), σ(v) or u, v have colours σ′(u), σ′(v). Thus we have a valid
colouring, and C is the set of vertices on which it differs with σ; i.e. C is a ∆-set. �

Recalling Lemma 6.3, we suppose we have a Kempe-core K satisfying:
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Property 7.4. Each Ka,b is connected and has a non-empty 2-core, and that 2-core is not a cycle.

We start with a key observation about ∆-sets:

Proposition 7.5. Let u be any vertex in a ∆-set σ∆σ′. Then every neighbour of u in Kσ(u),σ′(u) is also in
σ∆σ′.

Proof Every neighbour w of u in Kσ(u),σ′(u) has σ(w) = σ′(u). Since σ′ is a proper colouring, we
cannot have σ′(w) = σ′(u). Therefore σ′(w) 6= σ(w). �

Lemma 7.6. Every component of a ∆-set has a non-empty 2-core.

Proof If a component has an empty 2-core, then it is a tree. Consider a tree-component of a ∆-set
σ∆σ′. We direct the edges of that tree as follows: each u has an edge directed to every neighbour that it
has in Kσ(u),σ′(u); by Proposition 7.5, all such neighbours must be in the tree.

Note that an edge uv will be directed in both directions iff σ(u) = σ′(v) and σ(v) = σ′(u); contract all
such edges. The contracted tree is a tree, and each edge is directed in exactly one direction. So there must
be a node which has no edges directed out of it. Our contraction rule implies that there is a pair of colours
a, b such that every vertex u contracted into that node has (σ(u), σ′(u)) = (a, b) or (b, a). Furthermore, u
has no neighbours in Ka,b that were not contracted into the node, else this would have produced a directed
edge out of the node. Therefore, the vertices contracted into that node are a component of Ka,b. But since
they form a tree, this violates Property 7.4. �

Note the following simple fact:

Proposition 7.7. If a graph H is connected, then the 2-core of H is empty or connected.

Proof Strip to the 2-core by repeatedly removing vertices of degree 1. The removal of a degree 1
vertex cannot disconnect a graph. �

Definition 7.8. We say that a ∆-set is complex if its 2-core does not have any components that are cycles.
We say that a ∆-set is cyclic if its 2-core is a cycle.

In other words, a ∆-set is cyclic iff it is a flippable unicycle. So to prove Lemma 7.2 we must show that
w.h.p. the 2-core of every complex ∆-set is large.

We now turn our attention to the structure of the vertices outside the 2-core of a graph:

Definition 7.9. Consider any graph H such that every component of H has a non-empty 2-core. The edges
not in the 2-core of H form a forest. We call a tree of that forest a pendant tree. By Proposition 7.7, the
2-core of each component is connected. It follows that each pendant tree T contains exactly one vertex of the
2-core; that vertex is the vertex of attachment for T . We consider a pendant tree to be rooted at its vertex
of attachment; in particular, the parent of a vertex u not in the 2-core is its unique neighbour on the path
from u to the 2-core.

Lemma 7.6 implies that we can apply Definition 7.9 to the graph induced by any ∆-set, σ∆σ′. So
for every vertex v ∈ σ∆σ′ that is not in the 2-core of σ∆σ′, we can talk about its parent in σ∆σ′. By
Property 7.4 and Proposition 7.7, we can also talk about the parent of any non-2-core vertex in Ka,b.

Lemma 7.10. Consider any non-2-core vertex u in a ∆-set σ∆σ′ and let w be the parent of u in σ∆σ′.

(a) σ′(u) = σ(w);

(b) u is not in the 2-core of Kσ(u),σ′(u);

(c) w is the parent of u in Kσ(u),σ′(u).
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Proof Let T be the pendant tree of σ∆σ′ containing u. We proceed by induction.
Note that since Kσ(u),σ′(u) is connected and has size greater than one (by Property 7.4 and Lemma 6.3),

u has at least one neighbour in Kσ(u),σ′(u).
Base case: u is a leaf of T . Then w is the only neighbour of u in σ∆σ′, and so by Proposition 7.5, w

must be the only neighbour of u in Kσ(u),σ′(u). Parts (a,b,c) now follow.
Now suppose (a,b,c) hold for every child of u in T .
By Proposition 7.5, every neighbour of u in Kσ(u),σ′(u) must be in T . Consider any child w′ of u in T

with σ(w′) = σ′(u). By the inductive hypothesis, w′ is not in the 2-core of Kσ(w′),σ′(w′), σ
′(w′) = σ(u) and

u is the parent of w′ in Kσ(w′),σ′(w′). Thus we have {σ(u), σ′(u)} = {σ(w′), σ′(w′)} and so u is the parent of
w′ in Kσ(u),σ′(u). So u has at most one non-child neighbour, w, in Kσ(u),σ′(u). Parts (a,b,c) now follow. �

Lemma 7.11. Consider any vertex v in the 2-core of a ∆-set σ∆σ′. Suppose v is not in the 2-core of
Kσ(v),σ′(v). Then the parent of v in Kσ(v),σ′(v) is in the 2-core of σ∆σ′.

Proof Let w be the parent of v in Kσ(v),σ′(v); so σ(w) = σ′(v). By Proposition 7.5, w ∈ σ∆σ′. If w
is not in the 2-core of σ∆σ′, then because v is a neighbour of w and v is in the 2-core of σ∆σ′, v must be
the parent of w in σ∆σ′. By Lemma 7.10(a,c), this implies that σ′(w) = σ(v) and v is the parent of w in
Kσ(w),σ′(w). But now σ(w) = σ′(v) and σ′(w) = σ(v) so Kσ(w),σ′(w) = Kσ(v),σ′(v); thus v is the parent of w
and w is the parent of v in the same graph - contradiction. Therefore, w is in the 2-core of σ∆σ′. �

At this point, an intuitive outline of the next steps might be helpful. Our goal is to show that the 2-core,
H, of a complex ∆-set must have linear size. If we could prove that we must have E(H) ≥ (1 + ε)V (H)
for some constant ε > 0 then we would win: short standard arguments show that w.h.p. all subgraphs of
this density have size at least αn for some α = α(ε, c) > 0. So most of the work is dealing with the case
E(H) < (1 + ε)V (H). In that case, the average degree in H is very close to 2 and so most of the vertices
have degree 2. Since no component of H is a cycle (as the ∆-set is complex), it follows that most of the
vertices of H must lie on very long paths of degree 2 vertices. We begin by studying the structure of those
paths.

We start by focussing on two basic types of paths through vertices that have degree 2 in the 2-core of
some ∆-set σ∆σ′. These are illustrated in Figures 1,2. We will see that every path through vertices of degree
2 in the 2-core can be decomposed into a small number of these two types of paths (Lemma 7.17).

Type A is a path u0, u1, ..., ut where there is some a 6= b such that each ui has degree 2 in the 2-core
of Ka,b. It will follow that each ui has (σ(ui), σ

′(ui)) = (a, b) or (b, a) depending on the parity of i (see
Corollary 7.14).

Type B is a path u0, u1, ..., ut in which each ui is not in the 2-core of Kσ(ui),σ′(ui), and its parent in
Kσ(ui),σ′(ui) is ui+1.

σ

σ′

u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10

R R R

R R R B

B

B R B B R B R

BRBBBRB

Figure 1: Type A path. Each ui is in the 2-core of KR,B .

To understand these two types of paths, it is important to recall Proposition 7.5. For any path u0, u1, ..., ut
of degree 2 vertices in σ∆σ′, every neighbour of ui in Kσ(ui),σ′(ui) must also be in σ∆σ′. Type A: If ui is in
the 2-core of Kσ(ui),σ′(ui) then it has 2 other neighbours in the 2-core - they are its neighbours on the path.
Perhaps ui has other neighbours in Kσ(ui),σ′(ui) outside of the 2-core; in this case, they will be outside of
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σ

σ′

u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10

G R G B Y R Y R B G Y

R G B Y R Y R B G Y ?

Figure 2: Type B path. For example, u0 is not in the 2-core of KG,R and u1 is the parent of u0 in KG,R.

the 2-core of σ∆σ′ and so are not on the path. Type B: If ui is not in the 2-core of Kσ(ui),σ′(ui) but is in
the 2-core of σ∆σ′ then its parent in Kσ(ui),σ′(ui) must also be in the 2-core of σ∆σ′ (by Lemma 7.11); that
parent is ui+1. Perhaps ui has other neighbours in Kσ(ui),σ′(ui); perhaps one of those neighbours is ui−1;
there may be others outside of the 2-core of σ∆σ′.

These two path types are defined more formally below. Note that this definition does not specify the
colour pattern for the Type A path; that pattern will follow from Corollary 7.14.

Definition 7.12. A basic 2-path in a ∆-set σ∆σ′ is a path u0, ..., ux in the 2-core of σ∆σ′ such that

(a) x ≥ 1;

(b) each ui has degree 2 in the 2-core of σ∆σ′;

(c) either
Type A: every ui is in the 2-core of Kσ(ui),σ′(ui); or
Type B: every ui is not in the 2-core of Kσ(ui),σ′(ui) and, for 0 ≤ i ≤ x− 1, its parent in Kσ(ui),σ′(ui)

is ui+1.

We call u0, ux the endpoints, and u1, ..., ux−1 the internal vertices. (So if x = 1 then there are no internal
vertices.)

We now prove that a Type A 2-path must have the colour pattern indicated in Figure 1.

Lemma 7.13. Consider any vertex v in a ∆-set σ∆σ′ with 2-core H. Suppose that v has degree 2 in H,
and let y, z be the two neighbours of v in H. If v is in the 2-core of Kσ(v),σ′(v) then:

(a) v has degree 2 in the 2-core of Kσ(v),σ′(v);

(b) σ(y) = σ(z) = σ′(v);

(c) y, z are both in the 2-core of Kσ(v),σ′(v).

Proof Since v is in the 2-core of Kσ(v),σ′(v), v has at least two neighbours in the 2-core of Kσ(v),σ′(v).
By Proposition 7.5, all of those neighbours are in σ∆σ′. We will argue that those neighbours must, in fact,
be in the 2-core H of σ∆σ′ and hence must be y, z.

Suppose, to the contrary, that w ∈ Kσ′(v) is a neighbour of v in the 2-core of Kσ(v),σ′(v) and w /∈ H.
Since v ∈ H, and v is adjacent to w, v must be the parent of w in σ∆σ′. By Lemma 7.10(a), this implies
that σ′(w) = σ(v) and since w ∈ Kσ′(v) we have σ(w) = σ′(v). So Kσ(w),σ′(w) = Kσ(v),σ′(v) and, since w was
chosen to be in the 2-core of Kσ(v),σ′(v), w is in the 2-core of Kσ(w),σ′(w). This contradicts Lemma 7.10(b).

Therefore v has exactly two neighbours in the 2-core of Kσ(v),σ′(v), and y, z are those neighbours; so
y, z ∈ Kσ′(v). Parts (a,b,c) follow immediately. �

This immediately yields:
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Corollary 7.14. If u0, ..., ux is a Type A 2-path in a ∆-set σ∆σ′, then there are colours a, b such that
(σ(ui), σ

′(ui)) = (a, b) for even i, and (σ(ui), σ
′(ui)) = (b, a) for odd i; i.e. the sequences σ(ui) and σ′(ui)

both alternate over the same two colours. Furthermore, if v, w are the other neighbours of u0, ux, respectively
(i.e. v 6= u1, w 6= ux−1), then σ(v) = σ′(u0) and σ(w) = σ′(ux).

Next we prove that every path through degree 2 vertices in the 2-core of a ∆-set must be composed from
basic 2-paths. Figure 3 gives an example of a path composed of 3 basic 2-paths, which is the maximum
number possible.

σ

σ′

u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10

R R

R BB R B

RBB

u11 u12

B P R P

P R P ?

BGYR

GYR?

Figure 3: u4, u5, u6, u7, u8 form a Type A Path. u3, u2, u1, u0 and u9, u10, u11, u12 form two Type B paths.

Remark: The reader may have noticed an asymmetry between colourings σ, σ′ in Figure 3, namely that
vertices u3, u9 continue the R/B pattern in σ but not in σ′. This asymmetry arises from the fact that the
sets Ka,b are defined in terms of σ.

Setup for Lemmas 7.15 - 7.20: Let H be the 2-core of a ∆-set σ∆σ′. Consider any path W, v0, ..., vr, Y ,
r ≥ 1, in H where each vi has degree exactly 2 in H and W,Y each have degree at least 3 in H. It will be
convenient to set v−1 = W and vr+1 = Y . The next two lemmas concern this path.

Lemma 7.15. Consider any 0 ≤ i ≤ r. If vi is not in the 2-core of Kσ(vi),σ′(vi) then

(a) one of vi−1, vi+1 is the parent of vi in Kσ(vi),σ′(vi);

(b) if that parent is not W or Y , then either vi, vi+1, ..., vr or vi, vi−1, ..., v0 is a Type B 2-path.

Proof vi is in the 2-core, H, of σ∆σ′ but not in the 2-core of Kσ(vi),σ′(vi). Let w be the parent
of vi in Kσ(vi),σ′(vi). Lemma 7.11 says that w is in the 2-core of σ∆σ′. Since vi−1, vi+1 are the only two
neighbours of vi in σ∆σ′, this establishes part (a).

WLOG, assume w is vi+1. To prove part (b), we can assume that vi+1 6= Y . We will show that vi+1 is
not in the 2-core of Kσ(vi+1),σ′(vi+1), which will allow us to apply part (a) to vi+1.

Suppose, to the contrary, that vi+1 is in the 2-core of Kσ(vi+1),σ′(vi+1). Then applying Lemma 7.13(b,c)
to vi+1 implies that σ(vi) = σ′(vi+1) and vi is in the 2-core of Kσ(vi+1),σ′(vi+1). But vi+1 = w is adjacent to
vi in Kσ(vi),σ′(vi) and so σ(vi+1) = σ′(vi). Thus Kσ(vi),σ′(vi) = Kσ(vi+1),σ′(vi+1), and we have contradicted
the fact that vi is not in the 2-core of Kσ(vi),σ′(vi).

Therefore, we have shown that vi+1 is not in the 2-core of Kσ(vi+1),σ′(vi+1) and so we can apply part (a)
to vi+1 to show that the parent of vi+1 in Kσ(vi+1),σ′(vi+1) is either vi or vi+2. It is not possible for vi to be
that parent as this would require σ(vi) = σ′(vi+1), and so Kσ(vi+1),σ′(vi+1) = Kσ(vi),σ′(vi), and so vi would
be the parent of vi+1 in the same graph in which vi+1 is the parent of vi. Therefore, vi+2 must be the parent
of vi+1 in Kσ(vi+1),σ′(vi+1). Continuing this argument down the path establishes part (b). �

Definition 7.16. A piece of a path v0, ..., vr is the subpath formed by a contiguous subsequence vi, ..., vj.

Lemma 7.17. v0, ..., vr can be split into at most three pieces, each of which either has exactly one vertex or
is a basic 2-path.
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Proof If r ≤ 2 then it is trivial. So we assume r ≥ 3.
Case 1: Some vi is in the 2-core of Kσ(vi),σ′(vi). Let a = σ(vi) and b = σ′(vi). Let j1 be the largest

0 ≤ j1 < i such that (σ(vj1), σ′(vj1)) is not either (a, b) or (b, a); if no such j1 exists then we set j1 = −1.
Similarly, let j2 be the largest i < j2 ≤ r such that (σ(vj2), σ′(vj2)) is not either (a, b) or (b, a); if no such j2
exists then we set j2 = r + 1.

For all j1 + 1 ≤ j ≤ j2 − 1, (σ(vj), σ
′(vj)) is either (a, b) or (b, a). This allows us to apply Lemma

7.13 inductively from vi to vj1+1 and from vi to vj2−1 and show that each such vj is in the 2-core of Ka,b.
Therefore the subpath vj1+1, ..., vj2−1 either has exactly one vertex (vi) or is a Type A 2-path.

If j2 ≤ r then Lemma 7.13, applied to vj2−1, implies that σ(vj2) = σ′(vj2−1). If vj2 were in the 2-core of
Kσ(vj2 ),σ′(vj2 ) then Lemma 7.13 applied to vj2 would imply that σ′(vj2) = σ(vj2−1), and so (σ(vj2), σ′(vj2))
is either (a, b) or (b, a) thus contradicting our choice of j2. So we can apply Lemma 7.15 to vj2 to show that
the subpath vj2 , ..., vr either has exactly one vertex (vr) or is a Type B 2-path. (Note that vj2 , ..., v0 cannot
be the Type B 2-path since vj2−1 ∈ Kσ(vj2−1),σ′(vj2−1).)

Similarly, if j1 ≥ 0 then the subpath vj1 , ..., v0 either has exactly one vertex or is a Type B 2-path. This
provides our split into at most three pieces.

Case 2: No vi is in the 2-core of Kσ(vi),σ′(vi). Recall we assume that r ≥ 3, and pick some 1 ≤ ` ≤ r− 1.
Since we are in Case 2, v` is not in the 2-core of Kσ(v`),σ′(v`). So Lemma 7.15 and the fact that ` /∈ {0, r}
implies that v` lies in a Type B 2-path extending to either v0 or vr; WLOG assume it is vr. Let j ≤ ` be
the smallest value such that vj , ..., vr is a Type B 2-path. If j = 0 then we have one piece. If j ≥ 1 then,
since we are in Case 2, vj−1 is not in the 2-core of Kσ(vj−1),σ′(vj−1). By Lemma 7.15 and our choice of j,
vj−1, vj−2, ..., v0 either has exactly one vertex (j − 1 = 0) or is a Type B 2-path. Thus we can split into two
pieces. �

As we discussed above, if we could prove that the 2-core of σ∆σ′ must have edge-density at least 1 + ε,
then we would win - a standard first-moment argument shows that every subgraph of that density must be
large. But we cannot show this; long paths of degree 2 vertices can bring the edge-density arbitrarily close
to 1. So we use an approach first applied in [60]: we contract those paths to obtain a dense graph, and then
adapt that first-moment argument to show that this contracted graph must be large. One of the keys to this
argument is a good understanding of those contracted paths - so we only contract basic 2-paths (which we
understand well). The next lemma will apply Lemma 7.17 to show that we can obtain a useful contraction.
First we define a contractable collection of basic 2-paths.

