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Abstract

We study the Glauber dynamics Markov chain for k-colourings of trees with maximum degree ∆.
For k ≥ 3, we show that the mixing time on the complete tree is nθ(1+∆/(k log ∆)). For k ≥ 4 we extend
our analysis to show that the mixing time on any tree is at most nO(1+∆/(k log ∆)). Our proof uses a
weighted canonical paths analysis and introduces a variation of the block dynamics that exploits the
differing relaxation times of blocks.

1 Introduction

The Glauber dynamics is a Markov chain over configurations of spin systems on graphs, of which k-
colourings is a special case. Such chains have generated a great deal of interest in both statistical physics
and computer science. In computer science, counting k-colourings is a fundamental #P-hard problem, and
Markov chains that sample colourings can be used to obtain an FPRAS to approximately count them. In
statistical physics, k-colourings are equivalent to the antiferromagnetic Potts model, and single-site update
chains can be used to model how such physical systems arrive at equilibrium. The Glauber dynamics has
received a very large part of this interest [12]. It is particularly appealing because it is a natural and simple
process that underlies more substantial procedures such as block dynamics and systematic scan [12, 7]. It
is also commonly used in practice for physical system simulations.

The focus of this paper will be the performance of the Glauber dynamics on trees. Of course, the
task of sampling a k-colouring of a tree is not particularly difficult. Nevertheless, people have studied
the Glauber dynamics on trees as a means of understanding its performance on more general graphs, and
because the behaviour of the Glauber dynamics on trees is particularly relevant to the understanding of
equilibrium concepts such as the uniqueness threshold for the infinite-volume Gibbs distribution [4, 11, 13]
and the reconstruction threshold [3]. Such concepts have gained particular interest due to recent proposed
connections to algorithmic barriers related to local search algorithms on trees and sparse random graphs
[1].

Berger et al. [2] showed that the Glauber dynamics mixes in polynomial time on complete trees of
maximum degree ∆, and Martinelli et al. [13] showed that this polynomial is O(n log n) so long as k ≥ ∆+2.
Hayes, Vera and Vigoda [9] showed that the Glauber dynamics mixes in polynomial time for all planar
graphs if k ≥ C∆/ log ∆ for a particular constant C. They remarked that this was best possible, up to the
value of C: The chain takes superpolynomial time to mix on every tree when k = o(∆/ log n), and hence
trees with ∆ ≥ nε provide lower-bound examples for any constant ε. They asked whether such examples
exist for smaller values of ∆; in particular, what is the mixing time for the complete (∆− 1)-ary tree with
k = 3 and ∆ = O(1)?
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Proposition 2.5 of Berger et al. [2] shows that the mixing time is polynomial for every constant k ≥ 3
and ∆ ≥ 2 (in fact, it shows this for general particle systems on trees for which the Glauber dynamics is
ergodic, of which proper colouring is a special case), but did not analyze the degree of this polynomial. Our
main result is an upper bound for every tree when k ≥ 4. Our bound is asymptotically tight, matching
the lower bound up to a constant factor in the degree.

Theorem 1.1. For k ≥ 4, the Glauber dynamics on k-colourings of any tree with maximum degree ∆
mixes in time at most nO(1+∆/k log ∆).

Thus, for every k ≥ 4 and ∆ = O(1), we have polytime mixing on every tree. However, if ∆ grows
with n, no matter how slowly, then on some trees (eg. complete trees) we require the Ω(∆/ log ∆) colours
for polytime mixing that Hayes, Vera and Vigoda noted were required at ∆ = nε.

For the case of k = 3 colours, we demonstrate the same mixing time bound for complete trees.

Theorem 1.2. For k ≥ 3, the Glauber dynamics on k-colourings of the complete tree with maximum degree
∆ mixes in time at most nO(1+∆/k log ∆).

We also present a matching lower bound, demonstrating that these results are the best possible up to
the constant factor in the exponent. The complete tree with maximum degree ∆ provides a lower-bound
example:

Theorem 1.3. For k ≥ 3, the Glauber dynamics on k-colourings of the complete (∆ − 1)-ary tree mixes
in time nΩ(1+∆/k log ∆).

Independently, Goldberg, Jerrum and Karpinski [8] showed a lower bound of nΩ(1+∆/k log ∆) and an
upper bound of nO(1+∆/ log ∆) on the mixing time of the Glauber dynamics on a complete tree. Subsequently,
Tetali et al. [17] extended our results to demonstrate that the mixing time undergoes a phase transition
at a threshold k = (1 ± o(1))∆/ log ∆: they show that the mixing time is O(n1+o∆(1) ln2 n) when k >
(1 + o(1))∆/ log ∆, and that it lies in O(n∆/k log ∆+o∆(1) ln2 n) and Ω(n∆/k log ∆−o∆(1)) when k < (1 −
o(1))∆/ log ∆. Additionally, Sly [16] has given very tight bounds on the reconstruction threshold for
colourings of a tree, which occurs at k = (1± o(1))∆/ log ∆.

Our results lie in the regime where k is very small. Let us describe the analytical difficulties that
occur when k lies below the reconstruction threshold; that is, when k = o(∆/ log ∆). If k ≥ ∆ + 2 then
no vertex will ever be frozen; i.e. there will always be at least one colour that it can switch to. This
bound on k also corresponds to the threshold for unique infinite-volume Gibbs distributions [11]. Much
of the difficulty in showing rapid mixing for smaller values of k is in dealing with frozen vertices. From
this perspective, k ≥ C∆/ log ∆ for C > 1 is another natural threshold: if the neighbours of a vertex are
assigned independently random colours then we expect that the vertex will not be frozen. However, if
k < (1 − ε)∆/ log ∆, then even in the steady state distribution most degree ∆ vertices on a tree will be
frozen.

While the presence of frozen vertices impedes our analysis, it needn’t preclude rapid mixing a priori, as
the following intuition illustrates. If the children of a vertex u change colours enough times, then eventually
u will become unfrozen and change colours. This allows vertices to unfreeze, level by level, much like in
the level dynamics of [9]. This is a slow process: the number of times that the children of u have to
change colour before u is unfrozen is (roughly) exponential in ∆/k. However, this value is manageable for
∆ = O(1): the running time is a high degree polynomial rather than superpolynomial. For balanced trees,
it is very helpful that there are only O(log n) levels. For taller trees, a more subtle approach is necessary.

The proofs of our main theorems proceed by bounding the second eigenvalue of the update process,
using the method of canonical paths (to bound congestion) and the block dynamics (whereby we compare
with a process that updates many nodes simultaneously). However, a straightforward application of these
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techniques is not sufficient to obtain tight bounds on mixing time for non-complete trees. Our main
technical contribution is a weighted variation of these tools, which takes account of differing mixing times
amongst the blocks. To the best of our knowledge, this is the first time that this variation has been used
for the block dynamics.

In order to apply the block dynamics, we need to analyze the mixing time of the Glauber dynamics
on subtrees which have colours on their external boundaries fixed. This is equivalent to fixing the colours
on some leaves of the tree. Markov chains on trees with fixed leaves are well-studied. When every leaf is
fixed, Martinelli, Sinclair and Weitz [13] prove rapid mixing for k ≥ ∆ + 2; at k ≤ ∆ + 1 the chain might
not be ergodic. In our setting, we consider cases where k may fall below this threshold, but the number of
fixed leaves is small. Theorem 1.1 extends to show:

Theorem 1.4. For any k ≥ 4, the Glauber dynamics on k-colourings of any tree with maximum degree ∆
and with the colours of any b ≤ k − 2 leaves fixed mixes in time nO(1+b+∆/k log ∆).