Definition 7.18. We choose P(σ∆σ′) to be a vertex-disjoint collection of basic 2-paths in the 2-core of
σ∆σ′ such that: For every path W, v0, ..., vr, Y in the 2-core of σ∆σ′, where each vi has degree exactly 2 in
the 2-core of σ∆σ′ and W,Y each have degree at least 3 in the 2-core of σ∆σ′, we can split v0, ..., vr into at
most three pieces, each of which either has exactly one vertex or is a member of P(σ∆σ′).

Lemma 7.17 implies that P(σ∆σ′) exists. P(σ∆σ′) might not be uniquely defined. It is possible that
there are different ways to partition some v0, ..., vr as in Lemma 7.17, thus yielding different choices for
P(σ∆σ′). If there are multiple choices for P(σ∆σ′) then we arbitrarily specify one of them.

We partition the vertices of the 2-core of any ∆-set σ∆σ′ as follows:

• V1(σ∆σ′) - the internal vertices of the basic 2-paths in P(σ∆σ′);

• V2(σ∆σ′) - the vertices of the 2-core of σ∆σ′ that are not in V1(σ∆σ′); i.e. the endpoints of the basic
2-paths in P(σ∆σ′) and the vertices that are not in those basic 2-paths.

Observation 7.19. If σ∆σ is a complex ∆-set then |V2(σ∆σ′)| ≥ 1.

Proof By Lemma 7.6, the 2-core of (σ∆σ′) is not empty. Since σ∆σ′ is complex, its 2-core has
no cycle-components. Therefore the 2-core must have at least one vertex of degree at least 3. That vertex
cannot be in V1(σ∆σ′), so it must be in V2(σ∆σ′). �
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Lemma 7.20. For any complex ∆-set σ∆σ′ with |P(σ∆σ′)| = t, the 2-core of σ∆σ′ has at least 201
200 |V2(σ∆σ′)|−

t edges with both endpoints in V2(σ∆σ′).

Proof Let H be the 2-core of σ∆σ′. Form H ′ by contracting every basic 2-path u0, ..., ux in P(σ∆σ′)
into a single edge (u0, ux). For example, the path of degree 2 vertices in Figure 3 becomes the path
u0, u3, u4, u8, u9, u12.

Every vertex in H ′ has the same degree in H ′ as in H. Since no component of H is a cycle (as σ∆σ′

is complex), every degree 2 vertex of H lies in a path W, v0, ..., vr, Y as in Definition 7.18. Every such path
is contracted into a path with at most six degree two vertices. Therefore, H ′ does not contain any path
v0, v1, v2, v3, v4, v5, v6 of seven degree 2 vertices. Furthermore, H ′ has minimum degree at least 2. From
that, it is easy to argue that H ′ has at least 201

200 |V (H ′)| edges (this also follows from Lemma 11 of [60]).
The lemma now follows since V (H ′) = V2(σ∆σ′), there are exactly t contracted edges in H ′, and each of the
201
200 |V2(σ∆σ′)| − t non-contracted edges is an edge of H. �

We will use Lemma 7.20 to prove that every complex ∆-set is large in the next subsection. We close this
subsection by analyzing the structure of cyclic ∆-sets.

Lemma 7.21. If u1, ..., ur is the cycle forming the 2-core of a cyclic ∆-set σ∆σ′, then (after possibly
reversing the order of the labels): Every ui is not in the 2-core of Kσ(ui),σ′(ui) and its parent in Kσ(ui),σ′(ui)

is ui+1 (addition mod r).

Thus, we can view this 2-core as the cycle analogue of a Type B 2-path.
Proof If at least one ui is not in the 2-core of Kσ(ui),σ′(ui), then the same reasoning as in the proof

of Lemma 7.15(a) implies that its parent in Kσ(ui),σ′(ui) is either ui−1 or ui+1; WLOG assume it is ui+1. The
same reasoning as in the proof of Lemma 7.15(b) implies that ui+1 cannot be in the 2-core of Kσ(ui+1),σ′(ui+1).
So we can repeat the argument inductively around the cycle to prove that the lemma holds.

So assume that every ui is in the 2-core of Kσ(ui),σ′(ui). Lemma 7.13 now implies that every vertex uj has
(σ(uj), σ

′(uj)) = (a, b) or (b, a) for the same two colours (b, a), just as it implied Corollary 7.14. Furthermore
Lemma 7.13(a) implies that each uj has no other neighbours in the 2-core of Ka,b, other than its neighbours
in the cycle. It follows that this cycle is a component of the 2-core of Ka,b, contradicting Property 7.4 and
Propostition 7.7. �

We close by noting how Lemma 5.7 follows from Lemma 7.2:
Proof of Lemma 5.7: Let σ′ be any k-colouring of K with σ′(v) 6= σ(v); i.e. with v ∈ σ∆σ′. By

Observation 7.3, we can assume that σ∆σ′ is connected; otherwise replace σ′ with σ′′ such that σ∆σ′′ is the
component of σ∆σ′ containing v.

Lemma 7.6 implies that σ∆σ′ is not a tree. Since v does not lie in a flippable unicycle, σ∆σ′ has more
than one cycle. So this lemma follows from Lemma 7.2. �

The next two subsections are devoted to proving Lemma 7.2.

7.2 A first moment bound for ∆-sets

Proof of Lemma 7.2
We will bound the expected number of complex ∆-sets in terms of various size-parameters. We will focus

on the 2-cores of the ∆-sets.
Let σ∆σ′ be a complex ∆-set (Definition 7.18), and define:

• a = |V2(σ∆σ′)|

• t = |P(σ∆σ′)|

• j1, ..., jt ≥ 0 are the number of internal vertices in the basic 2-paths of P(σ∆σ′)

• J = j1 + ...+ jt
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Let Xa,J denote the number of 2-cores of complex ∆-sets with parameters a, J . We bound E(Xa,J) for
all a+ J < 2αn as follows:

First we choose the a vertices of V2(σ∆σ′). We will overcount by choosing from all of {1, ..., n} rather
than from just the Kempe-core. So the number of choices is at most(

n

a

)
.

Next we choose the values of t and j1, ..., jt. Since the basic 2-paths of P(σ∆σ′) are vertex-disjoint (by
Definition 7.18) and each has two endpoints in V2(σ∆σ′), we have t ≤ a

2 .
Recalling Lemma 7.20, we choose a set E of d 201

200ae − t edges within V2(σ∆σ′); the number of choices for
E is: ( (

a
2

)
d 201

200ae − t

)
.

Then we choose, from amongst the vertices of V2(σ∆σ′), the endpoints (vi, wi) of each of the basic 2-paths
P1, ..., Pt ∈ P(σ∆σ′). If two choices result in the same set of paths, just with a permutation of the indices,
then we consider those two choices to be equivalent. The number of choices is at most:

a2t/t!

(Note that we do not divide by 2t since the direction matters on a Type B path.)
We define the following events:

• E1 - the event that the statements of Lemma 6.3(a,b,c,d) hold.

• E2 - the event that all the edges of E are present.

• E3 - the event that each pair (vi, wi) is joined by a basic 2-path.

For a random variable X and an event E, we use X ∧ E to denote the variable that is equal to X if E
holds and 0 if E does not hold. We will actually bound E(Xa,J ∧ E1), recalling from Lemma 6.3 that E1

holds w.h.p.
We begin by noting that, since t ≤ a

2 , we have 201
200a− t >

a
2 . This yields:

( (
a
2

)
d 201

200ae − t

)
×Pr(E2) =

( (
a
2

)
d 201

200ae − t

)( c
n

)d 201
200ae−t ≤

(
ea

2

2

d 201
200a− te

c

n

)d 201
200ae

− t <
(eca
n

)d 201
200ae−t

. (4)

Recall the constant ζ = ζ(c) > 0 from Lemma 6.4. In Section 7.3, we will prove:

Lemma 7.22. There is a constant R = R(c, k) such that if a+ J < 2αn then

Pr(E3 ∧ E1|E2) < Ra(1− ζ

2
)J
(

1

n

)t
.

This yields that for a+ J < 2αn:

E(Xa,J ∧ E1) ≤
∑

t,j1+...+jt=J

(
n

a

)
a2t

t!
×
( (

a
2

)
d 201

200ae − t

)
×Pr(E2)×Pr(E3 ∧ E1|E2)

≤
∑

t,j1+...+jt=J

(en
a

)a a2t

t!

(eca
n

)d 201
200ae−t

Ra(1− ζ

2
)J
(

1

n

)t
by (4) and Lemma 7.22

<
∑
t≥0

(en
a

)a a2t

t!

(a
n

)d 201
200ae−t (

R(ec)2
)a( 1

n

)t ∑
j1+...+jt=J

(1− ζ

2
)J as d 201

200ae ≤ 2a

<
(
Z1
a

n

)d a
100e∑

t≥0

at

t!

∑
j1+...+jt=J

(1− ζ

2
)J for some constant Z1 = Z1(c, k) > 0.
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The number of choices for j1, ..., jt ≥ 0 that sum to J is
(
J+t−1
t−1

)
. It is straightforward to verify that

there is a constant Z2 = Z2(ζ) = Z2(c, k) > 1 such that for any t and J ≥ Z2t,
(
J+t−1
t−1

)
(1− ζ

4 )J is monotone

decreasing as J increases. Thus, for J ≥ Z2t, we have
(
J+t−1
t−1

)
(1− ζ

4 )J <
(
Z2t+t−1
t−1

)
(1− ζ

4 )Z2t <
(
Z2t+t
t

)
, and

for J < Z2t, we have
(
J+t−1
t−1

)
(1 − ζ

4 )J <
(
J+t−1
t−1

)
<
(
Z2t+t
t

)
. This, along with the bound 1 − ζ

2 < (1 − ζ
4 )2,

implies: ∑
j1+...+jt=J

(1− ζ

2
)J <

(
J + t− 1

t− 1

)
(1− ζ

4
)2J <

(
Z2t+ t

t

)
(1− ζ

4
)J < (e(Z2 + 1))t(1− ζ

4
)J . (5)

Thus, for a+ J ≤ 2αn, we have:

E(Xa,J ∧ E1) <
(
Z1
a

n

)d a
100e

(1− ζ

4
)J
∑
t≥0

(ea(Z2 + 1))t

t!

=
(
Z1
a

n

)d a
100e

(1− ζ

4
)Jeea(Z2+1)

<
(
Z
a

n

)d a
100e

(1− ζ

4
)J for some constant Z = Z(c, k) > 0 (6)

< (1− ζ

4
)a+J , (7)

by applying a < 2αn and taking α = α(c, k) to be sufficiently small that 2Zα < (1− ζ
4 )100.

We apply (6) to small values of a, say a ≤ log2 n, and (7) to larger values of a. Recalling Observation 7.19,
we sum from a ≥ 1. This yields:

E(Xa,J ∧ E1) <

log2 n∑
a=1

αn−a∑
J=0

(
Z
a

n

)d a
100e

(1− ζ

4
)J +

αn∑
a=log2 n

αn−a∑
J=0

(1− ζ

4
)a+J

< O(1)×
log2 n∑
a=1

(
Z
a

n

)d a
100e

+O(1)×
αn∑

a=log2 n

(1− ζ

4
)a (8)

< O(
1

n
) + e−

ζ
8 log2 n = o(1).

Since E1 holds w.h.p., this yields that w.h.p. the Kempe-core of Pn,p=c/n has no complex ∆-sets of size
less than αn, thus proving Lemma 7.2. �

7.3 Proof of Lemma 7.22

We begin by restating the lemma:
Lemma 7.22 There is a constant R = R(c, k) such that if a + J < 2αn then Pr(E3 ∧ E1|E2) <

Ra(1− ζ
2 )J

(
1
n

)t
.

Proof At this point, we have chosen the vertices of V2(σ∆σ′), the endpoints vi, wi for i = 1, ..., t,
and exposed the fact that the fewer than 2a edges of E are present. Next, we will expose the values of the
parameters bounded by Lemma 6.3. If E1 holds then the following hold for each a, b:

(Q1) |Ka| = λk(c)n+ o(n);
(Q2) the 2-core of Ka,b has ξk(c)n+ o(n) vertices in Ka and ξk(c)n+ o(n) vertices in Kb;
(Q3) the 2-core of Ka,b has µkn+ o(n) edges;
(Q4) the 2-core of Ka,b has τkn+ o(n) degree 2 vertices in Ka and τkn+ o(n) degree 2 vertices in Kb.
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Let P1, ..., Pt be the basic 2-paths of P(σ∆σ′), where Pi has ji internal vertices plus endpoints vi, wi ∈
V2(σ∆σ′).

Before heading into the details, we comment on our goal: Note that our desired bound is very loose in
the Ra term - any constant R will do - but much more precise in the (1 − ζ

2 )J term - we need a constant
less than 1. This corresponds to the intuition that the paths are very long and so the term corresponding to
their total length, J , is more important than the term corresponding to their total number, t. So in what
follows, we will be very careful about the constants raised to the Jth power, but we do not need to be careful
with those raised to the Rth power.

First, we choose whether each Pi is Type A or Type B. We will consider the Type B paths first, so we
relabel the indices so that the Type B 2-paths come first in the sequence P1, ..., Pt.
Type B paths

We expose the Type B 2-paths one-at-a-time, and for each such Pi, we expose the vertices one-at-a-time
beginning with the vertex after vi.

Suppose Pi is a Type B 2-path in σ∆σ′. Denote the vertices of Pi by vi = u0, u1, ..., uji , uji+1 = wi.
First, we choose the colour σ(ux) for each 1 ≤ x ≤ ji; note that σ(u0), σ(uji+1) were determined when

we chose u0 = vi, uji+1 = wi. Since we must have σ(ux+1) 6= σ(ux), as those two vertices are adjacent and
hence cannot have the same colour, there are:

(k − 1)ji choices for these colours.

By the definition of a Type B 2-path, our choice of σ(u1), ..., σ(uji+1) also determines σ′(u0), ..., σ′(uji)
because σ′(ux) = σ(ux+1).

Next, we choose the verties u1, ..., uji . We begin with u0, which was already chosen. We then choose
u1: the parent of u0 in Kσ(u0),σ′(u0) (by the definition of a Type B 2-path). We continue this way down the
path.

Suppose that we have chosen vertex ux and are now choosing ux+1, for some x < ji; the case x = ji
is a special case, since uji+1 = wi has already been chosen. Prior to choosing ux+1, we have exposed the
following:

• the values of the parameters from Lemma 6.3; i.e. from (Q1), (Q2), (Q3), (Q4);

• the values of a, t, j1, ..., jt

• the vertices of V2(σ∆σ′) including the endpoints of each basic 2-path;

• the edges of E (which all lie within V2(σ∆σ′));

• the edges and vertices of the basic 2-paths P1, ..., Pi−1;

• the colours σ(u0), ..., σ(uji+1), σ′(u0), ..., σ′(uji);

• the vertices u1, ..., ux and the fact that each is adjacent to the preceding vertex;

• for ` = 1, ..., x: u` is not in the 2-core of Kσ(u`−1),σ′(u`−1), and the parent of u` in Kσ(u`−1),σ′(u`−1) is
u`+1; the same is also true of all vertices in P1, ..., Pi−1 other than the last endpoint of each path.

The only edges that have been exposed have both endpoints in: V2(σ∆σ′), P1, ..., Pi−1, u0, ..., ux; let Ψ
be that set of vertices. Thus

|Ψ| ≤ a+ J < 2αn.

So ux is not in the 2-core of Kσ(ux),σ′(ux), and we are about to expose its parent, ux+1. We will bound
the probability that ux+1 is not in the 2-core of Kσ(ux+1),σ′(ux+1).

Note that if ux+1 ∈ Ψ, then we have failed to construct a ∆-set σ∆σ′ subject to the specified parameters.
So to upper bound the probability that our choices yield such a σ∆σ′, we can assume ux+1 /∈ Ψ.

Case 1: σ′(ux+1) 6= σ(ux). We expose the parent of ux in Kσ(ux),σ′(ux), and set it to be ux+1. This
exposes nothing new about ux+1 in Kσ(ux+1),σ′(ux+1), as that is a different graph since we are in Case 1 and

20



since σ′(ux) = σ(ux+1). So in the random graph Kσ(ux+1),σ′(ux+1), we have exposed nothing about the edges
involving any vertices outside of Ψ.

Consider any graph H that, subject to what has already been exposed, could be Kσ(ux+1),σ′(ux+1). Con-
sider any H ′ formed from H by permuting the vertices in Kσ(ux+1)\Ψ. So H ′ could be Kσ(ux+1),σ′(ux+1),
subject to what has been exposed, and |E(H ′)| = |E(H)|. The same argument used in the proof of Lemma
6.1 yields that conditional on what has already been exposed:

Pr(Kσ(ux+1),σ′(ux+1) = H) = Pr(Kσ(ux+1),σ′(ux+1) = H ′).

Therefore, the probability that ux+1 is not in Ψ and is not in the 2-core of Kσ(ux+1),σ′(ux+1) is at most the
number of non-2-core vertices in Kσ(ux+1) divided by |Kσ(ux+1)\Ψ|. Using the fact that (Q1), (Q2) hold,
applying Lemma 6.4(a), using |Ψ| < 2a, and taking α sufficiently small in terms of ζ, this ratio is at most:

λk(c)− ξk(c)

λk(c)− 2α
+ o(1) <

1

k − 1
(1− ζ

2
). (9)

Case 2: σ′(ux+1) = σ(ux). We argue as in Case 1, except this case is more delicate since Kσ(ux),σ′(ux) =
Kσ(ux+1),σ′(ux+1). When we expose the parent of ux in this graph, we need to bound the probability of that
parent being outside the 2-core.

We have exposed that ux is not in the 2-core of Kσ(ux),σ′(ux). So if we remove the edge from ux to its
parent, Kσ(ux),σ′(ux) will be disconnected into two components: one containing ux and one containing the
2-core. Let H1, H2 be any two graphs which, subject to what has already been exposed, could be these two
components.

Let Υ ⊂ H2 denote the set of vertices w ∈ H2 such that, if we add an edge from ux to w, then the
graph Hw formed by H1, H2 and the edge (ux, w), could be Kσ(ux),σ′(ux) (subject to what has already been
exposed). Consider any two vertices w,w′ ∈ Υ; we will argue that Hw, Hw′ are each equally likely to be
Kσ(ux),σ′(ux).

So consider any k-partite graph G with parts A1, ..., Ak (from Definition 4.2) for which, in the Kempe-core
of G, we have Kσ(ux),σ′(ux) = Hw. Let G′ be the graph obtained from G by replacing the edge (ux, w) by
(ux, w

′). So, in the Kempe-core of G′, we have Kσ(ux),σ′(ux) = Hw′ . Note further that swapping these two
edges does not alter any of the information that has been exposed thus far. Therefore G could possibly be
the original random graph drawn from Pn,p, subject to what has been exposed up to this point, iff G′ could.

So this is a bijection from the possible graphs withKσ(ux),σ′(ux) = Hw and those withKσ(ux),σ′(ux) = Hw′ .
For each pair (G,G′) in that bijection, G,G′ have the same number of edges and so are equally likely to be
chosen as Pn,p. This implies that Hw, Hw′ are each equally likely to be Kσ(ux),σ′(ux), conditional on what
has been exposed thus far.

Now we note that Υ contains all vertices in Kσ′(ux)\Ψ that are in the 2-core of H2 (as well as, perhaps,
some other vertices). By (Q2) and since |Ψ| ≤ αn, there are at least (ξk(c) − 2α)n + o(n) such vertices
and, by (Q1), |Υ| ≤ |Ka| = λk(c)n + o(n). So, conditioning on the event that H1, H2 are the components
created by removing the edge from ux to its parent, the probability that the parent of ux is in the 2-core
of Kσ(ux),σ′(ux) is at least (ξk(c)− 2α)/λk(c) + o(1). Since this holds for any possible choice of H1, H2, the
probability that the parent of x in H ′ is not in the 2-core is, by Lemma 6.4(a), at most

1− ξk(c)− 2α

λk(c)
+ o(1) <

1

k − 1
(1− ζ

2
), (10)

if α is sufficiently small in terms of ζ.
So in both Case 1 and Case 2, we find that the probability that ux+1 is not in the 2-core ofKσ(ux+1),σ′(ux+1),

conditional on what has been exposed thus far, is at most 1
k−1 (1− ζ

2 ).
To be clear: having bounded the probability that ux+1 is in the 2-core of Kσ(ux+1),σ′(ux+1), we now

expose the vertex ux+1 and whether it is in that 2-core. If it is, then we halt our process having failed to
produce the set of paths P1, ..., Pt. If we continue, we have exposed that ux+1 is in that 2-core. We have
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not exposed any of the information used in the analysis of the probability that ux+1 is in the 2-core; eg. the
components H1, H2.

The final edge: After exposing u1, ..., uji , we turn our attention to the edge (uji , uji+1). We have already
exposed the vertices uji and uji+1 = wi, and we have exposed that uji is not in the 2-core of Kσ(uji ),σ

′(uji )
.

We will bound the probability that wi is the parent of uji in Kσ(uji ),σ
′(uji )

.
We consider H1, H2,Υ as in Case 2 above. Again, the size of Υ is at least the number of vertices in

Kσ′(uji )
\Ψ that are in the 2-core of H2. So, by the same reasoning as in Case 2, if wi ∈ Υ then the

probability (conditional on what has been exposed so far, including H1, H2) that wi is the parent of uji is
1/|Υ| ≤ 1/(ξk(c)n−2αn+o(n)) and if wi /∈ Υ then the probability is zero. Since this is true for every choice
of H1, H2, the conditional probability that wi is the parent of uji is at most:

1

ξk(c)n− 2αn+ o(n)
<

2

ξk(c)− 2α
× 1

n
.

Putting this all together, each Type B 2-path Pi contributes to Pr(E3 ∧ E1|E2) a factor of at most

(k − 1)ji × (
1

k − 1
(1− ζ

2
))ji × 2

ξk(c)− 2α
× 1

n
. (11)

Type A paths
Next, we consider the Type A 2-paths. We will process them all at once.
At this point, we have chosen the following:

• the values of the parameters from Lemma 6.3;

• the values of a, t, j1, ..., jt

• the vertices of V2(σ∆σ′) including the endpoints of each basic 2-path;

• the edges of E (which all lie within V2(σ∆σ′));

• the edges and vertices of the Type B 2-paths;

• each vertex u in those Type B 2-paths (other than the last endpoint of each path) is not in the 2-core
of Kσ(u`−1),σ′(u`−1), and its parent is the vertex that follows it on the path.

So again, the only edges that have been exposed have both endpoints in V2(σ∆σ′) and the Type B
2-paths; we let Ψ be that set of vertices, and we have

|Ψ| ≤ a+ J < 2αn.

Now, we will choose the entire 2-core of every Ka,b. Recall that the edge-sets of each Ka,b are independent
of each other. Our first step is to expose the vertices of each 2-core, and the degree that each vertex has in
the 2-core. As we are upper bounding the probability of E3∧E1, we will assume that E1 holds; in particular,
we assume that properties (Q2), (Q3), (Q4) regarding the number of vertices, edges, and degree two vertices
in the 2-core all hold.

We are conditioning on E2, the event that the edges of E all appear; having chosen the vertices of the
2-core we may find that some of the edges of E are in the 2-core of Ka,b. None of the edges in the Type B
2-paths can be in the 2-core, so the edges of E are the only 2-core edges that have been exposed. We claim
that every subgraph on the chosen vertices with the chosen degree sequence and containing those edges of
E is equally likely to be the 2-core of Ka,b. To see this, consider two potential such 2-cores H1, H2, and any
graph G satisfying everything exposed thus far such that H1 is the 2-core of Ka,b in G. Form G′ by deleting
the edges of H1 and adding the edges of H2. Note that H2 is the 2-core of Ka,b in G′ and that G,G′ are
equally likely to be chosen as our random graph, as they have the same number of edges. It follows that we
can use the configuration model[16] to choose our 2-core:
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For each vertex v, we take deg(v) copies of v. For each edge e ∈ E in the 2-core, we take a copy of each of
the two endpoints of e and pair them. Then we take a uniformly random bipartite matching of the remaining
vertex-copies. We do this for the 2-core of every Ka,b. Standard arguments show that the probability that
the resulting graph is simple is bounded away from zero. So if a property holds w.h.p. in this model, it holds
w.h.p. upon conditioning on the graph being simple; i.e. for the correct model.

For each Type A 2-path Pi, following Lemma 7.14, we select the two colours on that path; i.e. the colours
a, b such that for each u ∈ Pi we have (σ(u), σ′(u)) = (a, b) or (b, a). We have already chosen the endpoints
of each path and have thus specified one or both of the colours a, b. So there are at most k − 1 choices for
the second colour on each path. (To upper bound the probability of success, we will assume that the colours
of the selected endpoints of Pi along with the parity of ji do not conflict each other; i.e. the endpoints have
the same colour iff the path has even length.)

For each a, b, we let ta,b denote the number of Type A 2-paths for which we selected the colours a, b in
the preceding paragraph, and we let Ja,b denote the total number of internal vertices on those ta,b paths.
We let Jaa,b, J

b
a,b be the number of such vertices u for which we determined that σ(u) = a, σ(u) = b resp.

We now choose the interior vertices for each Type A 2-path Pi. For each Ka,b, we must select Jaa,b, J
b
a,b

vertices of colour a, b that have degree two in the 2-core of Ka,b (by Definition 7.12) and are not incident
with an edge of E (as the edges of E cannot be in basic 2-paths). Let Laa,b, L

b
a,b be the number of such vertices

to choose from in Ka,b. (To overcount, we’ll consider all vertices of degree two in the 2-core of Ka,b, even
though some are already known to be ineligible, eg. if they are in a previously exposed edge.) Since (Q4)
holds, we have

Laa,b, L
b
a,b ≤ τk(c)n+ o(n).

Since the basic 2-paths are disjoint (by Definition 7.18), the number of choices for the degree 2 vertices is at
most:

Laa,b(L
a
a,b − 1)...(Laa,b − Jaa,b + 1)Lba,b(L

b
a,b − 1)...(Lba,b − Jba,b + 1).

Now we choose which vertex-copies of the vertices of each path, including the endpoints, will be matched
with each other. The number of choices is at most 2Ja,b+2ta,b . Finally, we bound the probability that these
copies will be paired up. Because every edge in Ka,b contains a vertex of each colour, the total number of
vertex-copies from Ka in the 2-core of Ka,b which do not lie in edges of E , is the same as the total number
from Kb; let Xa,b be that number.

We proceed along the paths one-vertex-at-a-time, each time exposing whether the selected copy of that
vertex is paired with the selected copy of the next vertex on the path. Every success removes a vertex-copy
of each colour from the 2-core of Ka,b. So the probability that all of these Ja,b + ta,b pairings occur is:

1

Xa,b(Xa,b − 1)...(Xa,b − (Ja,b + ta,b) + 1)
.

This leads to the following bound on the probability that the ta,b Type A 2-paths that use edges from Ka,b

are formed:

2Ja,b+2ta,bLaa,b...(L
a
a,b − Jaa,b + 1)Lba,b...(L

b
a,b − Jba,b + 1)

Xa,b...(Xa,b − (Ja,b + ta,b) + 1)

<

(
4

Xa,b − Ja,b − ta,b

)tab 2Ja,bLaa,b...(L
a
a,b − Jaa,b + 1)Lba,b...(L

b
a,b − Jba,b + 1)

Xa,b...(Xa,b − Ja,b + 1)
. (12)

Since (Q3) holds, the 2-core of Ka,b has a total of µk(c)n + o(n) vertex-copies in Ka and µk(c)n + o(n)
vertex-copies in Kb. E contains at most 2αn edges, each using one vertex-copy on each side. So

Xa,b ≥ µk(c)n− 2αn+ o(n).

Therefore, if we choose α to be sufficiently small in terms of ζ, then by Lemma 6.4(b), we have
2Laa,b
Xa,b−1 ,

2Laa,b
Xa,b−1 ≤
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2τk(c)n+o(n)
µk(c)n−2αn+o(n) < 1− ζ

2 . It follows that for every x > 0 we have:

2(Laa,b − x)

Xa,b − 2x− 1
,

2(Lba,b − x)

Xa,b − 2x− 1
< 1− ζ

2
.

If Laa,b = Lba,b then this would yield that the bound of (12) is at most(
4

Xa,b − Ja,b − ta,b

)tab
(1− ζ

2
)Ja,b .

However, we must multiply by a corrective factor if Jaa,b 6= Jba,b. Noting that |Jaa,b − Jba,b| < ta,b, and that

Xa,b − Ja,b > Xa,b − 2αn > 1
2Xa,b for α sufficiently small, we find that the corrective factor is at most 2ta,b .

Similarly, we have Xa,b − Ja,b − ta,b > 1
2µk(c)n, and the bound of (12) is at most:(

16

µk(c)n

)ta,b
(1− ζ

2
)Ja,b .

We multiply this bound over all a, b. Then we multiply by the contribution from (11) for each Type B
2-path. We also multiply by the 2 choices for whether each Pi is Type A or Type B, and if it is Type B, the
at most k − 1 choices for its colours - a total of at most k choices for each path.

Setting R = k ×max( 2
ξk(c)−2α ,

16
µk(c)n ), and recalling that t ≤ a, this yields:

Pr(E3 ∧ E1|E2) ≤ (1− ζ

2
)JRa

(
1

n

)t
,

as required. �

7.4 Cyclic ∆-sets

Having shown that w.h.p. there are no small complex ∆-sets, we now show that there are few small cyclic
∆-sets (i.e. flippable unicycles).

Lemma 7.23. The expected value of the total number of vertices on all cyclic ∆-sets in Pn,p=c/n is O(1).

Proof: Recall from Lemma 7.21 that the 2-core of a cyclic ∆-set σ∆σ′ is a cycle u1, ..., ur such that
every ui is not in the 2-core of Kσ(ui),σ′(ui) and its parent is ui+1 (addition mod r). We refer to such a cycle
as a Type B cycle, as it is the cyclic analogue of a Type B path.

We let Xr denote the number of Type B cycles of length r.
Set r′ = min(r,

√
n). We will restrict our analysis to the first r′ vertices on the cycle. First we choose the

colours σ(u1), ..., σ(ur′); there are fewer than k(k − 1)r
′−1 choices. Next we choose u1; there are fewer than

n choices. Then we proceed around the cycle: after choosing ui, we expose its parent in Kσ(ui),σ′(ui) and
set that vertex to be ui+1. The same argument as in the proofs of (9) and (10) shows that the probability
that ui+1 is not in the 2-core of Kσ(ui+1),σ′(ui+1) is less than 1

k−1 (1 − ζ
2 ). Finally if r = r′ (i.e. if r ≤

√
n)

we bound the probability that u1 is the parent of ur in Kσ(ur),σ′(ur). The argument used in the proof of

Lemma 7.22 for the edge (uji , wi) yields a bound of 1+o(1)
λk(c)n .

At this point, we can rule out all cycle lengths r >
√
n as follows. The count in the preceding paragraph

shows that the expected number of such Type B cycles is

Exp(
∑
r>
√
n

Xr) ≤
n∑

r=
√
n

nk(k − 1)
√
n−1[

1

k − 1
(1− ζ

2
)]
√
n−1 = o(n−2). (13)
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So for the remainder, we take r ≤
√
n. The expected total size of all such Type B cycles is:

Exp(
∑
r≤√n

rXr) ≤
∑
r≤√n

nrk(k−1)r−1[
1

k − 1
(1− ζ

2
)]r−1× 1 + o(1)

λk(c)n
=
∑
r≤√n

nr(1− ζ
2

)r−1O(
1

n
) = O(1). (14)

Given a Type B cycle u1, ..., ur, we explore the remainder of the cyclic ∆-set σ∆σ′ using a branching
process. Initially, the vertices {u1, ..., ur} are labelled as unexplored. At each step, we choose an unexplored
vertex w. We expose all vertices v not on the Type B cycle such that: (i) v is not in the 2-core of Kσ(v),σ(w);
(ii) w is the parent of v in Kσ(v),σ(w). We label each such v as unexplored and we change the label of w
to explored; we say that each such v is a child of w. Lemma 7.10 implies that this process will reach every
member of σ∆σ′. (It may also reach some additional vertices if σ∆σ′ is not a maximal cyclic ∆-set.)

At any point, we let Ψe,Ψu denote the set of vertices labelled explored, unexplored, respectively; we let
Ψ = Ψe ∪Ψu. Initially |Ψ| = r ≤

√
n.

For the purposes of this analysis, we expose the 2-core of Ka,b for all a, b. By Lemma 6.3, w.h.p. each
Ka has size λk(c)n+ o(n) and contains ξk(c)n+ o(n) vertices from the 2-core of Ka,b. As we carry out the
branching process, at each step we will have exposed the following:

EXPOSED:

• the 2-core of Ka,b for all a, b;

• the edges already discovered to be in the unicycle, and the fact that each such edge coresponds to a
child/parent in a Ka,b;

• for each v ∈ Ψe, the fact that no vertex outside of Ψ has v as a parent in any Ka,b.

Suppose that w ∈ Ψu is the vertex we are about to explore. We will prove that as long as |Ψ| = o(n) we
have that, conditioning on EXPOSED:

The expected number of children of w is at most 1− ζ

2
, (15)

where ζ = ζ(c) comes from Lemma 6.4.
We know w ∈ Ka where a = σ(w). Consider any b 6= a and consider any vertex x ∈ Kb\Ψ that is not in

the 2-core of Ka,b. For any non-2-core vertex u ∈ Ka,b, we use p(u) to denote the parent of u in Ka,b. We
will show that in the pendant tree of Ka,b containing x,

Pr(p(x) = w) ≤ 1 + o(1)

|Kb\Ψ|
. (16)

There are k − 1 choices for b. If |Ψ| = o(n) then there are (λk(c) − ξk(c))n + o(n) choices for x and
|Ka\Ψ| ≥ λk(c)n+o(n). Applying Lemma 6.4(a), and taking α sufficiently small in terms of ζ, the expected
number of children of w is at most

(k − 1)× λk(c)− ξk(c)

λk(c)
+ o(1) < 1− ζ

2
.

This establishes (15).
To prove (16), consider any vertex y ∈ Ka\Ψ. Recall that we have already exposed the vertices of the

2-core of Ka,b. If y is in the 2-core of Ka,b, then the same argument as in Case 2 of the proof of Lemma 7.22
proves that, conditional on the information of EXPOSED,

Pr(p(x) = w) ≤ Pr(p(x) = y) (17)

The key observation for this argument is: Consider any graph where p(x) = w; replacing the edge xw with
xy yields an equally probable graph with p(x) = y (note that the reverse statement does not hold). It is
important to note that replacing this edge cannot alter the information in EXPOSED.
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Suppose y is not in the 2-core of Ka,b. Let E∗ be the event that y is a descendant of x in a pendant tree
of Ka,b.

Claim 1: Pr[(p(x) = w) ∧ E∗] = O(n−2).
Proof: We can expose the unique path from y to the 2-core of Ka,b as follows: Set z := y. While z is not

in the 2-core, set z := p(z). Consider any z′ in the 2-core and not in Ψ. The same argument from Case 2
of Lemma 7.22 that is used to prove (17) also implies Pr(p(z) = x) ≤ Pr(p(z) = z′). So at each step, since
there are Θ(n) choices for z′, the probability of reaching x is O(1/n) and the probability of reaching the
2-core is Θ(1). It follows that the probability that we reach x before the 2-core, i.e. that x is on the path
from y to the 2-core, is O(1/n).

If we do reach x before the 2-core, then we next expose p(x). Again using the same argument as in (17),
we obtain that every 2-core vertex is at least as likely as y to be the parent of x and so the probability that
p(x) = y is O(1/n). This proves the claim. �

Claim 2: Pr(p(x) = w|E∗) ≤ Pr(p(x) = y|E∗).
Proof: This is equivalent to showing that Pr[(p(x) = w) ∧ E∗] ≤ Pr[(p(x) = y) ∧ E∗]. Consider any

graph H for which (i) Ka,b = H; (ii) setting Ka,b = H does not contradict anything in EXPOSED; and (iii)
the event (p(x) = w) ∧ E∗ holds. Let H ′ be the graph obtained by replacing the edge (x,w) with (x, y).
Since E∗ holds for H, we have that H ′ is connected and y is the parent of x in H ′. Furthermore, H and H ′

have the same 2-core and the same number of edges. Finally, note that replacing this edge does not alter
anything in EXPOSED since y /∈ Ψ and w /∈ Ψe. So H,H ′ are both equally likely to be Ka,b as argued
repeatedly previously, eg. in the proof of Lemma 6.1. Since each such H ′ can arise from at most one such
H, the Claim follows. �

Therefore, Pr(p(x) = w) ≤ Pr(p(x) = y) + Pr[(p(x) = w) ∧ E∗] = Pr(p(x) = y) + O(n−2). Summing
over all y ∈ Ka\Ψ yields

|Ka\Ψ| ×Pr(p(x) = w) ≤
∑

y∈Ka\Ψ
Pr(p(x) = y) +O(n−2) ≤ 1 + |Ka| ×O(n−2) = 1 + o(1).