We cover preliminary material in Section 2, then present the weighted block dynamics in Section 3. An
upper bound on the mixing time of the Glauber dynamics with 3 colours on the complete tree is given in
Section 4; we then extend this to a proof of Theorem 1.1 in Section 5. The lower bound for Theorem 1.3
is presented in Section 7.

2 Preliminaries

2.1 Graph Colourings

Let G = (V,E) be a finite graph, and let Σ = {0, 1, . . . , k − 1} be a set of k colours. A proper colouring of
G is an assignment of colours to vertices such that no two vertices connected by an edge are assigned the
same colour. Define Ω ⊂ ΣV to be the set of proper colourings of G. Given σ ∈ Ω and x ∈ V , we write
σ(x) to mean the colour of vertex x in σ. Given S ⊆ V , we write σ(S) to refer to the assignment of colours
to S in σ; that is, σ(S) is σ restricted to S.

Given some S ⊆ V , Ωσ
S is the set of proper colourings of G that are fixed to σ at all vertices not in S.

We can think of Ωσ
S as being equivalent to the set of proper colourings of S with boundary configuration

σ. However, technically speaking, an element of Ωσ
S will be viewed as a colouring of the entire graph G.

2.2 Glauber dynamics

The Glauber dynamics for k-colourings of G is a Markov process over the space Ω of proper colourings.
We make use of the continuous-time Metropolis version of the Glauber dynamics (standard methods, eg.
[5, 14], show that our theorems also hold for the heat-bath version). Informally, the behaviour of this
process is as follows: each vertex has a (rate 1) Poisson clock. When the clock for vertex v rings, a colour
a is chosen uniformly from Σ. The colour of v is set to a if a does not appear on any neighbour of v,
otherwise the colouring remains unchanged.

More formally, recall that a continuous-time Markov process is defined by generator L. We can think
of L as a |Ω| × |Ω| matrix, whose non-diagonal entries represent the jump probabilities between colourings
(and diagonal entries are such that all rows sum to 0). For σ 6= η, we will write K[σ → η] to denote the
(σ, η) entry in this matrix. Under this framework, the jump probabilities for the Metropolis version of the
Glauber dynamics are given by

K[σ → η] =

{
1
k if σ, η differ on exactly one vertex

0 otherwise

Note that this process is symmetric and, for k ≥ 3, ergodic on trees [2].
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In many applications we are interested in the discrete analog of the Glauber dynamics. We then think of
K[σ → η] as the probability of moving from colouring σ to colouring η, scaled by a factor of n. The mixing
time for the discrete chain is approximately n times the mixing time for the corresponding continuous
process [2], so our bounds on mixing time apply to the discrete setting.

2.3 Mixing Time

Given probability distributions π and µ over space Ω, the total variation distance between π and µ is
defined as

||µ− π||TV =
1

2

∑
x∈Ω

|µ(x)− π(x)|.

Suppose L is the generator for an ergodic Markov process over Ω. The stationary distribution for L is
the unique measure π on Ω that satisfies πL = π. It is well-known that the Glauber dynamics has uniform
stationary distribution when it is ergodic.

Given any σ ∈ Ω, denote by µtσ the measure on Ω given by running the process with generator L for
time t starting from colouring σ. Then the mixing time of the process, M(L), is defined as

M(L) = min

{
t : sup

σ∈Ω
||µtσ − π||TV ≤

1

4

}
.

We define the spectral gap of L, Gap(L), to be the second-largest eigenvalue of −L. The relaxation
time of L, denoted τ(L), is defined as the inverse of the spectral gap. We will use the following standard
bound (see eg. [12]):

M(L) ≤ τ(L) log(|Ω|) ≤ (n log k)τ(L) since |Ω| ≤ kn. (1)

2.4 Colourings of Trees

Consider a (not necessarily complete) tree G = (V,E) with maximum degree ∆. A subtree T of G is a
connected induced subgraph of G. We shall write ∂T and ∂T to mean the exterior and interior boundaries
of T . That is, writing N(v) for the neighbourhood of vertex v, ∂T = {x ∈ V \T : N(x) ∩ T 6= ∅} and
∂T = {x ∈ T : N(x) ∩ ∂T 6= ∅}. Note that for each x ∈ ∂T there is a unique y ∈ ∂T adjacent to x.

The following simple Lemma analyzes the ergodicity of the Glauber dynamics on trees.

Lemma 2.1. Let T be a subtree of G and suppose k ≥ max{3, |∂T | + 2}. Then the Glauber dynamics is
ergodic over Ωσ

T for all σ ∈ Ω.

Proof. It is sufficient to show irreducibility; ergodicity and the uniformity of the stationary distribution
then follow since the Glauber dynamics is aperiodic and reversible. Let LσT be the generator for the
Glauber dynamics on T with boundary condition σ, with jump probabilities denoted Kσ

T . Take Γ to be
the transition graph over Ωσ

T , where (η, ω) is an edge in Γ if and only if Kσ
T [η → ω] > 0. We need to show

that Γ is connected. That is, we need to show that for any two colourings η and ω that differ only in T , it
is possible to move from η to ω by changing the colour of one vertex of T at a time, so that at each step
we have a proper colouring of G.

Choose η, ω ∈ Ωσ
T ; we will generate a path from η to ω in Γ. We begin by choosing a root node r ∈ T . If

|∂T | ≥ 1, we arbitrarily choose some v ∈ ∂T and let r be the unique vertex in T adjacent to v. Otherwise,
r is chosen arbitrarily. We now proceed by induction on the height of the resulting rooted tree. If the
height is 1 then V (T ) = {r}, and hence η and ω are adjacent in Γ (since they differ on at most a single
node, namely r). We conclude that η and ω are connected in Γ.
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Now suppose tree T has height h. Let z be a child of r and consider the subtree T ′ of T rooted at z. If
|∂T | = 0 then ∂T ′ = {r}, and otherwise |∂T ′| ≤ |∂T |. We conclude that k ≥ |∂T ′|+ 2. Also, T ′ has height
at most h− 1, and its root z is adjacent to r ∈ ∂T ′. Thus by induction the Glauber dynamics restricted to
T ′ is ergodic for any boundary condition, and in particular for η. Since k ≥ |∂T ′|+ 2, there is a colouring
β ∈ Ωη

T ′ such that β(z) 6∈ {η(r), ω(r)}. We can find such a β since at most |∂T ′| colours can be forbidden
for z due to the boundary configuration η, leaving 2 possible colours; at most one of those colours is ω(r),
leaving one more. Since the Glauber dynamics is ergodic on T ′ with boundary condition η, there is a path
from η to β in Γ.

Proceeding in the same way, we can change the colour of each child of r so that none are ω(r). We
have thus found a colouring α ∈ Ωσ

T in which ω(r) does not appear in the neighbourhood of r, and there
is a path from η to α in Γ. But now note that the colour ω(r) does not appear in the neighbourhood of r

in α, so one can change the colour of r to ω(r). That is, (α, α
ω(r)
r ) ∈ Γ. Let γ = α

ω(r)
r . Finally, repeating

the above argument, it is possible to change the colouring of each subtree T ′ rooted at a child of r from
γ(T ′) to ω(T ′) without changing any colours outside of T ′. This yields a path from γ to ω. Putting this
together, we have found a path from η to ω in Γ.

3 Weighted Canonical Paths and Block Dynamics

In this section we go over two well-known tools for the analysis of local spin systems: canonical paths and
the block dynamics. We then present generalizations of these results that allow the addition of weights
to the analysis. We prove our results for the Glauber dynamics acting on a finite graph G = (V,E).
Our statements actually apply to a more general setting, holding for all local update chains. We avoid a
statement in full generality for succinctness. See [12] for a general treatment of local spin systems.

3.1 Weighted Block Dynamics

Suppose D = {V1, . . . , Vr} is a collection of subsets of V with V = ∪iVi. For each 1 ≤ i ≤ r and σ ∈ Ω, let
LσVi be the generator for the Glauber dynamics restricted to Vi with boundary configuration σ. In other
words, colours can change only for nodes in Vi.

Suppose that LσVi is ergodic for each i and σ. Let πσVi denote the stationary distribution of LσVi . For
each i, define gi := infσ∈Ω Gap(LσVi), the minimum spectral gap for LσVi over all choices of boundary
configurations.

The block dynamics is a continuous-time Markov process with generator LD defined by

KD[σ → η] =

{
πσVi [η] if there exists i such that η ∈ Ωσ

Vi

0 otherwise.

Note that KD[σ → η] > 0 precisely when η and σ differ only within a single block Vi. Informally, we think
of the weighted block dynamics as having a Poisson clock of rate 1 for each block Vi. When clock i rings,
the colouring of Vi is replaced randomly according to πσVi , where σ is the previous colouring.

Using τVi = 1/gi to denote the maximum relaxation time of LσVi over all choices of boundary configu-
rations, Proposition 3.4 of Martinelli [12] is:

Proposition 3.1. τ(LV) ≤ τ(LD)× (max1≤i≤r τVi)×maxx∈V |{i : x ∈ Vi}| .

We are now ready to define the weighted block dynamics corresponding to D. This is a continuous-time
Markov process whose generator L∗D is given by

K∗D[σ → η] =

{
giπ

σ
Vi

[η] for all η,i such that η ∈ Ωσ
Vi

0 otherwise.
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The weighted block dynamics is similar to the block dynamics, but the transition probabilities for block
Vi are scaled by a factor of gi. The main result for this section is the following variant of Proposition 3.1:

Proposition 3.2. τ(LV) ≤ τ(L∗D)×maxx∈V |{i : x ∈ Vi}|.

The proof of Proposition 3.2 is a simple modification to the proof of Proposition 3.1 [12]. We present
the proof here for completeness.

Proof of Proposition 3.2. We begin with some necessary background from the field of functional analysis.
Recall that we use K[σ → η] to denote the entries of L as a matrix. Then the operation of L as a generator
over functions f : Ω→ R can be expressed as

L(f)(σ) =
∑
η∈Ω

K[σ → η](f(η)− f(σ)).

Given a function f : Ω→ R, the Variance of f with respect to L is given by

Var(f) =
∑
σ,η∈Ω

π[σ]π[η](f(σ)− f(η))2.

The Dirichlet form of function f with respect to L is given by

ξ(f, f) =
∑
σ,η∈Ω

π[σ]K[σ → η](f(σ)− f(η))2.

It is known that the spectral gap of the generator L satisfies

gap(L) = inf
f

ξ(f, f)

Var(f)

where the infimum is over all non-constant functions f : Ω→ R.
We are now ready to proceed with the proof.
Note that L∗D is ergodic and reversible with respect to distribution πV . Let Var∗D and ξ∗D denote the

variance and Dirichlet form for L∗D. Note that since L∗D and LV have the same stationary distributions,
Var∗D(f) = VarV (f) for all functions f .

For each x ∈ V , let Nx = |{i : x ∈ Vi}| and let N = maxx∈V Nx. We now bound ξ∗D(f, f) with respect
to N and ξV (f, f), as follows.
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ξ∗D(f, f) =
1

2

∑
σ,η∈Ω

π[σ]K∗D[σ → η](f(σ)− f(η))2

=
1

2

∑
σ∈Ω

π[σ]

r∑
i=1

gi
∑
η∈ΩσVi

πσVi [η](f(σ)− f(η))2

=
1

2

∑
σ∈Ω

π[σ]
r∑
i=1

giVarσVi(f)

≤ 1

2

∑
σ∈Ω

π[σ]

r∑
i=1

ξσVi(f, f)

=
1

2

∑
σ∈Ω

π[σ]
r∑
i=1

∑
η∈ΩσVi

πσVi [η]
∑
x∈Vi

∑
a∈A

K[η → ηax](f(η)− f(ηax))2

≤ 1

2

∑
η∈Ω

π[η]
∑
x∈V

Nx

∑
a∈A

K[η → ηax](f(η)− f(ηax))2

≤ NξV (f, f)

for all functions f . Note that in the second-last inequality we used the fact that choosing σ ∈ Ω and then
choosing η ∈ Ωσ

Vi
is equivalent to choosing η ∈ Ω. But now

gap(LV ) = inf
f

ξV (f, f)

VarV (f)
≥ inf

f

ξ∗D(f, f)

Var∗D(f)
N−1 = gap(L∗D)N−1

as required.

It is worth noting the difference between Proposition 3.2 and the original block dynamics, Proposition
3.1. In the original version, the block dynamics Markov process can be thought of as having a Poisson
clock of rate g for each block, where g is the minimum over all gi. In other words, each block is chosen with
the same rate, that being the worst case over all blocks. On the other hand, in the modified version each
block is chosen with the rate corresponding to that block. The original version yields a simpler Markov
process, but a looser bound on the gap of the original process. In particular, applying the original block
dynamics to our main result yields a mixing time of nO(1+∆/k), while the modified block dynamics tightens
the bound to nO(1+∆/k log ∆) (see Remark 5.7).

We next show that the weighted block dynamics is equivalent to a related process. Informally, we wish
to “collapse” each block to its set of internal boundary nodes. We will assign colours to these boundary
nodes according to the probability such a boundary configuration would occur in the block dynamics.
More formally, suppose D = {V1, . . . , Vm} is a set of blocks of vertices of T . Let B = ∪mi=1∂Vi. That is, B
contains all internal boundary nodes for the blocks in D. Note B ∩ Vi = ∂Vi. We define a Markov process
LB on ΩB, which simulates the behaviour of LD restricted to the nodes in B. Given distribution π over
ΩT , S ⊆ T , and η ∈ ΩS , write πT [η′ : η′(S) = η(S)] to denote

∑
η′:η′(S)=η(S) πT [η′], the probability that

the configuration of S agrees with η. Then LB is defined by

KB[σ → η] =

{
giπ

σ
Vi

[η′ : η′(∂Vi) = η(∂Vi)] if σ and η differ only on ∂Vi

0 otherwise.
(2)
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In other words, η is chosen according to the probability that η is the configuration on B after a step of
the block dynamics. Our claim is that the relaxation times of L∗D and LB are the same; this is similar to
Claim 2.9 due to Berger et al [2].

Proposition 3.3. τ(L∗D) = τ(LB).