This yields (16) and thus completes the proof of (15).
Having proved (15), we now return to our branching process. Recall that when we explore w ∈ Ψu, we

expose every child of w in each Kσ(w),b\Ψ. We then place each of those children in Ψe and move w to Ψu.
Note that EXPOSED still lists all the information that we have exposed, and so we can apply (15) at each
step, so long as |Ψ| = o(n).

Thus, at each step the expected change in |Ψu| is at most −ζ/2. Recall that initially |Ψu| = r <
√
n, the

size of the Type B cycle. It follows easily that the expected number of steps until |Ψu| = 0 is O(r). Note
that the size of the cyclic ∆-set is r plus this number of steps and thus has expectation O(r). By (14) the
total size of the Type B cycles of length at most

√
n is O(1) and so the expected total size of cyclic ∆-sets

arising from such Type B cycles is O(1). By (14) the total size of cyclic ∆-sets arising from Type B cycles
of length greater than

√
n is less than n × o(n−2) = o(1), since each such ∆-set has size at most n. This

proves the lemma. �

8 The Kempe-core threshold

We adapt the argument from [54], where we analyzed a very similar core, but in a simpler setting. In fact,
the main motivation for [54] was to develop a technique that we could use here to analyze the Kempe-core.
The reader might prefer to read [54] before reading this section.

We let Gn1,n2,p denote the random bipartite graph whose parts have size n1, n2 and where each of the
n1n2 possible edges is present independently with probability p. We will need the following bound on the
size of the components of Gn1,n2,p=c/n.
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Lemma 8.1. Consider any constants a1, a2, c > 0 and any functions n1 = n1(n) = a1n+o(n), n2 = n2(n) =
a2n+o(n). There is a function Q = Q(a1, a2, c) such that in Gn1,n2,p=c/n, with probability at least 1−o(n−2):

(a) If a1a2c
2 > 1 then there is a unique positive solution (α1, α2) to

α1 = a2(1− e−α2c)

α2 = a1(1− e−α1c).

Furthermore,

(i) the two parts of the largest component have sizes α1n+ o(n), α2n+ o(n);

(ii) every other component has size at most Q log n.

(b) If a1a2c
2 < 1 then every component has size at most Q log n.

(c) If a1a2c
2 = 1 then only o(n) vertices lie in components of size greater than log n.

Remark 8.2. It is easily checked in the proof that we can take Q(a1, a2, c) to be a function that decreases
as any of a1, a2, c increase whenever a1a2c

2 > 1.

Parts (a,b) are essentially proven by Johansson in Chapter 2 of [42], but his statement is not quite as
precise as we need here; he had an O(log2 n) bound on the sizes of the small components in part (a ii), and
he shows that this holds w.h.p. rather than with probability 1− o(n−2). But the same approach with minor
changes yields our stronger statement - we outline this proof.

We make use of this common version of the Chernoff Bound (see eg. [58]). BIN(n, p) is the binomial
random variable. For any 0 < t ≤ np we have

Pr [|BIN(n, p)− np| > t] < 2e−t
2/3np. (18)

Proof We modify the approach from section 5.2 of [41] where they prove the corresponding result
for G(n, p). Given a vertex v, we expose the component Cv containing v by a search, eg. a breadth-first
search; this standard approach is commonly referred to as a branching process. The main point on which
we (and [42]) differ from [41] is that when processing a vertex u ∈ Cv, where [41] exposes the undiscovered
neighbours of u, we expose the undiscovered vertices of distance 1 and 2 from u. On step i, we let Yi denote
the number of neighbours and Xi denote the number of neighbours of those Yi neighbours; each time we
only count vertices which were not encountered previously during this search. Thus, in each step, the vertex
u that we process is always on the same side of the bipartition as v. If the process dies out, i.e. if we discover
all of Cv, then we pick a uniform new vertex on the same side as v and continue, until no vertices remain on
that side. Thus Xi, Yi may be defined for i much larger than |Cv|.

We use C1(v), C2(v) to denote the vertices in Cv that are on the same side, opposite side resp. of the
bipartition as v.

We begin with part (b). Suppose WLOG that v is on the side of the bipartition containing n1 vertices.
Note that Yi is distributed as BIN(n′2, p) where n′2 is the number of vertices on the opposite side of v that
have not yet been discovered. So if we choose Y +

i with distribution BIN(n2, p) then Y +
i dominates Yi

from above; i.e. we can couple the two so that Yi ≤ Y +
i always. Having chosen Y +

i , we choose X+
i with

distribution BIN(n1Y
+
i , p); thus X+

i dominates Xi from above.

Note, as in [41, 42] that if |C1(v)| ≥ ` then we must have
∑`
i=1Xi ≥ ` − 1. Choose some constant

ε = ε(a1, a2, c) > 0 such that (1 + ε)2a1a2c
2 < 1. Regrouping the binomial trials in a convenient manner and
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applying the Chernoff Bound, we see:

Pr [|C1(v)| ≥ `] ≤ Pr

[∑̀
i=1

X+
i ≥ `− 1

]
≤ Pr [BIN(`n2, p) > (1 + ε)`a2c] + Pr [BIN(((1 + ε)`a2c)× n1, p) ≥ `− 1]

(the first term bounds
∑̀
i=1

Y +
i )

≤ Pr [BIN(`n2, p) > (1 + ε)`a2c] + Pr
[
BIN(((1 + ε)`a2c)× n1, p) ≥ (1 + ε)2`a1a2c

2 − 1
]

≤ e−q` for a constant q = q(ε, a1, a2, c) = q(a1, a2, c)

≤ n−5 for ` > 1
2Q log n where Q = Q(a1, a2, c) > 10/q.

Multiplying by n1 proves that w.h.p. none of the n1 vertices has C1(v) ≥ 1
2Q log n. The same calculation

shows that w.h.p. none of the n2 vertices has C1(v) ≥ 1
2Q log n. So w.h.p. no component has more than

1
2Q log n vertices on either side; this proves (b).

For part (a), consider any `− < `+. We will first prove that every component has size at most `− or at

least `+. As noted in [41, 42], if
∑`
i=1Xi ≥ `− 1 + 1

2 (a1a2c
2 − 1)` for all `− ≤ ` ≤ `+, then the branching

process does not die out between steps `−, ..., `+ and so either |C1(v)| ≤ `− or |C1(v)| ≥ `+. We will choose
`−, `+ = o(n). We will halt our process if the number of discovered vertices ever reaches `+; this will indicate
that either |Cv| ≥ `+ or we are no longer exploring Cv. We bound Yi from below by Y −i with distribution
BIN(n2 − `+, p) and we bound Xi from below by X−i with distribution BIN((n1 − `+)Y −i , p). Thus, the
probability that `− < |C1(v)| < `+ is at most:

`+∑
`=`−

Pr

[∑̀
i=1

X−i ≤ `− 1 +
1

2
(a1a2c

2 − 1)`

]
.

The same arguments as above, this time choosing ε such that (1− ε)2a1a2c
2 > 1 + 1

2 (a1a2c
2− 1), shows that

this holds with probabilty `+e
−Θ(`−) = o(n−5) when `− = Q log n for sufficiently large Q = Q(a1, a2, c). To

be specific, we choose `+ = n2/3. Multiplying by the n1 + n2 choices for v proves that w.h.p. there are no
components of size between `− and `+.

The proof of Lemma 8 of [42] shows that w.h.p. there are no two components of size at least `+, and the
failure probability is easily computed to be much less than n−3. So there is at most one large component.

Theorem 9 of [42] shows that w.h.p. the size of that largest component is as stated in part (a i). He sets
Y to be the number of vertices on components of size less than `− and applies the second moment method
to show that the variable Y is concentrated. We can instead apply Talagrand’s Inequality to obtain a failure
probability of much less than o(n−2). Specifically, we work with Z = n − Y and note that (i) the choice
of whether to include a particular edge can affect Z by at most 2k− (the extreme case is when that edge
joins two small components) and (ii) for any s ≥ 0, if Z ≥ s then there is a set of at most max(s, `−) edges
which certify that Z ≥ s, namely the edges in large pieces of large components containing a total of at least
s vertices. These are enough to apply the version labelled “Talagrand’s Inequality I” in Chapter 10 of [58].
This establishes that part (a) holds with probability 1 − o(n−2). Finally, we note that the calculation of
Exp(Y ) and argument described here works if we define Y to be the number of vertices on components of
size less than `′ for any `′ ≤ `+ so long as `′ grows with n; in fact, [42] uses a different value of `− than
we do here. Repeating the argument with `′ = log n shows that with probability 1 − o(n−2) we have o(n)
vertices on components of sizes between log n and `+. This will be useful in the final part of this proof.

We prove part (c) by the continuity of α1, α2, and the easily verified fact that they tend to 0 as a1a2c
2 → 1

from above. Suppose a1a2c
2 = 1, and choose any ζ > 0. It is straightforward to verify that we can choose

some δ > 0 so that upon increasing a1 to a1 + δ, α1 + α2 <
1
2ζ. Applying part (a) and the final sentences

from the previous paragraph show that with probability 1− o(n−2) the number of vertices in components of
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size greater than log n of this bigger graph is less than ζn and hence the same is true of Gn1,n2,p. Since this
is true for every ζ > 0, this establishes part (c). �

8.1 The stripping process

We will consider a parallel version of Kempe-Strip from Section 5. At each iteration, we remove all Kempe-
chains of size at most log2 n.

Recall that we analyze the planted model Pn,p (Definition 4.4). The vertex set is partitioned uniformly
at random into k parts A1, ..., Ak, and between each pair 1 ≤ a < b ≤ k we have a copy of G|Aa|,|Ab|,p. Note
that the Kempe-chains are the components of the bipartite subgraphs between the pairs of colour classes.
So, by Lemma 8.1, the first iteration removes all but the giant component from each of these

(
k
2

)
random

bipartite graphs. In fact, we will see that the same is true of each subsequent iteration:

Observation 8.3. This procedure is equivalent to repeatedly removing all small components (i.e. components
of size less than log2 n) from the bipartite random graph induced by each pair of parts Aa, Ab.

Remark: One should think of this as being equivalent to leaving only the giant component of each
bipartite random graph. For some rare initial densities c, we will reach a point where the density of a
remaining bipartite graph is within the giant component threshold, and so it will have many components of
size greater than log2 n; in that case, all such components remain.

Note: In this and other procedures, we often use the superscript i to denote the value of a parameter at
the beginning of iteration i, rather than the ith power of that parameter. For example:

At the beginning of iteration i, V ia will be the vertices remaining from part Aa, for each 1 ≤ a ≤ k.

STRIP
Initialize V 1

1 = A1, ..., V
1
k = Ak.

For i ≥ 1

for all a 6= b, Ki
a,b is the vertex-set of the union of all components of size at least log2 n

in the bipartite subgraph induced by (V ia , V
i
b )

(so if no component is larger than log2 n then Ki
a,b = ∅).

for every 1 ≤ a ≤ k,
set V i+1

a = ∩b 6=a(Ki
a,b ∩ Va).

if V i+1
a = V ia for all 1 ≤ a ≤ k then HALT and return V i1 ∪ ... ∪ V ik .

if V i+1
1 = ... = V i+1

k = ∅ then HALT and return ∅.

Note that when carrying out an iteration of STRIP, we can expose the vertex set of Ki
a,b without actually

exposing the edges within Ki
a,b. Thus, at iteration i+1, any pair of subsets of V i+1

a , V i+1
b with the appropriate

size are equally likely to form the vertex sets of Ki+1
a,b . Note also that for any (a, b) 6= (a′, b′), the edges

of the bipartite graph induced by (Aa, Ab) are independent of the edges of the bipartite graph induced by
(Aa′ , Ab′). This yields:

Observation 8.4. Given V ia , V
i
b and xa = |Ki

a,b ∩ V ia |, xb = |Ki
a,b ∩ V ib |, the vertices of Ki

a,b ∩ V ia and

Ki
a,b ∩ V ib can be treated as uniformly random subsets of V ia , V

i
b of sizes xa, xb, respectively. Furthermore, if

(a, b) 6= (a′, b′) then the random subsets selected for Ka,b are independent of the subsets chosen for Ka′,b′ .

Proof This is very similar to the proof of Lemma 6.1. Run STRIP on any (G, σ) and let H be the
graph induced by (V ia , V

i
b ). Consider any permutation φ on V (H) and replace every edge (u, v) ∈ (V ia , V

i
b )

with (φ(u), φ(v)); let H ′ be the resulting graph on V (H), and G′ be the resulting graph on V (G). If we
apply STRIP to (G′, σ) then (i) the vertex sets V ia , V

i
b will be unchanged (ii) they will induce the subgraph

H ′, and (iii) Ki
a′,b′ will remain unchanged for every (a′, b′) 6= (a, b). Furthermore, G,G′ arise with the same

probability in Pn,p=c/n, since they have the same number of edges. This implies that every H ′ obtained in
this way is just as likely as H, even when conditioning on the subgraphs induced by every other (V ia′ , V

i
b′).
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Noting that a uniformly random φ chooses two uniformly random subsets of V ia , V
i
b of sizes xa, xb, this implies

the lemma. �

We will focus mainly on V i1 , V
i
2 ; by symmetry, the other sets V ia evolve in a similar manner. It will be

useful to focus, in particular, on Ki
1,2; i.e. the giant component of the bipartite subgraph induced by the

vertices of V i1 , V
i
2 . It will be convenient to consider sets U i,W i, where we will have V i1 ⊆ U i ⊆ A1 and

V i2 ⊆ W i ⊆ A2. Initially, U i = A1, W i = A2; throughout the procedure, vertices are removed from U i and
W i at the same rate that vertices which lie in small components of any bipartite subgraphs except for the
one on (A1, A2) are removed from V i1 and V i2 . The sets U i,W i will be very close to uniformly chosen from
A1, A2.

To form U i+1, we select some (but not all) of the vertices to be removed from V i1 as follows:

(1) Expose the number that should be removed because they are in small components of the subgraphs
induced by (V i1 , V

i
b ), 3 ≤ b ≤ k.

(2) Select that many vertices uniformly at random from V i1 and delete them; Observation 8.4 permits a
coupling by which this is legal (see below). To carry out (2), we actually remove vertices uniformly from U i

until the appropriate number of vertices have been removed from V i1 , and this leaves U i+1.
Thus, the sequence of sets U i decreases at the same rate that (1) contributes to the rate at which the

sequence V i1 decreases. Of course, V i1 actually decreases more quickly since we also remove from it vertices
that are in small components of the subgraph induced by (V1, V2).

We form W i+1 in the analogous manner, removing vertices from V i2 .
More formally, U i,W i are defined by the following modified procedure, which captures STRIP from the

viewpoint of the bipartite subgraph on (A1, A2).
Throughout this procedure, Ki

a,b is defined as in STRIP; i.e. it is the vertex set of the union of all

components in (V ia , V
i
b ) of size at least log2 n. Typically, Ki

a,b will be either the empty set or the giant
component.

STRIP1
Initialize V 1

1 = A1, ..., V
1
k = Ak.

Initialize U1 = A1,W
1 = A2.

For i ≥ 1
Expose the vertex-set of Ki

1,2.
For every 3 ≤ b ≤ k,

Expose `ib = |V i1 \Ki
1,b|, the number of vertices removed from V i1

because they are not in Ki
1,b.

Pick a sequence of vertices chosen uniformly from U i without replacement
until `ib of them are chosen from V i1 .

This sequence is Lib.
Do not remove these vertices from U i yet; they are still eligible
to be chosen for another value of b.

Set Ki
1,b ∩ V i1 = V i1 \Lib.

Expose qib = |V i2 \Ki
2,b|, the number of vertices removed from V i2

because they are not in Ki
2,b.

Pick a sequence of vertices chosen uniformly from W i without replacement
until qib of them are chosen from V i2 .

This sequence is Qib.
Do not remove these vertices from W i yet; they are still eligible
to be chosen for another value of b.

Set Ki
2,b ∩ V i2 = V i2 \Qib.

Set U i+1 = U i\ ∪3≤b≤k Lib.
Set V i+1

1 = (Ki
1,2 ∩ V i1 )\ ∪3≤b≤k Lib.

Set W i+1 = W i\ ∪3≤b≤k Qib.
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Set V i+1
2 = (Ki

1,2 ∩ V i2 )\ ∪3≤b≤k Qib.
For every 3 ≤ a < b ≤ k,

expose the vertex set of Ki
a,b.

Update V i+1
3 , ..., V i+1

k as in STRIP
if V i+1

a = V ia for all 1 ≤ a ≤ k then HALT and return V i1 , ..., V
i
k .

if V i+1
1 = ... = V i+1

k = ∅ then HALT and return ∅, ..., ∅.

It is important to note that, in each iteration, we only expose the vertex sets of each Ki
a,b, not the edges.

Note further that, for each i, b, the `ib vertices of Lib that are in V i1 are uniform members of V i1 . Therefore,
Ki

1,b ∩ V i1 is a uniformly random subset of V i1 of size `ib. Similarly, Ki
2,b ∩ V i2 is a uniformly random subset

of V i2 of size qib. So by Observation 8.4 and the fact that the graphs Ka,b are chosen independently, we can
couple STRIP1 with STRIP so that they produce the same sets V i1 , ..., V

i
k . More precisely:

Run STRIP (as the master) and STRIP1 at the same time, both on the same (G, σ) drawn from Pn,p.
When exposing the vertex set of some Ki

a,b, STRIP1 makes the same choice as STRIP. When choosing Lib
for STRIP1, we choose each vertex from U i in the following manner: We first determine whether it is in V i1
(choosing it to be in V i1 with probability equal to the number of remaining unchosen vertices in V i1 divided
by the number of remaining unchosen vertices in U i). If it is not in V i1 then we choose a uniform vertex from
the unchosen vertices in U i\V i1 . If it is in V i1 , then we take the next vertex in a uniform permutation of what
STRIP chose to be V i1 ∩Ki

1,b. By Observation 8.4, this choice has the same distribution as a uniform member

of V i1 and hence this is a valid choice for STRIP1. Choose the vertices of Qib in the analogous manner. Note
that, under this coupling, STRIP and STRIP1 produce the same sets Ki

a,b for every a, b, i and hence produce

the same sets V ia , for every a, i.