Proof. Given dynamics L on configuration space Ω and function f : ΩV → R, we will write R(L, f) =
V ar(f)
ξ(f,f) . We recall that

τ(L) = sup {R(L, f) : π[f ] = 0} (3)

where the maximum is over non-constant functions. From the definition of LB, we have that

LB(σ′, η′) =
∑

σ:σ′=σ|B

∑
η:η′=η|B

L∗D(σ, η). (4)

Now suppose we have functions f on ΩB and g on ΩT . Suppose further that

f(σ) = g(η) for all σ, η such that η|B = σ. (5)

Then we will have

R(L∗D, g) =
V ar∗D(g)

ξ∗D(g, g)

=

∑
σ,η∈ΩT

π∗D(σ)π∗D(η)(g(σ)− g(η))2∑
σ,η∈ΩT

π∗D(σ)K∗D(σ → η)(g(σ)− g(η))2

=

∑
σ′,η′∈ΩB

πB(σ′)πB(η′)(f(σ′)− f(η′))2∑
σ′,η′∈ΩB

πB(σ′)KB(σ′ → η′)(f(σ′)− f(η′))2

=
V arB(f)

ξB(f, f)

= R(LB, f)

(6)

where we used (2) and (4) in the third equality.
Suppose the supremum in (3) for L∗D occurs at a function g1. That is, g1 : ΩV → R satisfies π[g1] = 0

and τ(L∗D) = R(L∗D, g1)). Then g1 must be an eigenfunction of L∗D, so g1 = L∗D(g1). Choose σ, η ∈ ΩV such
that σ(B) = η(B); then (L∗D(g1))(σ) = (L∗D(g1))(η) from the definition of L∗D, and hence g1(σ) = g1(η).
We can therefore define function f1 : ΩB → R as follows: for each α ∈ ΩB, f1(α) will be the (unique) value
of g1(η) for all η with η|B = α. Thus f1 and g1 satisfy (5), so (6) implies

τ(L∗D) = R(L∗D, g1) = R(LB, f1) ≤ τ(LB). (7)

Next suppose that the supremum in (3) for LB occurs at a function f2. Then we can define function
g2 by g2(σ) = f2(σ|B), from which (6) and (3) imply

τ(LB) = R(LB, f2) = R(L∗D, g2) ≤ τ(L∗D). (8)

Equations (7) and (8) imply that τ(LB) = τ(L∗D), as required.
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3.2 Weighted Canonical Paths

We begin by recalling a standard statement of the method of canonical paths. Fix graph G and Markov
process L over ΩG. Let Γ be the transition graph of L; that is, Γ = (ΩG, E) where (α, β) ∈ E if and only
if K[α→ β] > 0.

For each α, β ∈ ΩG, we will choose a simple path γ(α, β) from α to β in Γ. We will write |γ(α, β)| for
the length of path γ(α, β). The congestion of this choice of paths is defined to be

ρ = max
(σ,η)∈Γ

∑
γ(α,β)3(σ,η)

π(α)π(β)

π[σ]K[σ → η]
.

The following is a standard bound on the relaxation time of L, generally referred to as the canonical paths
bound [10, 15].

Proposition 3.4. τ ≤ ρ×maxα,β∈ΩG |γ(α, β)|

We wish to extend Proposition 3.4 to allow us to add weights to the edges of graph Γ. For each edge
(σ, η) in Γ we define an arbitrary real-valued weight w(σ, η) ≥ 0. Given a simple path γ(α, β) from α to β,
we define the weighted length of γ(α, β) to be |γ(α, β)|w =

∑
(σ,η)∈γ(α,β)w(σ, η). The weighted congestion

for a given choice of paths is then defined to be

ρw = max
(σ,η)∈Γ

1

w(σ, η)

∑
γ(α,β)3(σ,η)

π(α)π(β)

π[σ]K[σ → η]
.

Proposition 3.5. τ ≤ ρw ×maxα,β∈ΩG |γ(α, β)|w

We note that while we have not seen a proof of this result precisely as stated here, it has been pointed
out elsewhere that alternative weighting choices can be used to obtain variants of the canonical paths
bound (see, for example, the remarks preceeding Proposition 1’ in Diaconis and Stroock [6]). We present
a proof of Proposition 3.5 for completeness.

Proof of Proposition 3.5. Recall the definitions of variance Var(f) and Dirichlet form ξ(f, f) of a function
f : Ω→ R with respect to L, as described at the beginning of the proof of Proposition 3.2. We recall that

τ =
1

gap(L)
= sup

f

Var(f)

ξ(f, f)

where the supremum is over all non-constant functions f : Ω→ R.
For all non-constant functions f : Ω→ R,

Var(f) =
∑

σ,η∈ΩG

π(σ)π(η)(f(η)− f(σ))2

=
∑

σ,η∈ΩG

∑
(α,β)∈γ(σ,η)

w(α, β)

w(α, β)
(f(β)− f(α))2π(σ)π(η)

≤
∑

σ,η∈ΩG

|γ(σ, η)|wπ(σ)π(η)
∑

(α,β)∈γ(σ,η)

1

w(α, β)
(f(α)− f(β))2

=
∑

(α,β)∈Γ

π(α)K[α→ β]

w(α, β)
(f(α)− f(β))2

∑
σ,η:

γ(σ,η)3(α,β)

|γ(σ, η)|w
π(σ)π(η)

π(α)K[α→ β]

≤ ξ(f, f)× max
α,β∈ΩG

|γ(α, β)|w × ρw
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which implies that

τ = sup
f

Var(f)

ξ(f, f)
≤ max

α,β∈ΩG
|γ(α, β)| × ρw

as required.

4 3-Colourings of the Complete Tree

Before proving Theorem 1.1, we will warm up by bounding the relaxation time of the Glauber dynamics
on the complete tree in the special case k = 3. In the next section we will extend the argument to bound
the relaxation time on arbitrary trees for k ≥ 4; Theorem 1.2 follows from the combination of these two
results.

Let T be a complete rooted tree of maximum degree ∆, possibly with a single external boundary node
adjacent to its root.1 Let n = |T |, let v be the root of T , and let µ be a boundary configuration for T (i.e.
the fixed colour of the external boundary node, if it exists).

We consider the Glauber dynamics with 3 colours on T with boundary configuration µ, which is ergodic
by Lemma 2.1. Note that, up to a possible relabelling of the boundary colour, the behaviour of the dynamics
is completely determined by the height of T , say h. We therefore write τ(h) := τµT to be the relaxation
time of this process.

Lemma 4.1. For some fixed constant c, and for all h > 0,

τ(h) ≤ c∆2∆τ(h− 1). (9)

Before proving Lemma 4.1, let us show how it implies the upper bound for Theorem 1.1. For the
case h = 0, we have that T is a single vertex, and hence τ(0) = 1. This plus Lemma 4.1 implies that

τ(h) ≤
(
c∆2∆

)h
. But then, using (1) and the fact that T has height at most blog∆ nc, we have that the

mixing time for the Glauber dynamics on T is

M≤ (n log 3)τ(blog∆ nc)

≤ (n log 3)
(
c∆2∆

)logn/ log ∆

= nO(1+∆/ log ∆)

which is the upper bound from Theorem 1.2. It remains to prove Lemma 4.1, to which we devote the rest
of this section.

Proof of Lemma 4.1. We note that the general structure of our proof is very similar to the proof of Lemma
2.8 in [2]. We include the argument for completeness, and because we extend it in Section 5.1.

Suppose h > 0 and let u1, . . . , u∆−1 be the children of v in T . Let Vi be the subtree of T rooted at ui,
for each 1 ≤ i ≤ ∆− 1; note that each Vi is a complete tree of height h− 1. Let D = {{v}, V1, . . . , V∆−1}.
Consider the block dynamics LD on subtree T with blocks D. Let KD denote the transition probabilities
for LD, and let τD be the relaxation time of this Markov process. Then since no vertex in V lies in multiple
blocks in D, Proposition 3.1 implies that

τ(h) ≤ τD max
µ∈Ω
{τµ{v}, τ

µ
V1
, . . . , τµV∆−1

} = τDτ(h− 1) (10)

1We take the convention that each node in the complete tree of degree ∆ has ∆ − 1 children, including the root.
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since τµ{v} = 1, the relaxation time over a single vertex. It therefore remains to show that

τD ≤ c∆2∆. (11)

Recall the definition of graph B and dynamics LB from Proposition 3.3. In our case, B is a star
with root v and leaves u1, . . . , u∆−1, and LB is precisely the Glauber dynamics on B (possibly with a
boundary condition effecting v, corresponding to any boundary condition for T ). Proposition 3.3 then
implies τD = τB. Thus, to prove (11), it is sufficient to bound τB.

First let us give some intuition into the bound in (11) as it applies to τB. We would expect the mixing
time to be at least the expected time for v to change colour starting from a configuration chosen uniformly
at random. There are 2 colours that v might change to, and the probability that a particular colour is not
present on the leaves at some point of time is 2−(∆−1). Thus we expect it to take roughly 2∆−1 time before
the colour of the root can change. The bound in (11) states that the mixing time is not much more than
this.

We now proceed to bound τB using Proposition 3.4, the method of canonical paths. We note that this
is not the simplest way to obtain the desired bound, but it introduces techniques that will be useful when
proving Theorem 1.1.

Choose two colourings σ, η ∈ ΩB. Our goal is to define a sequence of steps of the Glauber dynamics
that begins in state σ and ends in state η. If σ(v) = η(v) this sequence is simple: the colours of nodes
u1, . . . , u∆−1 are changed from σ to η one at a time. If σ(v) 6= η(v), our strategy is to first change the
colours of u1, . . . , u∆−1 so that none have colour η(v), then change the colour of v to η(v), and finally set
the colours of the ui nodes to match η.

Let Γ be the transition graph over ΩB, with (α, β) ∈ Γ if and only if KB[α→ β] > 0. That is, (α, β) ∈ Γ
if and only if colourings α and β differ on exactly one vertex of G. For each σ, η ∈ ΩG we will define a
simple path in Γ, denoted γ(σ, η). If σ(v) = η(v), our path changes the colour of each ui from σ(ui) to
η(ui), one at a time. If σ(v) 6= η(v), then (writing ζ for the unique colour not in {α(v), η(v)}) our path
γ(σ, η) is as follows:

1. For each ui in increasing order: recolour from σ(ui) to ζ.

2. Recolour v from σ(v) to η(v).

3. For each ui in decreasing order: recolour from ζ to η(ui).

Let L be the maximum length of any such path γ(σ, η). We note that L ≤ 2∆− 1.
For each edge (α, β) ∈ Γ, define the congestion of that edge, ρ(α, β), as

ρ(α, β) :=
∑
σ,η:

γ(σ,η)3(α,β)

π[σ]π[η]

π[α]K[α→ β]
.

The congestion for our set of paths is
ρ := sup

α,β
ρ(α, β).

Proposition 3.4 gives us that
τB ≤ Lρ ≤ (2∆− 1)ρ (12)

Our goal now is to bound ρ. From the definition of the Glauber dynamics,

K[α→ β] =
1

3
. (13)
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We also note that
|ΩB| ≥ 2∆, (14)

which follows by choosing a colouring for B in a top-down manner starting at v, where the colour chosen
for each vertex must avoid the colour chosen for its parent (including v, if B has an external boundary).

Using (14) and the fact that π is the uniform distribution, we have

ρ(α, β) =

(
|{σ, η : γ(σ, η) 3 (α, β)}| × 1

|ΩG|K[α→ β]

)
≤
(
|{σ, η : γ(σ, η) 3 (α, β)}| × 3

2∆+1

)
.

(15)

To bound ρ, it remains to compute the number of paths γ(σ, η) that include (α, β) for each (α, β) ∈ Γ.
If α(v) 6= β(v), then (α, β) will appear in γ(σ, η) for each σ and η for which σ(v) = α(v) and η(v) =
β(v). There are at most 22(∆−1) such σ and η, corresponding to the choices of σ(u1), . . . , σ(u∆−1) and
η(u1), . . . , η(u∆−1).

On the other hand, if α and β differ on the colour of ui for some i, then if (α, β) occurs on a path
γ(σ, η) then one of the following is true:

• σ(v) = α(v), σ(ui) = α(ui), and η(v) 6= α(ui), or

• η(v) = β(v), η(ui) = β(ui) and σ(v) 6= η(ui).

There are at most 22∆−1 choices for σ and η in either case, for a total of 2× 22(∆−1). We conclude that at
most 22∆−1 paths include any given transition (α, β).

Substituting the value 22∆−1 into (15), we have

ρ(α, β) ≤ 22∆−1 3

2∆

≤ 3× 2∆

Applying (12), we conclude that

τD ≤ Lρ ≤ 3(2∆− 1)2∆ ≤ 6∆2∆

which is (11) with c = 6. This completes the proof of Lemma 4.1.

5 An Upper Bound for General Trees

We now begin our proof of Theorem 1.1. Our approach is to decompose a tree into smaller subtrees, apply
the block dynamics to the resulting subgraphs, and then use induction to bound the mixing time of the
entire tree. Implicitly, this yields an iterative decomposition of the tree into smaller and smaller subtrees.
How should we decompose a tree? A first idea is to use the same decomposition that we applied to the
complete tree in the previous section: root the tree at a vertex v, then take each subtree rooted at a child
of v as a block (and v itself as a block of size 1). A nice property of this decomposition is that each subtree
has at most one boundary node, adjacent to its root. In this case there will be h levels of recursion in the
induction, where h is the height of tree T , and we will obtain a bound of the form ch, where c = c(∆, k)
is the mixing time for an instance of the block dynamics. This method worked for complete trees since
they have logarithmic height. However, the height of a general tree could be much greater, leading to a
super-polynomial bound.
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Instead, we will partition the tree in a manner that guarantees each block has size at most half the size
of the tree. This ensures that our recursion halts after logarithmically many steps, and yields a polynomial
mixing time. To obtain such a partition, we choose a central node x and conceptually split the tree by
removing x, obtaining at most ∆ subtrees plus {x}.

There are difficulties with the above approach that must be overcome. First, a subtree T may have
multiple boundary nodes, which complicates the behaviour of the block dynamics. We therefore make our
choice of x carefully, so that boundaries are of size at most 2. It is this point in the analysis that we require
that there be at least 4 colours, so that Lemma 2.1 implies that the Glauber dynamics is ergodic on each
subtree T . Second, for non-complete trees we might have blocks of vastly differing sizes, which makes a
tight analysis of the block dynamics more difficult. We therefore use the weighted version of the block
dynamics.

In this section we describe our choice of blocks for the block dynamics. We then show that the upper
bound of Theorem 1.1 holds, given a bound on the relaxation time of the block dynamics. The details of
analyzing the block dynamics are encapsulated in Lemma 5.1, which is proved in Section 5.1.

Let T be any tree with maximum degree ∆. Suppose |T | = n and |∂T | ≤ 2 (that is, T has at most two
external boundary nodes). Suppose also that k ≥ 4 (i.e. there are at least 4 colours). Let µ be a boundary
configuration for T . Let LµT denote the Glauber dynamics on T with k colours and boundary configuration
µ. Since |∂T | ≤ 2, Lemma 2.1 implies that LµT is ergodic for all µ. Let τµT denote the relaxation time for
LµT . We wish to consider the maximum relaxation time over all boundary configurations and trees of a
certain size. To this end, we define

τT := max
µ∈Ω

τµT and τi(n) := max
T :|T |≤n, |∂T |≤i

τT .

We will prove Theorem 1.1 by showing the slightly stronger result that τ2(n) = nO(1+∆/k log ∆). We will
show that, for some fixed constant c and some 2 ≤ i ≤ ∆,

τ2(n) ≤ ci2
(
k − 1

k − 2

)i+1

τ2 (bn/ic) . (16)

First let us show how (16) implies Theorem 1.1.By induction on n, (16) implies that τ2(n) ≤ nd(1+∆/k log ∆)

for some constant d (since we can assume k ≤ 2∆, as otherwise the result is known [9]). By (1), the mixing
time of the Glauber dynamics on a tree T with n nodes satisfies M(L) ≤ (n log k)τT ≤ (n log k)τ2(n) =
nO(1+∆/k log ∆) as required.