Observation 8.5. For each i, the set of components of size greater than log2 n in (U i,W i) is identical to
the set of components of size greater than log2 n in (V i1 , V

i
2 ).

Proof This follows by noting that for each iteration i, and every b ≥ 3, all vertices in the small
components of (V i1 , V

i
b ) are removed from U i. So all vertices in U i\V i1 must have been removed from V i1

because they were in small components of (V i1 , V
i
2 ) and hence are in small components of the subgraph

induced by (U i,W i). More carefully:
Consider any v ∈ U i\V i1 . Let j ≤ i be the first index such that v /∈ V j1 ; so v ∈ V j−1\V j . We know that

v cannot be in any Lj−1
b as otherwise v would be in U j−1\U j which would contradict v ∈ U i. Therefore,

v ∈ V j−1
1 \Kj−1

1,2 ; i.e. v is in a component of size at most log2 n in (V j−1
1 , V j−1

2 ). So v has no neighbours in

Kj−1
1,2 , and hence has no neighbours in V i2 ⊆ Kj−1

1,2 . This establishes that there are no edges from U i\V i1 to

V i2 . The same argument holds for every value of i, and in particular there are no edges from U j−1\V j−1
1 to

V j−1
2 . Similarly, there are no edges from W j−1\V j−1

2 to V j−1
1 . Therefore, the component of size at most

log2 n in (V j−1
1 , V j−1

2 ) containing v is also a component of (U j−1,W j−1). Since (U i,W i) ⊆ (U j−1,W j−1),
the component containing v in (U i,W i) has size at most log2 n. So every vertex in U i\V i1 and W i\V i2 lies
in a component of (U i,W i) of size at most log2 n. And since there are no edges from U i\V i1 to V i2 or from
W i\V i2 to V i1 , every component of (V i1 , V

i
2 ) is also a component of (U i,W i). This proves the observation. �

This implies that Ki
1,2 is the set of components of size at least log2 n in (U i,W i). This is very convenient,

as (U i,W i) is much easier to analyze than (V i1 , V
i
2 ). The reason is that U i,W i are uniform sets of |U i|, |W i|

vertices from A1, A2. At first glance, one might hope that this would mean (U i,W i) is distributed like
Gn1,n2,p=c/n where n1 = |U i|, n2 = |W i|. Unfortunately, this is not the case. One issue is that |U i|, |W i|
are determined in part by the number of vertices in small components of (V j1 , V

j
2 ), j < i and so there is

dependency between the component sizes of (U i, V i) and the values of |U i|, |W i|. Nevertheless, concentration
of |U i|, |W i| will allow us to use Lemma 8.1 to bound |Ki

1,2|.
We define recursively:

31



ρ1 = ν1 =
1

k
.

For i ≥ 1, βi is the largest solution to:
βi = ρi(1− e−βic). (19)

For i ≥ 2:

νi+1 = νi

(
βi
νi

)k−1

, for i ≥ 2; (20)

ρi+1 = ρi

(
βi
νi

)k−2

, for i ≥ 2. (21)

Recall from Section 4 that

ck = min
y>0

ky

(1− e−y)k−1
.

If c > ck then let β = β(c) be the greatest solution to β = 1
k (1 − e−βc)k−1 (setting y = βc shows that a

positive solution exists iff c > ck). Set ρ = ρ(c) = 1
k

(
1− e−βc

)k−2
. Recalling the definition of λk(c) from

Section 4, note that:
β(c) = λk(c). (22)

Lemma 8.6. (a) If c < ck then there exists I such that βI = νI = ρI = 0.

(b) If c > ck then limi→∞ βi = limi→∞ νi = β, limi→∞ ρi = ρ > 1
c .

Proof Applying an easy induction to (20) and (21) yields νi = 1
k

(∏i−1
j=1

βj
νj

)k−1

and ρi = 1
k

(∏i−1
j=1

βj
νj

)k−2

.

Therefore (kνi)
k−2 = (kρi)

k−1; νk−2
i = kρk−1

i . Substituting that into (21) yields:

ρi+1 = ρi
βk−2
i

kρk−1
i

=
1

k

(
βi
ρi

)k−2

=
1

k

(
1− e−βic

)k−2
. (23)

Let β′, ν′, ρ′ be a set of fixed points of the recursive equations. (23) implies ρ′ = 1
k

(
1− e−β′c

)k−2

and

(20) implies ν′ = β′, so (19) implies

β′ = ρ′(1− e−β
′c) =

1

k
(1− e−β

′c)k−2(1− e−β
′c) =

1

k

(
1− e−β

′c
)k−1

. (24)

As described above, (24) has a positive solution iff c ≥ ck. So for c < ck, there is no positive fixed point
β′ and it follows that βi, ρi, νi tend to zero. Therefore, there is some i such that ρi <

1
k . Since c < ck =

miny>0 ky/(1 − e−y)k−1 < miny>0 y/[ρi(1 − e−y)k−1], there is no positive y satisfying y
c = ρi(1 − e−y)k−1.

Setting y = cβi, there is no βi > 0 satisfying (19) and so βi = 0. Part (a) follows with I = i+ 1.
For c > ck, it is easy to check that ρ1 = 1

k > ρ. To see that ρi > ρ for all i, let b(x) be the largest solution

to b = x(1− e−bc) and set f(x) = 1
k (1− e−b(x)c)k−2. So βi = b(ρi) and (23) yields that ρi+1 = f(ρi). Clearly

b(x) increases with x and thus f(x) increases with x. This implies that ρi is decreasing, and if ρi > ρ then
ρi+1 = f(ρi) > f(ρ) = ρ; so limi→∞ ρi exists and is at least ρ. Since β is the largest solution to (24), it
follows that for every fixed point (β′, ν′, ρ′), we must have β′ ≤ β, ν′ ≤ ν, ρ′ ≤ ρ. Therefore limi→∞ ρi = ρ.
This implies the other two limits.

Setting y = cβ yields ρ = β/(1− e−βc) = 1
cy/(1− e

−y) > 1
c since e−y > 1− y for all y > 0. �

Lemma 8.7. For any constant I, w.h.p. we have for each 1 ≤ i ≤ I, 1 ≤ a < b ≤ k:

(a) |Ki
a,b ∩ V ia |, |Ki

a,b ∩ V ib | = βin+ o(n);
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(b) |U i|, |W i| = ρin+ o(n);

(c) |V ia | = νin+ o(n);

(d) every vertex in V ia\V i+1
a lies in a component of size less than log2 n in the graph induced by (V ia , V

i
b )

for at least one b 6= a.

Furthermore:

(e) If c < ck then there exists a constant I = I(c) such that w.h.p. V Ia = ∅ for all 1 ≤ a ≤ k; i.e. no
vertices remain after I iterations of STRIP.

Remark: In our proof, we analyze STRIP1. By our coupling, the same bounds hold for the sets produced
by STRIP.

Proof We will bound the probability that (a) holds for a = 1, b = 2, (c) holds for a ∈ {1, 2}, and that
(d) holds for a = 1. By symmetry the same bounds hold for every a, b. We proceed by induction.

We define the events A(i), B(i), C(i), D(i) to correspond to parts (a,b,c,d) of the lemma. Specifically, for
some hi(n), h′i(n) = o(n) that will be implicit below, our events are:

• A(i): |Ki
1,2 ∩ V i1 |, |Ki

1,2 ∩ V i2 | ∈ βin± h′i(n);

• B(i): |U i|, |W i| ∈ ρin± hi(n);

• C(i): |V i1 |, |V i2 | ∈ νin± hi(n);

• D(i): every vertex in V i1 \V i+1
1 lies in a component of size less than log2 n in the graph induced by

(V i1 , V
i
b ) for at least one 2 ≤ b ≤ k.

We will prove that Pr(A(i) ∧B(i) ∧ C(i) ∧D(i)) = o(1).
Base Case: It is easy to establish that B(1), C(1) both hold w.h.p. Indeed, U1 = V 1

1 = A1,W
1 = V 1

2 =
A2, ρ1 = ν1 = 1

k and A1, ..., Ak is a uniformly random partition of {1, ..., n}. The Chernoff Bound (18) yields

that Pr(||A1| − n/k| > h1(n)) ≤ e−Θ(h1(n)2/n). So we can take any h1(n) >> log n.
Inductive step: By Observation 8.5, we can analyzeKi

1,2 by analyzing the giant component of the subgraph

induced by (U i,W i).
Choose uniformly random permutations A1 of A1 and A2 of A2. Let U(x),W (y) be the sets consisting

of the last x vertices in A1 and the last y vertices in A2. U(x),W (y) are uniform subsets of sizes x, y chosen
independently of the edges in the graph, and so the subgraph induced by (U(x),W (y)) is distributed exactly
like Gx,y,p=c/n. Since the failure probability in Lemma 8.1 is o(n−2) that lemma implies that w.h.p. for
every ρin− hi(n) ≤ x, y ≤ ρin+ hi(n):

• if ρi >
1
c then (U(x),W (y)) has one component with βin+ o(n) vertices in each part, and every other

component has size less than Q log n < log2 n for any Q > Q(βi, βi, c); we let h′i(n) = o(n) be an upper
bound on the o(n) term over all x, y, which is determined by hi(n).

• if ρi <
1
c then every component of (U(x),W (y)) has size less than Q log n < log2 n for any Q >

Q(βi, βi, c)

• if ρi <
1
c then only o(n) vertices lie on components of (U(x),W (y)) of size greater than log n .

Now, we use the permutations A1,A2 to run STRIP1 as follows. Each time we select a uniform vertex
v ∈ U i to be placed in Lib we first choose whether v has already been selected for some Lib′ with b′ < b. (Of
course we make this choice with the appropriate probability; i.e. the number of vertices in ∪b′<bLib′ not yet
selected for Lib divided by the number of vertices in U i not yet selected for Lib.) If the choice is YES then we
expose v; if it is NO then we choose v to be the next vertex in A1. We choose the sets Qib in the same manner,
this time taking the next vertex in A2. Thus, (U i,W i) is simply (U(x), U(y)) where x = |U i|, y = |W i|. So
the bounds above say that if B(i) holds then A(i), D(i) hold:
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Specifically, if ρi >
1
c then Ki

1,2 is the giant component of (U i,W i) and contains βin + o(n) vertices on

each side. If ρi <
1
c then Ki

1,2 = ∅ and βi = 0. If ρi = 1
c then all but o(n) vertices are in components of size

less than log n, implying A(i), D(i).
Next, we turn our attention to B(i+ 1), C(i+ 1). We define A+(i) to be the event that for all 2 ≤ b ≤ k,

both parts of each Ki
1,b have size in βin± h′i(n). By symmetry and since k = O(1), A+(i) holds w.h.p.

If A+(i) holds then for each 3 ≤ b ≤ k, `ib ∈ |V i1 | − βin ± h′i(n). It follows that for any u ∈ U i,

Pr(u /∈ Lib) = βin
|V i1 |

+ o(1) where the o(1) term depends on h′i(n). Therefore:

Pr(u /∈ ∪b≥3L
i
b) =

(
βin

|V i1 |

)k−2

+ o(1) =

(
βi
νi

)k−2

+ o(1).

It follows that if A+(i) and C(i) hold then

Exp(|U i+1|) ∈ (ρin± hi(n))×

((
βi
νi

)k−2

+ o(1)

)
= ρi+1n+ o(n),

Exp(|V i1 |) = |Ki
1,2 ∩ V i1 | ×

((
βi
νi

)k−2

+ o(1)

)
= νin

((
βi
νi

)k−2

+ o(1)

)
= νi+1n+ o(n),

The o(n) terms depend on hi(n), h′i(n). Because these sets are determined by the choices of Θ(n) vertices
from Ui,Wi, a straightforward concentration argument, such as one using Azuma’s Inequality (see eg. [58]),
shows that

Pr(||U i+1| − ρi+1n| > hi+1(n)),Pr(||V i+1| − νi+1n| > hi+1(n)) = o(1),

for hi+1(n) = o(n) defined in terms of hi(n), h′i(n). The same argument applies to Wi+1, V
i
2 ,K

i
1,2 ∩ V i2 , thus

yielding:
Pr(B(i+ 1) ∧A(i) ∧B(i) ∧ C(i)),Pr(C(i+ 1) ∧A(i) ∧B(i) ∧ C(i)) = o(1).

By induction, Pr(A(i) ∧B(i) ∧ C(i)) = 1− o(1). Therefore,

Pr(B(i+ 1)),Pr(C(i+ 1)) = 1− o(1),

as required. Note that since I = O(1), there are O(1) events and so their union holds w.h.p.
Finally, we prove part (e). If c < ck then Lemma 8.6(a) implies that there is an i with ρi = 0, and

so |U i|, |W i| ≤ hi(n) = o(n) < 1
2cn. This implies that (U i,W i) is contained in (U( 1

2cn),W ( 1
2cn)) and

Lemma 8.1 says that w.h.p. every component of (U( 1
2cn),W ( 1

2cn)) has size less than Q log n < log2 n for
Q = Q(ρi) < Q( 1

2c ,
1
2c , c). Therefore every such component will be removed in the next iteration and so part

(e) holds with I = i+ 1. (In fact, one can show that it holds with I = i unless we had ρi−1 = 1
c .) �

Lemmas 8.6 and 8.7 imply that by running STRIP for a sufficiently large constant number of iterations,
we can ensure that each V Ia has size within an arbitrarily small multiplicative constant of βn. We close this
section by bounding the rate of change in |V ia | after it gets close enough to that limit.

Lemma 8.8. For any r, c > 0 with cr > 1, let b be the largest solution to

b = r(1− e−bc).

If c > ck then there exists ζ = ζ(c) > 0 such that at r = ρ(c) we have:

∂b

∂r
<

(k − 1)β(c)

(k − 2)ρ(c)
− 2ζ.

34



Proof Define f(y) = ky/(1 − e−y)k−1 and recall that ck is the minimum of f(y) and that for
c ≥ ck, y(c) is the largest solution to f(y) = c. Recall also the definitions: β = β(c) is the greatest

solution to β = 1
k (1 − e−βc)k−1; ρ = ρ(c) = 1

k

(
1− e−βc

)k−2
. Note that f(βc) = c and so y(c) = βc. It

is straightforward to check that f is increasing for y > y(ck) and so for c > ck we have y(c) > y(ck) and
f ′(y(c)) > 0. Differentiating f and simplifying f ′(y) > 0 yields that for y = y(c) = βc we have:

1− e−y > (k − 1)ye−y. (25)

Noting that 1− e−βc = β/ρ, this yields β/ρ > (k − 1)βce−βc and so:

1

k − 1
> ρce−βc. (26)

Rearranging b = r(1− e−bc), we obtain r = b/(1− e−bc) and so

∂b

∂r
= 1/

∂r

∂b
=

(1− e−bc)2

(1− e−bc)− bce−bc
.

When r = ρ we have b = β. Substituting (1− e−βc) = β/ρ and applying (26) yields that at r = ρ:

∂b

∂r
=

(β/ρ)2

(β/ρ)− βce−βc
=

β/ρ

1− ρce−βc
<

β/ρ

1− 1
k−1

=
(k − 1)β

(k − 2)ρ
.

Since ∂b
∂r at r = ρ(c) is a function of c, this yields the lemma. �

Corollary 8.9. For any c > ck there exists ζ = ζ(c), ξ = ξ(c) > 0 such that for all ρ(c)−ξ ≤ r1, r2 ≤ ρ(c)+ξ:

(a) there is a unique positive solution (b1, b2) to

b1 = r1(1− e−b2c)
b2 = r2(1− e−b1c)

(b)
∂(b1 + b2)

∂r1
<

(k − 1)β(c)

(k − 2)ρ(c)
− ζ.

Proof Part (a) follows easily from a continuity argument (and see Lemma 8.1(a)). For part (b):
Recall the equation relating b, r in Lemma 8.8 and note that, at r1 = r2 = r, changing r by δ is equivalent
to changing both r1 and r2 by δ. It follows that at r1 = r2 = ρ(c), we have

∂b1
∂r1

+
∂b1
∂r2

=
∂b

∂r
.

By symmetry, ∂b1
∂r2

= ∂b2
∂r1

at r1 = r2. Applying Lemma 8.8, at r1 = r2 = ρ(c) we have:

∂b1
∂r1

+
∂b2
∂r1

=
∂b

∂r
<

(k − 1)β

(k − 2)ρ
− 2ζ.

Part (b) now follows from part(a) and the continuity of ∂(b1+b2)
∂r1

. �

This leads to the following lemma, which measures the change in Ki
a,b as we delete more vertices from

V ia , V
i
b .
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Lemma 8.10. For any c > ck there exists ζ = ζ(c), ξ = ξ(c) > 0, I+ = I+(c), Q = Q(ζ, c) > 0 such that for
any I ≥ I+, w.h.p. the subgraph remaining after I iterations is such that for every 1 ≤ a < b ≤ k:

Choose a sequence of ξn uniformly random vertices from V Ia and a sequence of ξn uniformly random
vertices from V Ib . W.h.p. for every ta ≤ ξn and tb ≤ ξn, in the subgraph remaining after removing the first
ta vertices of the first sequence and the first tb vertices of the second sequence from (V Ia , V

I
b ):

(a) the largest component has size at least |V Ia ∪ V Ib | − (ta + tb)(1 + 1
k−2 − ζ) + o(n); and

(b) the second largest component has size less than Q log n.

Proof We let ρ = ρ(c), β = β(c). We will take ζ, ξ from Corollary 8.9, but rescale them. Specifically,
let ζ ′, ξ′ be the values from Corollary 8.9 and set ζ = 1

2ζ
′, ξ = β

4ρξ
′.

We will focus on a = 1, b = 2. The result extends to every pair a, b by symmetry and since k = O(1).
Fix any t1, t2. Removing the first t1, t2 vertices from the sequences is equivalent to removing t1, t2 uniform
vertices from V I1 , V

I
2 .

The key to our analysis is to modify the random vertex-removal. Rather than removing t1, t2 vertices from

V I1 , V
I
2 , we will remove s1 = t1

|UI |
|V I1 |

, s2 = t2
|W I |
|V I2 |

uniformly random vertices from U I ,W I . We will argue that

it suffices to analyze the modified experiment. Let T1, T2 denote the number of vertices that are removed from
V1, V2 resp. in the modified experiment; note that the original experiment is simply the modfied experiment
conditional on the event that T1 = t1 ∧ T2 = t2. Let E∗ be the event that the largest component in the
subgraph induced by the remaining vertices in (V Ia , V

I
b ) has size at least |V Ia ∪V Ib |−(ta+tb)(1+ 1

k−2−ζ) and
that all others have size less than Q log n. Noting that Exp(Ti) = ti and examining the binomial distribution,
it follows easily that Pr(T1 ≥ t1 ∧ T2 ≥ t2) ≥ ε for some constant ε > 0. Therefore, if Pr(E∗) = 1 − o(1)
then Pr(E∗|T1 ≥ t1 ∧ T2 ≥ t2) = 1− o(1). The probability of E∗ conditioned on the values of T1, T2 clearly
decreases as T1, T2 increase, and so Pr(E∗|T1 = t1 ∧ T2 = t2) ≥ Pr(E∗|T1 ≥ t1 ∧ T2 ≥ t2). Therefore, if E∗

occurs w.h.p. in the modified experiment then it occurs w.h.p. in the original experiment.
By Lemma 8.7, w.h.p. |U I |, |W I | = ρIn + o(n), |V I1 |, |V I2 | = νIn + o(n). So we are removing s1 =

t1(ρIνI +o(1)) < 1
3ξ
′n (since t1 < ξn) uniform vertices from U I and s2 = t2(ρIνI +o(1)) < 1

3ξ
′n uniform vertices

from W I .
Recall that U I ,W I are each formed by the removal of a sequence of uniformly chosen vertices from V1, V2

resp. In the proof of Lemma 8.7 we defined U(x),W (y) to be uniform subsets of V1, V2 of sizes x, y, resp. and
so (U I ,W I) = (U(x),W (y)) for some x, y = ρIn+ o(n). Furthermore, deleting s1, s2 vertices from (U I ,W I)
will leave (U(x′),W (y′)) for some x′ = ρIn− s1 + o(n), y′ = ρIn− s2 + o(n).

We choose I+ sufficiently large that for all I ≥ I+ we have ρI − ρ < 1
3ξ
′ and ρI

νI
< ρ

ν (1 + ζ ′/10) (by
Lemma 8.6).

Applying ξ = β
4ρξ
′, this implies that the intervals [|U I | − s1, |U I |], [|W I | − s2, |W I |] lie entirely within

[(ρ− ξ′)n, (ρ+ ξ′)n]. Therefore, Corollary 8.9 implies that the expression from Lemma 8.1 for the size of the
giant component in (U(x′),W (y′)) is at least

2βIn− (s1 + s2)

(
(k − 1)β

(k − 2)ρ
− ζ ′

)
> 2βIn− (t1 + t2)

(
ρI
νI

+ o(1)

)(
(k − 1)β

(k − 2)ρ
− ζ ′

)
> 2βIn− (t1 + t2)

(
(k − 1)

(k − 2)
(1 +

ζ ′

10
)− ζ ′

)
n

since
ρI
νI

<
ρ

β

(
1 +

ζ ′

10

)
and

ρI
νI

> 1

> 2βIn− (t1 + t2)

(
1 +

1

k − 2
− ζ
)
, since ζ =

1

2
ζ ′.

So Lemma 8.1 implies that the probability of the remaining component being too small is at most 1−o(n−2).
It is implicit in Corollary 8.9 that a1a2c

2 is bounded away from 1 for all a1, a2 in the interval [(ρ− ξ′)n, (ρ+
ξ′)n]; using this, it is easy to see that there is a Q = Q(ζ, c) which is greater than Q(a1, a2, c) from Lemma 8.1
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for all a1, a2 in that interval and so the probability that the second largest component is greater than Q log n
is o(n−2).

Multiplying by the fewer than n2 choices for x′, y′ shows that w.h.p. the largest component of (U(x′),W (y′))
is as large as required and the other components are as small as required for every x′ = ρIn− s1 + o(n), y′ =
ρIn−s2 +o(n) with s1, s2 <

1
3ξ
′n. This is in the modified experiment described above. It follows that w.h.p.

in the original experiment the largest component is as large as required and the other components are as
small as required for every t1 ≤ ξn and t2 ≤ ξn. �

8.2 Termination

In this subsection, we prove Lemma 5.2.
Lemma 5.2 For k ≥ 3:

(a) If c < ck then w.h.p. the Kempe-core of Pn,p=c/n is empty.

(b) If c > ck then w.h.p. the Kempe-core of Pn,p=c/n has size kλk(c) + o(n).

We start by noting how the case c < ck follows immediately from the previous subsection:
Proof of Lemma 5.2(a) If c < ck then by Lemma 8.7(e), there exists a constant I = I(c) such that V Ia = ∅
for all 1 ≤ a ≤ k; thus the Kempe-core is empty. �

The remainder of this subsection is devoted to proving Lemma 5.2(b). So we assume c > ck throughout.
We adapt the proof of Lemma 5.1 in [54], showing that with sufficiently high probability, STRIP will

terminate and return sets V1, ..., Vk where each Va has size βn + o(n). These are the sets K1, ...,Kk of the
Kempe core.

Given c > ck, we let β = β(c) and ρ = ρ(c), as defined above Lemma 8.6.

Intuition: Run STRIP until the start of the Ith iteration, for a sufficiently large constant I. We will
show that it halts shortly thereafter. For each i ≥ I, consider a vertex u in some V ia which is to be removed
in iteration i. To be specific, we choose u ∈ V i1 \Ki

1,2; i.e. u is a vertex that is in a small component of the

subgraph induced by (V i1 , V
i
2 ). We will argue that the removal of u produces, in expectation, fewer than

1 vertices to be removed in iteration i + 1. Thus the number of vertices removed in each iteration has a
negative drift and so, with high probability, will quickly drift to zero, at which point STRIP halts.

Removing u causes w to be removed in the next iteration iff it causes w to leave the giant component of
some (V1, Vb); i.e. u is a cutvertex in the giant component separating w from the bulk of the giant component.
Note that this cannot occur for b = 2 as u is not in the giant component of (V1, V2). For each bipartite graph
induced by (V1, Vb), b > 2, u can be treated as a uniformly random member of V1 by Observation 8.4. When
we delete a uniformly random vertex u from V i1 , the same reasoning used to prove Lemma 8.10 implies that
we expect the size of the giant component on (V1, Vb) to decrease by at most 1 + 1

k−2 − ζ. We are interested
in the number of vertices other than u which leave the giant component, as these are the vertices that will
be deleted from (V1, Vb) during the next iteration of STRIP. Now for I sufficiently large, the probability that
our uniform vertex u is in that giant component is very close to 1; specifically, it is greater than 1 − 1

2ζ.
Thus, since we expect at most 1 + 1

k−2 − ζ vertices to leave the giant component, the expected number of

those vertices that are not u is at most 1 + 1
k−2 − ζ − (1− 1

2ζ) = 1
k−2 −

1
2ζ. In other words, the removal of

u results in an expection of at most 1
k−2 −

1
2ζ vertices to be deleted in the next iteration of STRIP because

they move into small components of (V1, Vb). There are k − 2 choices for b > 2 and so the removal of u
results in an expectation of at most 1 − k−2

2 ζ new vertices to be deleted in the next iteration. Since this
expectation is bounded by a constant less than one, we expect STRIP to halt very soon (as argued in the
previous paragraph).

There are a number of ways to formalize this intuition into a proof. The following is, at heart, the same
approach used in [54], but is phrased somewhat differently.

Lemma 8.11. For any δ > 0 there exists I sufficiently large that: w.h.p. STRIP terminates before δn
additional vertices are removed from ∪ka=1V

I
a .
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This will prove the remainder of Lemma 5.2 as follows:
Proof of Lemma 5.2(b): We choose any δ > 0, and I large enough for Lemma 8.11 to hold and (applying
Lemma 8.6(b)) to satisfy

νI − β <
1

2
δ. (27)

By Lemma 8.7(c), at the beginning of iteration I, w.h.p. we have for all a: |V Ia | = νIn + o(n) which is
between βn and (β+ δ)n by (27). By Lemma 8.11, w.h.p. STRIP terminates before removing more than δn
additional vertices. So w.h.p. STRIP halts and produces a Kempe core where each part contains between
(β − δ)n and (β + δ)n vertices. Since this holds for every sufficiently small constant δ > 0, there exists
h(n) = o(n) such that w.h.p. STRIP produces a Kempe core where each of the k parts contains βn± h(n)
vertices. This proves the lemma, after recalling from (22) that β = λk(c). �

Proof of Lemma 8.11: We can assume δ is small enough to satisfy

δ <
ξβζ

20k
, (28)

where ζ, ξ = ζ(c), ξ(c) are from Lemma 8.10. We take I to be large enough for Lemma 8.10 to hold.
Suppose that STRIP continues to an iteration I∗ ≥ I such that at least δn vertices have been removed

during iterations I, ..., I∗; i.e.
k∑
a=1

|V Ia \V I
∗+1

a | ≥ δn. (29)

We can assume that I∗ is the first such iteration, and so

k∑
a=1

|V Ia \V I
∗

a | < δn. (30)

Note: I∗ may grow with n.
For each pair 1 ≤ a, b ≤ k, a 6= b we let `a,b denote the total number of vertices removed from Va during

iterations I, ..., I∗ because they were in small components of the graph on (Va, Vb). More formally,

`a,b =

I∗∑
i=I

|V ia\Ki
a,b|.

Note that we allow both a < b and a > b, so we use Ki
a,b and Ki

b,a to denote the same subgraph. Every

u ∈ V Ia \V I
∗+1

a is in V ia\Ki
a,b for some I ≤ i ≤ I∗ and at least one b 6= a. So by our choice of I∗, we have:

∑
a 6=b

`a,b ≥
k∑
a=1

|V Ia \V I
∗+1

a | ≥ δn. (31)

We let ra,b denote the total number of vertices that are removed from Va during iterations I, ..., I∗ because
they were in a small component of the graph on (Va, Vb′) for some b′ 6= b. We let r−a,b denote those vertices
that were removed duing iterations I, ..., I∗ − 1. More formally,

ra,b =

I∗∑
i=I

| ∪b′ 6=b V ia\Ki
a,b′ | ≤

∑
b′ /∈{a,b}

`a,b′ (32)

r−a,b =

I∗−1∑
i=I

| ∪b′ /∈{a,b} V ia\Ki
a,b′ |
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Recalling the Intuition described above: `a,b (essentially) counts the removable vertices produced by
Ka,b as a result of deleting from Va the ra,b (actually, r−a,b) vertices that arise from other bipartite graphs
Ka,b′ . The intuition was that the expected number of such removable vertices produced per deletion is less
than 1

k−2 . We formalize this in Lemma 8.13 below when we show it is, on average, less than roughly 1
k−2−

1
4ζ.

This will lead to a contradiction.
During iterations I, ..., I∗, V Ia loses `a,b vertices because they are in small components on (Va, Vb) and

during iterations I, ..., I∗−1 it loses r−a,b vertices because they are in small components on the other bipartite
graphs; we will show that the overlap between these two groups of vertices is small, thus obtaining:

Lemma 8.12. W.h.p. for all a, b:

|V Ia \KI∗

a,b| ≥ `a,b + r−a,b −
4δ2

β
n.

Proof Each of the vertices counted by r−a,b is removed from Va during iterations I, ..., I∗ − 1. Each

of the vertices counted by `a,b is either removed from Va during iterations I, ..., I∗ − 1, or is in V I
∗

a \KI∗

a,b

(and so will be removed during iteration I∗). Let X denote the number of vertices that are counted by both
r−a,b and `a,b. Thus:

|V Ia \KI∗

a,b| ≥ `a,b + r−a,b −X.

We will prove the lemma by bounding X. Every vertex u counted by X must appear in both V ia\Ki
a,b and

V ia\Ki
a,b′ for some b′ 6= b and I ≤ i ≤ I∗ − 1. By Observation 8.4, from the perspective of Ki

a,b, the vertex

set of each V ia\Ki
a,b′ is a uniform subset of |V ia\Ki

a,b′ | vertices from V ia . So we can view the random process
as follows:

For each I ≤ i ≤ I∗ − 1, we: (i) Expose the vertices of Ki
a,b. (ii) Expose Yi, the total number of vertices

lying in ∪b′ 6=b(V ia\Ki
a,b′). (iii) Choose Yi uniformly random members of V ia . (iv) Increase X by the number

of those Yi vertices that are not in Ki
a,b.

All vertices counted by Yi are in V ia\V i+1
a . So (30) implies

∑I∗−1
i=I Yi < δn. For each I ≤ i ≤ I∗:

Lemma 8.7 and (30) imply |V ia | > |V Ia | − δn = βIn+ o(n)− δn > 1
2βn as δ < β

2 by (28). Note that (30) also
implies that the total number of vertices in V ia\Ki

a,b is less than δn. It follows that X is dominated by the

binomial variable BIN(δn, δn
1
2βn

). Thus

Exp(X) ≤ δn× δn
1
2βn

,

and the Chernoff Bound (18) implies Pr(X > 2Exp(X)) < e−Θ(n). This yields the lemma. �

We will use Lemma 8.10 to bound the size of KI∗

a,b, the giant component in the subgraph induced by
(Va, Vb) in what remains after I∗ − 1 iterations, in terms of the number of vertices removed. This will yield
the following bound, which we will prove contradicts (32):

Lemma 8.13. W.h.p. for every 1 ≤ a, b ≤ k we have

`a,b + `b,a ≤ (r−a,b + r−b,a)

(
1

k − 2
− 1

2
ζ

)
+

10δ2

β
n.

Proof By Observation 8.4, from the perspective of Ka,b, the vertices removed from Va because they
are in small components of some other Ka,b′ can be viewed as uniformly random vertices from Va. Specifically,
letting ria,b = | ∪b′ 6=b V ia\Ki

a,b′ |, we can view those ria,b vertices as being uniformly chosen from V ia .
We will use Lemma 8.10 to bound the size of the giant component in what remains of Ka,b after removing

those ria,b uniform vertices from every V ia as well as the corresponding rib,a vertices from every V ib , for
i = I, ..., I∗ − 1. We cannot apply Lemma 8.10 directly as it addresses the removal of uniform vertices from
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V Ia rather than V ia . Intuitively, this should make a negligible difference as each V ia differs from V Ia by at most
|V Ia \V I

∗−1
a | < δn vertices. To formalize this intuition, we choose the ria,b vertices from V ia by choosing a

possibly larger number of vertices from V Ia , just as in STRIP1 where we chose vertices from V i1 by choosing
vertices from U i. Specifically:

For each a, b, i, we choose ria,b vertices for deletion from V ia by repeatedly choosing vertices from V Ia
until ria,b of them are from V ia . Let qa,b denote the total number that we choose from V Ia during iterations

I, ..., I∗ − 1. We will show that qa,b is not much larger than r−a,b.
By (30), fewer than δn vertices are deleted during iterations I, ..., I∗ − 1. Therefore, for each I ≤ i ≤ I∗,

we have |V ia | > |V Ia | − δn > |V Ia |(1 − δ/β) (since |V Ia | = βIn + o(n) > βn). Therefore, each time that we
choose a random member of V Ia , the probability that it is in V ia is at least (1 − δ/β). A straightforward
application of, eg. standard tail bounds on binomial variables, implies that w.h.p. for every a, b we have

qa,b <
r−a,b

1− δ/β
+

1

8
δ2n. (33)

In Observation 8.5, we argued that Ki
1,2 is the giant component of the subgraph induced by (U i,W i). For

the same reasons, KI∗

a,b is the giant component of what remains in (Va, Vb) after we remove the r−a,b vertices

of ∪I
∗−1
i=I ∪b′ 6=b V ia\Ki

a,b′ from V Ia and the r−b,a vertices of ∪I
∗−1
i=I ∪b′ 6=b V ia\Ki

a,b′ from V Ib . To see this, note that

each vertex of V Ia \V I
∗

a is removed from V Ia for one of two reasons: (1) it belongs to a small component of the
graph induced by (V ia , V

i
b ) for some I ≤ i ≤ I∗−1; (2) it belongs to a small component of the graph induced

by (V ia , V
i
b′) for some I ≤ i ≤ I∗ − 1 and b′ 6= a, b. Vertices removed for reason (2) are counted by r−a,b.

Vertices removed for reason (1) cannot affect any linear-sized component of the graph induced by (V ja , V
j
b )

for any j > i. The same reasoning applies to vertices removed from V Ib . (This argument is presented more
formally in the proof of Observation 8.5.)

Removing those r−a,b, r
−
b,a vertices from V Ia , V

I
b cannot decrease the size of the largest component in

(V I
∗

a , V I
∗

b ) by more than removing the qa,b vertices from V Ia , V
I
b decreases it, since the former set of vertices

is a subset of the latter. (Indeed, a bit of thought shows that the removal of each set of vertices results in
the same largest component, but this fact is not needed.) By (33), our choice of I∗ and the fact that (28)
implies δ < ζ

2 ,
β
4 , we have

qa,b <
r−a,b

1− δ/β
+

1

8
δ2n <

δn

3/4
+

1

8
δ2n < 2δn < ξn,

and similarly qb,a < ξn. This allows us to apply Lemma 8.10 with ta = qa,b and tb = qb,a to bound the size
of the largest component of what remains after removing qa,b, qb,a uniform vertices from V Ia , V

I
b , which we

have just argued to be no larger than KI∗

a,b. This and (33) yield that w.h.p. for every a, b we have

|KI∗

a,b| ≥ |V Ia ∪ V Ib | − (qa,b + qb,a)(1 +
1

k − 2
− ζ) + o(n)

> |V Ia ∪ V Ib | −

(
r−a,b + r−b,a
1− δ/β

+
1

4
δ2n

)(
1 +

1

k − 2
− ζ
)

+ o(n)

> |V Ia ∪ V Ib | −
r−a,b + r−b,a
1− δ/β

(
1 +

1

k − 2
− ζ
)
− 1

2
δ2n

≥ |V Ia ∪ V Ib | − (r−a,b + r−b,a)(1 +
1

k − 2
)
1− ζ/2
1− δ/β

− 1

2
δ2n

> |V Ia ∪ V Ib | − (r−a,b + r−b,a)(1 +
1

k − 2
− 1

2
ζ)− 1

2
δ2n since

δ

β
<

ζ

20k
by (28).

Lemma 8.12 yields that w.h.p. for every a, b we have

|V Ia ∪ V Ib | − |KI∗

a,b| ≥ `a,b + `b,a + r−a,b + r−b,a −
8δ2

β
n.
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Combining the two preceding inequalities yields that w.h.p.