We now turn to proving (16). The following Lemma will be our main tool.

Lemma 5.1. Suppose k ≥ 4 and let T be a subtree of a tree G with |∂T | ≤ 2 and let µ ∈ Ω be a boundary
condition for T . Choose v ∈ T and let Dv = {{v}, V1, . . . , Vt} be a partition of T into disjoint connected
subtrees, where 1 ≤ t ≤ ∆. Suppose |∂Vi| ≤ 2 for each Vi. Then there exists constant c such that

τµT ≤ c max
1≤i≤t

i2
(
k − 1

k − 2

)i
τVi .

We prove Lemma 5.1 in Section 5.1. Let us show how it implies (16). We first consider trees with
boundaries of size one, then size two.

Lemma 5.2. For some 2 ≤ i ≤ ∆, we have τ1(n) ≤ ci2
(
k−1
k−2

)i
τ2 (bn/ic).
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Proof. Choose some T with |∂T | ≤ 1. It is a classical result that we can find a vertex x ∈ T such that if
Dx = {{x}, V1, . . . , Vt} is the set of disjoint connected subtrees obtained by disconnecting x from the rest
of T , then we will have |Vi| ≤ bn/2c for all 1 ≤ i ≤ t. Indeed, if we root T arbitrarily and define T (y) to
be the subtree rooted at y for each y ∈ T , then we can choose x to be the vertex such that |T (x)| > bn/2c
and |T (x)| is as small as possible. Then |T\T (x)| ≤ bn/2c and |T (z)| ≤ bn/2c for all children z of x, so x
satisfies the desired property.

Fix such a node x and choose indices so that |V1| ≥ |V2| ≥ . . . ≥ |Vt|. Since |∂T | ≤ 1, we have |∂Vi| ≤ 2

for all i. By Lemma 5.1, τT ≤ ci2
(
k−1
k−2

)i
τVi for some 1 ≤ i ≤ t.

If i ≥ 2, we get τVi ≤ τ2(|Vi|) ≤ τ2(bn/ic), since the Vi are given by increasing size. Thus τT ≤
ci2
(
k−1
k−2

)i
τ2 (bn/ic) for some 2 ≤ i ≤ t as required. If i = 1, then we recall that |V1| ≤ bn/2c by our choice

of x. Hence τT ≤ c
(
k−1
k−2

)
τV1 < c(2)2

(
k−1
k−2

)2
τ2 (bn/2c) as required.

Lemma 5.3. For some 2 ≤ i ≤ ∆, τ2(n) ≤ c2i2
(
k−1
k−2

)i+1
τ2(bn/ic).

Proof. Let T be a subtree with |T | = n and |∂T | = 2, say ∂T = {z1, z2}. Choose x as in Lemma 5.2, with
x separating T into subtrees of size at most bn/2c. We will call the unique path in T from z1 to z2 the
boundary path for T . Suppose x is on the boundary path for T . Let Dx = {{x}, V1, . . . , Vt} be a partition
into disjoint connected subtrees, indexed so that |V1| ≥ . . . ≥ |Vt|; note that |∂Vi| ≤ 2 for all i. We then
apply Lemma 5.1 as in Lemma 5.2 and obtain the desired result.

Now suppose that x is not on the boundary path for T . Consider T to be rooted at some r ∈ ∂T .
Let y be the least ancestor of x that lies on the boundary path. Consider Dy = {{y}, V1, . . . , Vt}. Since
x separates T into subtrees of size at most bn/2c, in particular the subtree containing y must have size
at most bn/2c. This implies that the subtree separated by y that contains x must contain at least bn/2c
nodes, and is therefore V1, the largest subtree separated by y. Also, |∂Vi| ≤ 2 for all i, since y is on the
boundary path for T . Lemma 5.1 implies

τT ≤ ci2
(
k − 1

k − 2

)i
τVi

for some i. If i > 1 then we obtain the desired result since |Vi| ≤ bn/ic. If i = 1, then since |V1| < n and
|∂V1| = 1 ( by our choice of y), Lemma 5.2 implies

τT ≤ c
(
k − 1

k − 2

)
τ1(|V1|) ≤ c

(
k − 1

k − 2

)
τ1(n)

≤ c2i2
(
k − 1

k − 2

)i+1

τ2 (bn/ic) for some 2 ≤ i ≤ ∆.

We have now derived (16), completing the proof of Theorem 1.1.

5.1 Proof of Lemma 5.1

We now proceed with the proof of Lemma 5.1, which bounds the relaxation time on a tree with respect
to the relaxation times for subtrees. Our approach is to use a canonical paths argument to bound the
behaviour of the block dynamics. Indeed, there is a simple canonical path to move between any two
configurations σ and η of T : modify the configuration of each Vi to an intermediate state so that v is free
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to change colour to η(v), change the colour of v to η(v), then set the configuration of each Vi to η(Vi). The
block dynamics paired with this set of canonical paths yields a bound on the relaxation time. However,
that bound is not tight enough to imply the mixing rate we desire: it only implies a mixing time of nO(∆).
We therefore apply the following sequence of improvements to the above approach.

1. We explicitly describe an intermediate configuration for the neighbours of v, in order to balance
congestion over all start and end configurations. This improves the bound on the mixing time to
nO(log ∆+log k+∆/k).

2. Our path shifts between 3 different intermediate configurations to maximize the dependency on the
start and end configurations at each step. This improves our bound to nO(log ∆+∆/k).

3. We apply the weighted block dynamics, to differentiate between large and small subtrees. We always
change configurations of blocks in order of subtree size. This improves our bound to nO(log ∆+∆/k log ∆).
See Remark 5.7.

4. We apply weights to our canonical path to discount the congestion on smaller subtrees. The net
effect is that the presence of many small subtrees does not influence the congestion of our paths.
This improves our bound to nO(1+∆/k log ∆). See Remark 5.6.

5.1.1 The Block Dynamics

Recall the conditions of Lemma 5.1. Suppose k ≥ 4 and let T be a tree with |∂T | ≤ 2 and let µ ∈ Ω be
a boundary condition for T . We will root T at some vertex v ∈ T . Let u1, . . . , ut be the children of v,
where 1 ≤ t ≤ ∆. Let Vi denote the subtree rooted at ui, so that D = {{v}, V1, . . . , Vt} is a partition of
T . Suppose we chose v so that |∂Vi| ≤ 2 for each Vi. For improved clarity of exposition, we will prove
Lemma 5.1 under the assumption that ui 6∈ ∂T for all i. The (simple) extension to remove this assumption
is discussed at the conclusion of this section; see Section 5.1.5.

Let L∗D be the generator for the weighted block dynamics corresponding to D and boundary configura-
tion µ. Let τµD denote the relaxation time of L∗D. Since no vertex lies in more than one block, Proposition
3.2 implies τµT ≤ τ

µ
D.

Next recall the definition of graph B and dynamics LB from Proposition 3.3. In this context, we can
view LB as a version of L∗D wherein each block is treated like a single vertex. That is, B is a star with
internal node v; we will refer to u1, . . . , ut as the leaf nodes of B. When such a leaf node, say ui, is chosen
by the dynamics, its colour updates with probability corresponding to the probability of seeing that colour
as the root of Vi in L∗D. By Proposition 3.3, τ(L∗D) = τ(LµB). It is therefore sufficient to bound τ(LµB). The
following simple Lemma bounds the transition probabilities of LµB.