`a,b + `b,a + r−a,b + r−b,a −
8δ2

β
n ≤ (r−a,b + r−b,a)(1 +

1

k − 2
− 1

2
ζ) +

1

4
δ2n

`a,b + `b,a ≤ (r−a,b + r−b,a)

(
1

k − 2
− 1

2
ζ

)
+

10δ2

β
n.

�

Proof of Lemma 8.11: We can assume that δ is sufficiently small for all bounds proven above. Suppose,
as above, that STRIP continues to some iteration I∗ at which point at least δn vertices have been removed
from ∪ka=1V

I
a . W.h.p. the bound of Lemma 8.13 holds. This leads to a contradiction as follows:∑
a6=b

`a,b =
∑
a<b

(`a,b + `b,a)

≤
(
k

2

)
10δ2

β
n+

(
1

k − 2
− 1

2
ζ

)∑
a<b

(r−a,b + r−b,a) by Lemma 8.13

=

(
k

2

)
10δ2

β
n+

(
1

k − 2
− 1

2
ζ

)∑
a 6=b

ra,b since r−a,b ≤ ra,b

≤
(
k

2

)
10δ2

β
n+

(
1

k − 2
− 1

2
ζ

)∑
a 6=b

∑
b′ /∈{a,b}

`a,b′ by (32)

≤
(
k

2

)
10δ2

β
n+

(
1

k − 2
− 1

2
ζ

)
(k − 2)

∑
a6=b

`a,b

since each `a,b appears k − 2 times in the double summation

=

(
k

2

)
10δ2

β
n+ (1− k − 2

2
ζ)
∑
a6=b

`a,b.

Rearranging yields ∑
a6=b

`a,b ≤
(
k

2

)
20δ2

(k − 2)βζ
n.

Since
∑
a6=b `a,b ≥ δn (from (31)), this is a contradiction for δ < ζβ

20k from (28). �

8.3 Proof of Lemma 6.3

Recall the definitions of λk(c), ξk(c), µk(c), τk(c) from Section 6, and the lemma:
Lemma 6.3 For any c > ck w.h.p. we have that for every a, b, the subgraph induced by Ka,b is connected
and:

(a) |Ki| = λk(c)n+ o(n);

(b) the 2-core of Ka,b has ξk(c)n+ o(n) vertices in Ka and ξk(c)n+ o(n) vertices in Kb;

(c) the 2-core of Ka,b has µk(c)n+ o(n) edges;

(d) the 2-core of Ka,b has τk(c)n+ o(n) degree 2 vertices in Ka and τk(c)n+ o(n) degree 2 vertices in Kb.
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Proof: WLOG we will focus on a = 1, b = 2. Let H denote the 2-core of the giant component of K1,2.
Part (a) is essentially a repetition of Lemma 5.2(b). (Note that the proof of Lemma 5.2(b) showed that

each Ki has size λk(c)n+ o(n).)
For parts (b,c): Consider any constant δ > 0, and choose I large enough that ρI < ρ + δ. The proof of

Lemma 8.7 says that w.h.p. K1,2 ⊆ KI
1,2 is contained in the giant component of (U(ρIn+ hI(n)),W (ρIn+

hI(n))) for some specific hI(n) = o(n). Lemma 8.11 implies that K1,2 contains the giant component of
(U((ρ− δ)n),W ((ρ− δ)n)). So H is sandwiched between the 2-cores of those two giant components.

Standard techniques (eg. [55, 64, 45, 33, 40]) show that the giant component of Gρn,ρn,p=c/n has a 2-
core with ξk(c)n + o(n) vertices on each side and µk(c)n + o(n) edges. This also follows from Exercise
2.4.8 of [35]. We omit the details. Recalling that the subgraph induced by (U(x),W (x)) is distributed
like Gx,x,p=c/n, and applying continuity to those same arguments, we see that the giant components of
(U(ρIn + hI(n)),W (ρIn + hI(n))) and (U((ρ − δ)n),W ((ρ − δ)n)) have 2-cores with ξk(c)n ± δ′n vertices
on each side and µk(c)n± δ′n edges, for some δ′ = δ′(δ) which tends to zero with δ. Since H is sandwiched
between those two giant components, it also has ξk(c)n± δ′n vertices on each side and µk(c)n± δ′n edges.
Since this holds for any δ > 0 and hence any δ′ > 0, parts (b,c) follow.

Part (d) follows immediately from the assertion that the distribution of the degree sequence of the 2-core
of a random bipartite graph is asymptotic to a truncated Poisson distribution, truncated at d ≥ 2. This
is well-known for k-cores of non-bipartite graphs, i.e. of Gn,M . The bipartite case follows from the same
straightforward arguments, but we did not find a proof anywhere; so we sketch it here:

We first expose the set of vertices, V, and number of edges, E, of H and assume that they satisfy (b,c).
The first observation is that every simple bipartite graph with those vertices and that number of edges and
with minimum degree at least 2 is equally likely to be H in Pn,p. To see this, consider two choices H1, H2.
Take any graph G1 that is planted on colouring σ such that, after applying Kempe-strip to (G1, σ), the
2-core of the giant component in K1,2 is H1. Form G2 by replacing H1 in G1 with H2. Note that this does
not change any steps of Kempe-Strip and so if we apply Kempe-Strip to (G2, σ), the 2-core of the giant
component in K1,2 is H2. Since G1, G2 have the same number of edges, (G1, σ), (G2, σ) are equally likely to
be selected in Pn,p. So H1, H2 are equally likely to be H.

Let Ω denote the set of bipartite simple graphs with E edges on vertex set V. Let v1, v2 denote the
number of vertices in V on each side of the bipartition. Let Φ denote the set of possible degree sequences of
graphs in Ω; i.e. the set of all pairs D1,D2 of sequences of integers d1, ..., dv1 ; d′1, ..., d

′
v2 where each sequence

sums to E, and where each di, d
′
i ≥ 2. Consider the set of possible left-side degree seqeunces; i.e. the set

of degree sequences d1, ..., dv1 summing to E with each di ≥ 2. If we weight each such degree sequence by∏
1
di!

then we obtain the truncated multinomial distribution. Corollary 2 of [19] says that the distribution of
the degrees is asymptotic to a truncated Poisson distribution with mean E/v1 = yk(c) = cλk(c) (since E, v1

satisfy parts (b,c)); the same is true of the right-side degree sequences. In particular, noting that

τk(c) = ξk(c)×Pr[Po≥2(yk(c)) = 2],

Corollary 2 of [19] implies that there is some g(n) = o(n) (defined in terms of the implicit o(n) terms in
(b,c)) such that if we define Φ+ to be the number of pairs (D1,D2) where each sequence contains the number
two τk(c)n± g(n) times, then∑

(D1,D2)∈Φ+

∏ 1

di!

∏ 1

d′j !
= (1− o(1))

∑
(D1,D2)∈Φ

∏ 1

di!

∏ 1

d′j !
. (34)

We define s(D1,D2) to be the number of simple graphs on V with degree sequence (D1,D2). To bound
s(D1,D2), consider a random configuration with that degree sequence; i.e. assign di, d

′
j vertex-copies to the

ith vertex on the left and jth vertex on the right and consider a random matching from the left vertex-
copies to the right vertex-copies. Each simple bipartite graph on this degree sequence arises from

∏
di!
∏
d′j !

matchings. So

s(D1,D2) ≤ E!∏
di!
∏
d′j !

. (35)
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Furthermore, applying the Method of Moments to the number of double edges in the configuration (see
Section 6.1 of [41]) shows that for at least (1 − o(1))|Φ| pairs D1,D2, the probability that the random
matching forms a simple bipartite graph is at least ε > 0. (This is true, eg. for all pairs of degree sequences
that are both well-behaved in the sense of [57].) So for all such pairs,

s(D1,D2) ≥ εE!∏
di!
∏
d′j !

.

Summing over all such pairs in Φ+ and applying (35) then (34), we have∑
(D1,D2)∈Φ+

s(D1,D2) ≥ (1− o(1))
∑

(D1,D2)∈Φ+

εE!∏
di!
∏
d′j !
≥ (1− o(1))ε

∑
(D1,D2)∈Φ

E!∏
di!
∏
d′j !

.

Furthermore (34) and (35) also yield∑
(D1,D2)∈Φ\Φ+

s(D1,D2) ≤
∑

(D1,D2)∈Φ\Φ+

E!∏
di!
∏
d′j !

= o(1)×
∑

(D1,D2)∈Φ

E!∏
di!
∏
d′j !

.

So the probability that a uniform member of Ω has a degree sequence in Φ+ is 1− o(1). This proves (d). �

9 Vertices outside the Kempe-core are unfrozen

In this section, we prove Lemma 5.4.
Lemma 5.4 For k ≥ 3, in Pn,p=c/n:

(a) If c > ck then w.h.p. at most o(n) vertices outside of the Kempe-core are log n-frozen.

(b) If c < ck then there exists Q = Q(c, k) such that: w.h.p. no vertex is Q log n-frozen.

Remark: In fact, the proof shows that we can replace log n in part (a) by any ω(n)→∞ with n.
The intuition is as follows: Recall that STRIP is a parallel version of Kempe-Strip, where we repeatedly

remove all Kempe chains of size less than log2 n. Our bounds on the size of the small components of a
random bipartite graph show that w.h.p. all removed Kempe chains have size O(log n).

Consider any one of the Kempe-chains, Φ, that is removed. There is a sequence of Kempe-chains, removed
during previous iterations, which eventually led to Φ being small and hence deleteable. A bit of thought
shows that we should typically be able to switch the colours in each of the Kempe-chains, in order of deletion,
in a manner that permits us to eventually switch the colours in Φ. Since each chain has size O(log n), this
is a sequence of small changes which leads to every vertex in Φ changing colours, and hence the vertices of
Φ are unfrozen.

The only thing that can go wrong in this scenario is if some of the Kempe-chains in this sequence intersect
each other, or are adjacent to each other, such that flipping one Kempe-chain interferes with another. If this
happens, then some of these chains must be arranged in a cyclic pattern. We will show that these patterns
affect very few vertices, and that we can deal with those vertices another way.

We will simplify our analysis by modifying the procedure so that the Kempe chain sizes are bounded by
O(1) rather than log n. Specifically, for any constant T , we define:

T -STRIP
Input: a graph G and a k-colouring σ = S1, ..., Sk of G.
While there are any Kempe chains of size at most T

Remove the vertices of every such Kempe chain from G.
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Since this is a valid way of beginning to carry out the procedure Kempe-Strip (from Section 5), no vertices
of the Kempe-core are removed by T -STRIP. Furthermore, if T is large then very few Kempe chains have
size greater than T , so we can show that what remains after i iterations of T -STRIP is very close to what
remains after i iterations of STRIP.

We use the same notation as in our description of STRIP, STRIP1 in Section 8, adding “(T )”; eg. V ia (T )
is the set of vertices with colour a remaining after i iterations of T -STRIP. It is straightforward to check
that the proofs of Observations 8.4 and 8.5 also apply in this setting, thus yielding:

Observation 9.1. Given V ia (T ), V ib (T ) and xa = |Ki
a,b(T ) ∩ V ia (T )|, xb = |Ki

a,b(T ) ∩ V ib (T )|, the vertices

of Ki
a,b(T ) ∩ V ia (T ) and Ki

a,b(T ) ∩ V ib (T ) can be treated as uniformly random subsets of V ia (T ), V ib (T ) of
sizes xa, xb, respectively. Furthermore, if (a, b) 6= (a′, b′) then the random subsets selected for Ka,b(T ) are
independent of the subsets chosen for Ka′,b′(T ).

Observation 9.2. For each i, the set of components of size greater than T in (U i(T ),W i(T )) is identical
to the set of components of size greater than T in (V i1 (T ), V i2 (T )).

It is well-known that the number of vertices on non-giant components of size greater than T in the random
bipartite graph Gn1,n2,p=c/n is at most εn where ε→ 0 while T →∞. This allows us to adapt the proof of
Lemma 8.7 to obtain:

Lemma 9.3. For any constants I, ε, there exists T such that w.h.p. we have for each 1 ≤ i ≤ I, 1 ≤ a <
b ≤ k:

(a) βin ≤ |Ki(T )a,b ∩ V ia (T )|, |Ki
a,b(T ) ∩ V ib (T )| ≤ (βi + ε)n;

(b) ρin ≤ |U i(T )|, |W i(T )| ≤ (ρi + ε)n;

(c) νin ≤ |V ia (T )| ≤ (νi + ε)n.

Proof Outline: Straightforward bounds on the expected number of components of size between T + 1
and log2 n in Gn1,n2,p=c/n (such bounds appear in the proof of Theorem 6 of [42]) allow us to modify
Lemma 8.1(a.i) to prove that for any δ > 0 we can choose T such that at most (α1 + δ)n, (α2 + δ)n vertices
on each side of Gn1,n2,p=c/n lie in components of size greater than T . This and Observations 9.1, 9.2 are
enough for the proof of Lemma 8.7 to apply in this setting. That proof yields the upper bounds of this
lemma, so long as we choose δ small enough that the increase in the recursive bounds accumulates to less
than ε. The lower bounds are straightforward - clearly this procedure removes fewer vertices than STRIP
does, and it is not hard to show that the difference is Θ(n), since at any stage there are Θ(n) vertices in
components of size between T and log n; i.e. vertices that would be removed by STRIP but are not removed
by T -STRIP. �

Next we show that the vertices removed by T -STRIP can have their colours changed unless they lie very
close to a cycle of size O(1).

Consider a Kempe chain C that is removed during our stripping procedure; i.e. C is a component of
some (V ia (T ), V ib (T )) with size less than log2 n. The colours of C are a, b - the two colours appearing on
C. To swap the colours of C means to change the colour of every vertex in C from a to b or from b to a.
To be clear: Suppose that a vertex v ∈ V ia (T ) has no neighbours in V ib (T ) nor in V ib′(T ) where a, b, b′ are
three different colours. Thus v forms a component of size 1 in (V ia (T ), V ib (T )) and a component of size 1 in
(V ia (T ), V ib′(T )). These are considered to be two different components, one with colours a, b and the other
with colours a, b′; swapping the colours in eg. the first of these components means changing the colour of v
from a to b.

We now define the partially directed graph Γ on the components that are removed during T -STRIP. The
edges of Γ join components which could interfere with each other when we swap their colours. An edge of Γ
is directed from C1 to C2 if the removal of C1 helped reduce the size of C2 to be below log2 n. More formally:
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Definition 9.4. The vertices V (Γ) are the components (i.e. Kempe chains) that are removed during T -
STRIP. Two such components in V (Γ) are joined by an edge of Γ if they share a vertex or if they are joined
by an edge in the original graph, G.

Furthermore, an edge of Γ is directed from component C1 to C2 if:

(i) C1, C2 have a colour in common,

(ii) C1 is removed during an earlier iteration of T -STRIP than C2, and

(iii) C1, C2 are joined by an edge in G whose endpoints are the colours of C2.

For any component C ∈ V (Γ), we define Υ(C) to be the subgraph of Γ induced by the set of components
that can reach C using the directed edges of Γ.

A cycle in Γ is a set of edges that form a cycle after removing any directions. We say that Υ(C) is a
Γ-tree if (i) it has no cycles and (ii) no C1, C2 ∈ Υ(C) are joined by two edges in G.

Remark: In what follows, the vertices of Γ are sometimes referred to as Kempe chains (as they are
removed by T -STRIP) and are sometimes referred to as components (as they are components of one of the
bipartite graphs).

Lemma 9.5. If C is deleted by T -STRIP and Υ(C) is a Γ-tree then the vertices of C are not T -frozen.

Proof We will prove that we can swap the colours on a sequence of some Kempe chains in Υ(C),
culminating with a swap of the colours on C. Since each of these Kempe chains has size at most T , this
proves the lemma. We prove this by induction on the iteration of T -STRIP in which C was removed. If it
was removed in iteration 1, then we can swap the colours of C without first swapping any other colours.

WLOG suppose that C is a component of (V i1 (T ), V i2 (T )) for some i > 1. Let B1, ..., Bq be the components
that point to C in Γ. By induction, it is possible to swap the colours on a sequence of some components in
each Υ(Bj) culminating in a swap of the colours of Bj . Furthermore, since Υ(C) is a Γ-tree, no component
in any Υ(Bj) shares a vertex or is joined by an edge with any component in some other Υ(Bj′), else the
edge joining those two components in Γ would create a cycle. So the swaps in each Υ(Bj) do not alter the
colours of any vertices in or adjacent to any components in any other Υ(Bj′) and thus we can carry out
every sequence of swaps. We argue that we can now swap the colours on Υ(C).

Every neighbour u of C outside of (V i1 (T ), V i2 (T )) that had colour 1 or 2 lies in some Bj and so had its
colour swapped. Note that the other colour in Bj cannot be 1 or 2, as otherwise Bj would have had to include
u’s neighbour in C; so the colour of u is now neither 1 nor 2. C does not have any other neighbours in Bj
since Υ(C) is a Γ-tree. No neighbour of C outside of B1, ..., Bq lay in any components of Υ(B1), ...,Υ(Bq),
since Υ(C) is a Γ-tree; so no such neighbour had its colour changed. So after our sequence of swaps, C has
no neighbours outside of (V i1 (T ), V i2 (T )) with colour 1 or 2. Since C is a component of (V i1 (T ), V i2 (T )), we
can swap the colours of C. �

The fact that there are very few O(1)-length cycles in our underlying random graph implies that
Lemma 9.5 applies to almost all vertices removed by T -STRIP:

Lemma 9.6. (a) For any I, T , the expected number of vertices deleted during the first I rounds of T -
STRIP which lie on Kempe chains C for which Υ(C) is not a Γ-tree is O(1).

(b) W.h.p. no two cycles of length at most 2IT in G intersect or are joined by a path of length at most
3IT .

Proof Part (a): If Υ(C) is not a Γ-tree, then G contains two paths from some component C ′ to C.
Those two paths and a path in C ′ must form a cycle. Each path has length less than I and each component in
the path has size at most T . So that cycle corresponds to a cycle of length less than 2IT in the original graph
G. Furthermore each vertex of C is within distance IT from that cycle. Since 2IT = O(1), a straightforward
first-moment calculation shows that the expected number of vertices in the planted random graph Pn,p=c/n
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shows that the expected number of vertices within distance IT of a cycle of length at most 2IT is O(1).
Indeed, letting ` be the length of the cycle and t be the length of the path (i.e. the number of edges), and
overcounting by possibly choosing two vertices of the same colour to be adjacent, the expected number is at
most ∑

1≤`≤2IT,0≤t≤IT
(`+ t)n`+t

( c
n

)`+t
= O(1),

since I, T = O(1).
Part (b): We use a very similar first moment bound: `1, `2 are the lenghts of the two cycles and t is the

length of the path. The expected number of such subgraphs is at most∑
1≤`1,`2≤2IT,0≤t≤IT

n`1+`2+t−1
( c
n

)`1+`2+t

= O(1/n).