Lemma 5.4. Choose S ⊆ T with |∂S| ≤ 2 and boundary configuration ξ, and suppose x ∈ ∂S. Choose

c ∈ A and suppose there exists some η ∈ Ωξ
S with η(x) = c. Then πξS [ω : ω(x) = c] ≥ 1/k.

Proof. Think of x as the root of S and consider choosing a configuration for S by choosing a colour for
each node, top-down. Since x ∈ ∂S, there are at most k − 1 choices for the colour of x. Given any such
choice, there are k−1 choices for each subsequent node, except possibly for any node in ∂S for which there
will be either k − 1 or k − 2 choices. Since |∂S| ≤ 2, there can be at most one node beside x in ∂S. Thus,

for any c ∈ A, (k − 1)n−2(k − 2) ≤ |{η ∈ Ωξ
S : η(x) = c}| ≤ (k − 1)n−1, as long as there is at least one

colouring in which x has colour c. Thus

πξS [η : η(x) = c] =
|{η ∈ Ωξ

S : η(x) = c}|
|Ωξ
S |

≥ (k − 1)n−2(k − 2)

(k − 1)n−1(k − 2) + (k − 1)n−2(k − 2)
=

1

k

as required.
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The following corollary is now immediate from Lemma 5.4 and the definition of LB.

Corollary 5.5. Suppose α, β ∈ Ωµ
B, KB[α→ β] > 0, and α(ui) 6= β(ui). Then KB[α→ β] ≥ (kτµVi)

−1.

5.1.2 Definition of Intermediate Configurations

Choose two colourings σ, η ∈ ΩB. Our goal is to define a sequence of steps of LB that begins in state σ and
ends in state η. If σ(v) = η(v) this sequence is simple: the colours of nodes u1, . . . , ut are changed from σ
to η one at a time. If σ(v) 6= η(v), our strategy is to first change the colours of u1, . . . , ut so that none have
colour η(v), then change the colour of v to η(v), and finally set the colours of the ui nodes to match η.
The obvious way to do this requires two “passes” of changes over the leaf nodes (as in our analysis for the
complete tree in Section 4) but this method generates too much congestion in the canonical paths analysis
(see Section 3.2). We therefore introduce a more complex path that uses three passes. We now define the
colours used in the intermediate configurations of this path.

If σ(v) 6= η(v) then for each 1 ≤ i ≤ t we will define three colours, ai, bi, and ci, that depend on σ and
η. The first two colours are easy to define:

ai =

{
σ(ui) if σ(ui) 6= η(v)

σ(v) otherwise
bi =

{
η(ui) if η(ui) 6= σ(v)

η(v) otherwise

That is, (a1, . . . , at) are the colours of the children of v in σ, with any occurrences of η(v) replaced with
σ(v). Note that our assumption that ui is not adjacent to the external boundary of T ensures that there
exists a configuration in which ui has colour ai. We define bi in the same way, but with the roles of σ and
η reversed.

The definition of colour ci is more involved. These will be the colours to which we set the leaf nodes to
allow v to change from σ(v) to η(v). We will apply a function f that will map the colours (σ(u1), . . . , σ(ut))
to a vector of colours (c1, . . . , ct) such that for all i, ci 6∈ {σ(v), η(v)}. We want f to satisfy the following
balance property: for all 1 ≤ i ≤ t, writing x for (x1, . . . , xt),

#{x : (xj = σ(uj) ∀j > i) ∧ (f(x)j = cj ∀j ≤ i)} ≤

⌈(
k − 1

k − 2

)i⌉
. (17)

That is, for any 1 ≤ i ≤ t, if we are given c1, . . . , ci and σ(ui+1), . . . , σ(ut), there are at most

⌈(
k−1
k−2

)i⌉
possibilities for σ(u1), . . . , σ(ut). Such an f is guaranteed to exist; an explicit construction is given in
Section 5.2.

5.1.3 The Path Definition

Let Γ be the transition graph over ΩB with (α, β) ∈ Γ if and only if KB[α → β] > 0. We are now ready
to define the path γ(σ, η) for each σ, η ∈ ΩB. If σ(v) = η(v), our path simply changes the colour of each
ui from σ(ui) to η(ui), one at a time. If σ(v) 6= η(v), we use the following path:

1. For each ui in increasing order: recolour from σ(ui) to bi, then to ci.

2. Recolour v from σ(v) to η(v).

3. For each ui in decreasing order: recolour from ci to η(ui), then to ai.

4. For each ui in increasing order: recolour from ai to η(ui).
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The reader is encouraged to verify that all steps are valid transitions according to LµB. At first glance,
the number of changes to the colour of each ui seems excessive. In particular, step 4, the second half of step
3, and the first half of step 1 may seem redundant. However, we define our path in this way to maintain
two important properties. First, each change to any vertex is from a colour derived from α to a colour
derived from η, or vice-versa. Second, whenever the colours c1, . . . , ct appear on some of the leaves, they
appear on the low-index nodes; and each remaining leaf (except possibly one) will have colour σ(ui) or ai.
These properties will be important in our analysis of the congestion generated by this set of paths.

5.1.4 Analysis of Weighted Path Congestion

We wish to apply the canonical paths bound to our choice of paths. However, the standard bound,
Proposition 3.4, will not give us a tight result when the sizes of the subtrees in our decomposition are
highly skewed. Let us briefly provide some intuition. The bound in Proposition 3.4 depends highly on the
length of the paths we have chosen. In our case, our paths always have length linear in t. However, in our
decomposition of tree T into t subtrees, it may be that only some small number t′ of these subtrees trees
are large and the remainder are very small. In this case our tree is “close to” a tree with only t′ subtrees,
so we would like for the congestion of our paths to depend on t′ rather than t. Thus, when calculating the
length of our paths, we would rather use a weighted length that takes into account the differing sizes of
the blocks being reconfigured.

We will address this issue by applying Proposition 3.5, the weighted canonical paths bound, to our
choice of paths. We will choose our weights such that changes to nodes corresponding to larger subtrees
have greater weight, and furthermore the total weight of a path that changes the colour of each node once
will be bounded by a constant. Specifically, we will set w(α, β) = 1 if α and β differ on the colour of v,
and set w(α, β) = i−2 if α and β differ on the colour of vertex ui. Recall that the weight of path γ(σ, η)
is given by |γ(σ, η)|w =

∑
(α,β)∈γ(σ,η)w(α, β). Then note that for all σ and η, recalling the definition of

γ(σ, η) from Section 5.1.3, |γ(σ, η)|w ≤ 1 + 5
∑t

i=1 i
−2 < 1 + 5

(
π2

6

)
< 10. For each edge (α, β) ∈ Γ, the

weighted congestion of that edge, ρw(α, β), is

ρw(α, β) :=
1

w(α, β)

 ∑
σ,η:

γ(σ,η)3(ω,β)

π[σ]π[η]

π[α]KB[α→ β]

 .