�

This immediately yields Lemma 5.4 above the freezing threshold as follows:
Proof of Lemma 5.4(a) Consider any δ > 0. Lemmas 9.3 and 8.6 imply that we can choose constants

I, T sufficiently large so that w.h.p. I rounds of T -STRIP leave at most (β + δ)n remaining vertices of each
colour. Lemmas 9.5 and 9.6 imply that w.h.p. at most o(n) of the deleted vertices are T -frozen. W.h.p. the
Kempe-core has βn+o(n) vertices of each colour (Lemma 5.2(b) and (22)) and no vertices of the Kempe-core
are removed by T -STRIP, so fewer than 2kδn vertices outside of the Kempe-core are T -frozen. Since this
holds for every δ > 0, and T < log n, at most o(n) vertices outside the Kempe-core are log n-frozen. �

The same proof can show that, below the freezing threshold, at most o(n) vertices are log n-frozen. To
show the stronger statement that no vertices are Q log n-frozen, we have to be careful about how to handle
the components C for which Υ(C) is not a Γ-tree.

Lemma 8.6 shows that for c < ck, limi→∞ ρi = 0. We choose I such that ρI <
1
4c . We let GI+1 denote

the set of vertices remaining after I rounds of T -strip.
We take ε < 1

4c and so Lemma 9.3(b) implies that |U I(T )|, |W I(T )| < n
2c . As described in the proof

of Lemma 9.3, the argument from Lemma 8.7 applies in this setting; this implies that the bipartite graph
(U I(T ),W I(T ) is contained in (U(n/2c),W (n/2c)), and the latter bipartite graph is distributed like the
random bipartite graph Gn/2c,n/2c,p=c/n. Thus w.h.p. every component of (|U I(T )|, |W I(T )|) has size at
most Q log n, where Q comes from Lemma 8.1. Observation 9.2 thus yields:

Every Kempe chain in GI+1 has size at most Q log n. (36)

Definition 9.7. (a) B is the set of vertices that lie in any Kempe chain C removed during rounds 1, ..., I
for which Υ(C) is not a Γ-tree. Abusing notation, we sometimes say that the Kempe chain C is in B.

(b) B+ is the set of vertices v which are joined by at least two edges to one Kempe chain which was deleted
before v.

(c) A blocker of a Kempe chain W in GI+1 is either

(i) a neighbour of W that is in B and whose colour is a colour of W ; or

(ii) a path of length at most 3IT through the vertices in G\GI+1 whose endpoints are both adjacent
to W .

Note that B+ may intersect B. Specifically, if v ∈ B+ is in a Kempe chain C that is removed during
iterations 1, ..., I and if the Kempe chain removed prior to v which causes v to be in B+ is in Υ(C), then the
two edges joining v to that Kempe chain will cause Υ(C) to not be a Γ-tree and so v ∈ B. Note also that if
v ∈ B+ is in GI+1 then any path joining the two neighbours of v in that Kempe chain will be a blocker of
every Kempe chain in GI+1 containing v.
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Note that Lemma 9.6 implies that Exp(|B|) = O(1). In fact, the calculation used in that proof also
implies Exp(|B+|) = O(1); indeed, every member of B+ lies in a cycle of length at most T + 1 and it is
well-known that the expected number of vertices lying in such cycles is O(1).

Lemma 9.8. Suppose W is a Kempe chain in GI+1 that has no blockers. Then no vertex in W is Q log n-
frozen.

Proof Suppose WLOG thatW is a Kempe chain with colours 1, 2; i.e. a component of (V I1 (T ), V I2 (T )).
By (36) |W | ≤ Q log n. Let u1, ..., u` be the neighbours of W in G\GI+1 that have colour 1 or 2. Each ui
lies in a Kempe chain Ci which was deleted during the first I rounds and which points to W in Γ; since W
has no blocker, each Υ(Ci) is a Γ-tree. So we can swap the colours on a sequence of chains in Υ(Ci) and
then swap the colours on Ci (as in the proof of Lemma 9.5). We must argue that that the sequence of swaps
in Υ(Ci) does not conflict with the sequence in Υ(Cj) for any 1 ≤ i < j ≤ `. That would require a Kempe
chain in Υ(Ci) to either intersect or be joined by an edge to a Kempe chain in Υ(Cj). Since each Kempe
chain has size at most T and they were both removed during the first I iterations, this would yield a path
in G of length at most 2TI from ui to uj ; but this would be a blocker of W . So we can change the colour
of each ui by swapping a sequence of chains of size at most T .

No Ci has colours (1, 2) else the adjacent member of W would also be in Ci. And W is not adjacent to
two vertices of any Ci as those vertices are joined by a path in G of length less than T which would form a
blocker of W . And W has no neighbours other than ui in any Kempe chain of Υ(Ci), else this would form
a blocker path of length at most TI. Thus no neighbours of W had their colours changed to 1 or 2. So
after these switches, W has no neighbours in G of colour 1 or 2. So we can swap the colours on W . Since
|W | ≤ Q log n by (36), and all other chains in the sequence of flips have size at most T = O(1), the vertices
of W are not Q log n-frozen. �

To prove that no vertices in GI+1 are frozen, we will show that for every vertex v ∈ GI+1, at least one
of the Kempe-chains containing v is not blocked.

Lemma 9.9. (a) No Kempe-chain in GI+1 has two blockers;

(b) No vertex v ∈ GI+1 is in two Kempe-chains in GI+1 that have different blockers.

(c) No two Kempe-chains in GI+1 are adjacent to the same component in B and are each adjacent to a
different endpoint of a path of length at most 3IT in G\GI+1.

(d) There is no path P of length at most 3IT in G\GI+1 and vertices v1, u1, v2, u2 such that: (i) v1 6=
u1, v2 6= u2; (ii) each of v1, u1, v2, u2 is adjacent to an endpoint of P ; and (iii) there are two different
Kempe chains in GI+1, one containing v1 and u1 and the other containing v2 and u2.

Remark: Note that part (b) proscribes different blockers. As explained above, if v ∈ B+ then a path
through the deleted Kempe chain which is joined by two edges to v will be a blocker of every Kempe chain
in GI+1 containing v. So in that case v will be in multiple Kempe-chains that all have the same blocker.

Proof Consider any two colours, WLOG the colours 1,2. Recall that the subgraph of GI+1 in-
duced by colours 1,2 is a subgraph of (U I+1,W I+1) (see eg. Observation 9.2). As described above (36),
(U I+1,W I+1) is a subgraph of (U(n/2c),W (n/2c)) which is distributed like the random bipartite graph
Gn/2c,n/2c,p=c/n. A simple first moment argument shows that for any two vertices u, v of colours 1 or 2 in
GI+1, the probability that they are in the same component of GI+1 is O(1/n). Indeed, letting ` denote the
length of a path joining u, v, the probability that they are in the same component of (U(n/2c),W (n/2c)) is

∑
`≥1

( n
2c

)`−1 ( c
n

)`
=
c

n
×
∑
`≥1

(
1

2

)`−1

=
2c

n
. (37)

To prove parts (a,b), we will show that w.h.p. there is no vertex v and two different blockers φ1, φ2 each
blocking a Kempe-chain in GI+1 containing v. We will do so by bounding the expected number of such
v, φ1, φ2.
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Case 1: φ1, φ2 are both vertices in B. The computations from the proof of Lemma 9.6(a) show that the
contribution of the number of choices for the vertices φ1, φ2, multiplied by the probability that they are both
in B is O(1)2 = O(1). The number of choices for v is at most n. There are (k − 1)2 = O(1) choices for the
Kempe chains containing v that are adjacent to φ1, φ2 (we may choose the same Kempe chain to be adjacent
to both). Choose u1, u2, the vertices in those Kempe chains that are adjacent to φ1, φ2. If ui 6= v then we
get at most n choices for ui, and we multiply by the probability that u1, v are in the same Kempe chain -
2c
n by (37). The probability that ui is adjacent to φi is c

n for each i. Note that the edge sets we consider
here are all disjoint: The edges of the Kempe chains containing v are in GI+1; the edges of the short paths
to short cycles that must exist if φ1, φ2 ∈ B are in G\GI+1 (see the proof of Lemma 9.6(a)); the edges uiφi
run between GI+1 and G\GI+1. Putting this together, the expected number of such v, φ1, φ2 is at most:

O(1)× n×
(
n× 2c

n

)1,2 or 3
×O

(
1

n

)2

= O

(
1

n

)
.

Case 2: φ1 is a vertex in B and φ2 is a path of length at most 3IT . The endpoints of φ2 are x, y and the
length of φ2 is `; we allow ` = 0 in which case x = y. If ` = 0 there are fewer than n choices for x. If ` > 0,
there are fewer than

(
n
2

)
choices for x, y, and calculation very much like the one in the proof of Lemma 9.6(a)

yields that the probability that φ1 ∈ B and x, y are joined by a path of length at most 3IT is O(1/n2). The
neighbours of x, y in the Kempe chain containing v are u1, u2, possibly u1 = u2 and either or both of them
could be v. If v, u1, u2 are three different vertices, then the probability that they are all in the same Kempe
chain of GI+1 is O(1/n2) by a calculation very much like (37); we omit the details. If they are two different
vertices then that probability is O(1/n) by (37). As in Case 1, the probability that u1 is adjacent to x and
u2 is adjacent to y is O(1/n)2. We use the calculations from Case 1 to bound the contribution of the choices
for v, φ1 and the probability that φ1 is adjacent to the other Kempe chain containing v. Putting all this
together again yields an expection of O(1/n).

Case 3: φ1, φ2 are both paths of length at most 3IT . Calculations just like those in Case 2, again yield
an expectation of O(1/n).

Parts (c,d) follow from very similar calculations, each time obtaining an expectation of O(1/n). We omit
the straightforward but tedious details. �

Corollary 9.10. No vertex in GI+1\B+ is Q log n-frozen.

Proof Suppose WLOG v ∈ V I+1
1 . Since k ≥ 3, v lies in at least two Kempe chains of GI+1. By

Lemma 9.9(b) either those two Kempe chains have the same blocker, or at least one of them has no blockers.
In the latter case, Lemma 9.8 implies that v is not Q log n-frozen. So we turn our attention to the former
case.

If two Kempe chains in GI+1 containing v have the same blocker, then that blocker cannot be a vertex
in B as the colour of that vertex can only be in one of the chains. So the blocker must be a path P whose
endpoints w1, w2 are adjacent to vertices in both Kempe chains. If v is not adjacent to both w1, w2 then P
will violate Lemma 9.9(d), possibly with v1 = v2 = v and possibly with u1 = u2 if the two Kempe chains
have two vertices in common. If v is adjacent to both w1, w2 then w1, w2 cannot be in the same deleted
Kempe chain since v /∈ B+. Therefore w1, w2 are in two different Kempe chains C1, C2 that were removed
during iterations 1, ..., I.

Neither w1 nor w2 have the same colour as v, so at least one of the two Kempe chains containing v does
not have the colour of w1 and the colour of w2. Noting that that Kempe chain has no blocker other than
P (otherwise we would violate Lemma 9.9(b)), the argument from the proof of Lemma 9.8 shows that the
vertices of that Kempe chain are not Q log n-frozen. �

Next we turn to B:

Lemma 9.11. No vertex in B\B+ is frozen.
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Proof Suppose WLOG v has colour 1 and is in a Kempe-chain C ∈ B with colours 1, 2 which was
removed during iteration i ≤ I. As we described in the proof of Lemma 9.6, there must be a cycle in G of
length at most 2TI through the components of Υ(C).

If v lies in another Kempe chain C ′ that is deleted during iteration i then we will argue that C ′ /∈ B. If
Υ(C) and Υ(C ′) both have different cycles then those two cycles are joined by a path through v of length
at most 2iT ≤ 2IT ; this violates Lemma 9.6(b).

Suppose Υ(C) and Υ(C ′) both contain the same cycle. If v lies in that cycle then it must contains an
edge joining v to a component D ∈ Υ(C) and an edge joining v to a component D′ ∈ Υ(C ′); note that the
endpoints of those two edges have the colours of C,C ′ and so they are two different edges. Since v /∈ B+ we
must have D 6= D′. Since the cycle is in Υ(C) and Υ(C ′), we must have D ∈ Υ(C ′) and D′ ∈ U(C). Since
no edge of Γ is directed in both directions, this leads to a violation of Lemma 9.6(b); i.e. two short cycles
close to v. Thus v does not lie in the cycle and so there are two paths in G from v to that cycle - one using
an edge pointing to C in Γ and one using an edge pointing to C ′ in Γ. That cycle, along with the two paths
to it from v, must violate Lemma 9.6(b). So C ′ /∈ B and thus Lemma 9.5 implies that v is not T -frozen.

Of course, v cannot lie in two Kempe chains that are removed in different iterations, so we can assume:

v does not lie in any other Kempe chains that are removed during the first I iterations. (38)

We will swap the colour of v to 3. Let u1, ..., u` denote the neighbours of v in G that have colour 3.
Step 1: If uj is in a Kempe-chain Wj /∈ B removed during the first I iterations then we swap the colours

of some chains in Υ(Wj) and then swap the colours of Wj as in the proof of Lemma 9.5.
Step 2: If uj ∈ GI+1 then let Wj denote the Kempe-chain in GI+1 with colours 2, 3 containing uj .

Lemma 9.9(b) implies that Wj has no blocker, since v is a blocker for the Kempe-chain in GI+1 with colours
1, 3 containing uj and v cannot be a blocker for Wj because v has colour 1. We swap the colours of a
sequence of chains in G\GI+1 and then swap the colours of Wj as in the proof of Lemma 9.8.

Step 3: Each remaining vertex uj is in a Kempe chain Wj ∈ B. We will argue that (i) Wj has colours
(1, 3) and so C ∈ Υ(Wj), and (ii) no neighbour of Wj with colour 1 or 3, other than v, is in B. This implies
that for each Wj we can uncolour some of the chains in Υ(Wj) as in the proof of Lemma 9.5 so that v is the
only neighbour of Wj that still has colour 1 or 3. We then simultaneously swap the colours of v and every Wj .
Since each Wj has size at most T , the number of vertices in this final swap is at most T degG(v) < Q log n
as the maximum degree in G is easily computed to by w.h.p. o(log n).

Consider any Wj ∈ B from Step 3. Thus Υ(Wj) contains a cycle. The argument from the proof of (38)
shows that this must be the cycle in Υ(C) as otherwise we violate Lemma 9.6(b); the only difference is that
v is joined by an edge to Wj whereas above we had v ∈ C ′. Furthermore, the path from Υ(Wj) to that cycle
must pass through C. This proves that C ∈ Υ(Wj) as claimed above. Finally, if any other neighbour of Wj

which was deleted before Wj is in B, then this would result in either a second cycle within distance TI of
Wj , or two paths from Wj to C; either way, this violates Lemma 9.6(b).

Claim 1: All of these swaps do not interfere with each other.
Proof: If two sequences in Step 1 or 3 interfere with each other then this will create either two cycles of

size at most 2TI that are both within distance TI of v, or one cycle of size 2TI that is joined to v by two
different paths of length at most 2TI; either way this violates Lemma 9.6(b).

If a sequence of swaps to change the colour of some Wj from Step 2 interferes with a sequence from Step
1 or 3 then these sequences form a path in G\GI+1 of length at most 2TI from v to a neighbour of Wj with
colour 2 or 3; but this contradicts the fact, proven above, that Wj has no blocker.

Finally, if the sequences of swaps that change Wj ,Wj′ in Step 2 interfere with each other, then they form
a path of length at most 2TI in G\GI+1 from a neighbour of Wj to a neighbour of Wj+1. Since Wj ,Wj′ are
both adjacent to v, this violates Lemma 9.9(c).

Claim 2: None of these swaps change the colour of v, until the final swap in Step 3.
Proof: This also follows from Lemmas 9.6(b) and 9.9. We omit the argument since it is not neccessary -

if a swap changes the colour of v then v is not Q log n-frozen.
Claim 3: none of these swaps change the colour of a neighbour of v to 3.
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Proof: If v has a neighbour, other than uj in one of the Kempe chains swapped in Steps 1 or 3 in order
to change uj , then the edges from v to that neighbour and to uj create a cycle of length less than TI. That
cycle along with the cycle in Υ(C) violate Lemma 9.6(b). If v has a neighbour, other than uj in one of the
Kempe chains swapped in Step 2 in order to change uj , then this forms a path of length at most TI from v
to another neighbour of Wj which contradicts the fact that Wj has no blocker.

These Claims ensure that we can carry out all three steps, eventually changing the colour of v in Step 3.
(36) implies that each Kempe chain we switch has size at most Q log n. �

Having proven Lemmas 9.8, 9.11 and Corollary 9.10 it only remains to show:

Lemma 9.12. No vertex in B+ is frozen.

Proof Suppose WLOG that v ∈ B+ has colour 1, and that v has two neighbours in a Kempe chain
removed before v with colours 2, 3. If exactly one of those neighbours, y, has colour 3 then we will change the
colours of v and y as follows: Let u1, ..., u` be the neighbours of v with colour 3, other than y; let w1, ..., w`′

be the neighbours of y with colour 1, other than u. We can make a series of Kempe chain swaps, similar to
those in Steps 1, 2, 3 in the proof of Lemma 9.11, to change each uj to 1, change each wj to 3, and change
v to 3 and y to 1. Again, each chain has size less than Q log n.

If neither of the two neighbours in that Kempe chain have colour 3, then we let u1, ..., u` be all neighbours
of v with colour 3. Again, we can make a series of Kempe chain swaps to change each uj to 1 and change v
to 3.

We omit the repetitive details, other than to remark that the short cycle through v and the Kempe chain
containing y plays the role of the cycle in Υ(C) in the proof of Lemma 9.11. �

This completes our proof of Lemma 5.4.
Proof of Lemma 5.4(b): This follows immediately from Lemmas 9.8, 9.11, 9.12 and Corollary 9.10. �
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