The weighted congestion for our set of paths is ρw := supω,β ρw(ω, β). Proposition 3.5 is then

τµB ≤ max
σ,η
|γ(σ, η)|w × ρw ≤ 10ρw. (18)

It remains to bound ρw(α, β) for each (α, β) ∈ Γ. Uniformity of π implies

ρw(α, β) ≤ 1

w(α, β)
× |{γ(σ, η) 3 (α, β)}| × 1

(k − 1)t+1KB[α→ β]
. (19)

We now consider cases depending on the nature of the transition (α, β).
Case 1: α and β differ on the colour of v. Note that w(α, β) = 1. Also, from the definition

of LB, we have KB[α → β] = infµ∈Ω gap(Lµ{v})π
α
{v}[φ : φ(v) = β(v)]. But note that gap(Lµ{v}) = 1 for all

boundary conditions, and πα{v} is the uniform distribution over a set of at most k − 1 colours.We conclude

KB[α→ β] ≥ 1

k − 1
. (20)
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Consider the number of (σ, η) such that (α, β) ∈ γ(σ, η). This occurs precisely when σ(v) = α(v),
η(v) = β(v), and moreover σ and η are such that ci = α(ui) = β(ui) for all ui.

Consider the possibilities for η. Configuration β determines η(v), and there are (k − 1)t choices for
η given η(v) (consider choosing the colours for u1, . . . , ut, which cannot be η(v)). Now consider σ: the
colour σ(v) is determined by α, as are (c1, . . . , ct). Thus by (17) there are at most d(k−1

k−2)te possibilities for
(σ(u1), . . . , σ(ut)), which determines σ. Putting this together, the total number of colourings σ and η that

satisfy (α, β) ∈ γ(σ, η) is at most (k − 1)t
⌈(

k−1
k−2

)t⌉
. Substituting this and (20) into (19), we conclude

ρw(α, β) ≤ 10(1)(k − 1)t

⌈(
k − 1

k − 2

)t⌉ k − 1

(k − 1)t+1
≤ 20

(
k − 1

k − 2

)t
.

Case 2: α and β differ on the colour of ui for some i. In this case, w(γ(σ, η)) = i−2. Also,
since there exists a colouring of Vi in which ui has colour β(ui) (recalling our assumption that ui 6∈ ∂T ),
Corollary 5.5 implies

KB[α→ β] ≥ (kτVi)
−1. (21)

How many paths in γ(σ, η) use the transition (α, β)? We consider subcases for σ and η.
Case 2.1: σ(v) = η(v). Recall that in this case a special, simple canonical path is used. We know

σ(v) = η(v) = α(v) = β(v). Also, we know σ(uj) = α(uj) for all j ≥ i, and η(uj) = β(uj) for all j ≤ i. So
for each j < i there are (k − 1) possibilities for σ(uj), and for each j > i there are (k − 1) possibilities for
η(uj). The total number of possibilities for σ and η is therefore at most (k − 1)t−1.

Case 2.2: σ(v) 6= η(v) and (α, β) is the first change to ui in γ(σ, η). That is, (α, β) is the first
change in Step 1 of the canonical path description in Section 5.1.3. In this case we know σ(v) = α(v),
σ(uj) = α(uj) for all j ≥ i, bi = β(ui), and cj = β(uj) for all j < i. We wish to count the number of
colourings σ and η that satisfy these conditions.

First consider η. There are at most k − 1 possibilities for η(v), since η(v) 6= σ(v) = α(v). Given η(v),
there are k−1 possibilities for η(uj) for each j 6= i. Note that β determines bi, from which η(v) determines
η(ui). Thus the total number of possibilities for η is (k − 1)t.

Next consider σ. Note that α determines σ(v) and also σ(uj) for all j ≥ i. Also, β determines cj for

all j < i. Then (17) implies that the number of possibilities for σ(u1), . . . , σ(ut) is at most

⌈(
k−1
k−2

)i−1
⌉

.

We conclude that for this subcase the total number of possibilities for σ and η is at most⌈(
k − 1

k − 2

)i−1
⌉

(k − 1)t.

Case 2.3: σ(v) 6= η(v) and (α, β) is the second change to ui in γ(σ, η). This is the second change
in Step 1 of the canonical paths description in Section 5.1.3. This case is nearly identical to Case 2.2; the
only difference is that for node ui we know bi = α(ui) and ci = β(ui).

The only effect that this has on the analysis is that now ci is determined instead of σ(ui). Given ci
(instead of σ(ui)), the factor due to (17) becomes d(k−1

k−2)ie. We conclude that the number of possibilities
for σ and η is at most ⌈(

k − 1

k − 2

)i⌉
(k − 1)t.

Case 2.4: σ(v) 6= η(v) and (α, β) is the third change to ui in γ(σ, η). This is the first change
in Step 3 of the canonical paths description in Section 5.1.3. In this case, η(v) = α(v), cj = α(uj) for all
j < i, and aj = β(uj) for all j > i. Further, ci = α(ui) and η(ui) = β(ui).
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Note first that α determines c1, . . . , ci and β determines ai+1, . . . , at. Consider possibilities for η: β
determines η(v) and η(ui). For each j 6= i, there are (k − 1) possibilities for η(uj). The number of
possibilities for η is thus at most (k − 1)t−1.

Now consider σ. There are at most k − 1 possibilities for σ(v). Recall that colours ai+1, . . . , at and
colours c1, . . . , ci are determined. But then σ(ui+1), . . . , σ(ut) can be recovered (using σ(v)) and by (17)
there are at most d(k−1

k−2)ie possibilities for (σ(u1), . . . , σ(ut)). The number of possibilities for σ is therefore

at most (k − 1)

⌈(
k−1
k−2

)i⌉
. We conclude that for this subcase the total number of possibilities for σ and η

is at most ⌈(
k − 1

k − 2

)i⌉
(k − 1)t.

Case 2.5: σ(v) 6= η(v) and (α, β) is the fourth change to ui in γ(σ, η). This is the second change
in Step 3 of the canonical paths description in Section 5.1.3. This case is nearly identical to Case 2.4; the
only difference is that for node ui we know η(ui) = α(ui) and ai = β(ui).

The only effect that this has on the analysis is that now ai is determined instead of ci. This causes the
factor due to (17) to become d(k−1

k−2)i−1e. We conclude that the number of possibilities for σ and η is at
most ⌈(

k − 1

k − 2

)i−1
⌉

(k − 1)t.

Case 2.6: σ(v) 6= η(v) and (α, β) is the fifth change to ui in γ(σ, η). This is the change in Step
4 of the canonical paths description in Section 5.1.3. In this case we know η(v) = α(v), aj = α(uj) for all
j > i, and η(uj) = β(uj) for all j < i. For ui, we know ai = α(ui) and η(ui) = β(ui).

In this case there are at most (k − 1) choices for σ(v). The colours ai, . . . , at plus η(v) are deter-
mined by α. From these colours (plus σ(v)) the colours σ(ui), . . . , σ(ut) are determined. Furthermore,
η(u1), . . . , η(ui) are determined from β.

From this point onward the analysis is identical to that of Case 2.1. Taking into account the k − 1
possibilities for σ(v), we conclude that the number of possible options for σ and η is at most (k − 1)t.

This concludes our subcase analysis. Summing over all subcases, the total number of possibilities for σ

and η, given that (α, β) is a change in the colouring of ui, is at most 12
(
k−1
k−2

)i
(k − 1)t. Substituting this

and (21) into (19), we have

ρw(ω, β) ≤ 120i2
(
k − 1

k − 2

)i
(k − 1)t

(
τVik

(k − 1)t+1

)
≤ 180i2

(
k − 1

k − 2

)i
τVi .

This concludes our case analysis. Cases 1 and 2 (and the fact that τVt ≥ 1) imply

ρw ≤ max
1≤i≤t

180i2
(
k − 1

k − 2

)i
τVi .

Applying the canonical paths bound and Proposition 3.2 we conclude

τσT ≤ τσD ≤ 180 max
1≤i≤t

i2
(
k − 1

k − 2

)i
τVi (22)

as required.
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Remark 5.6. We note the effect of using the weighted canonical paths bound. If we had used the standard
canonical paths bound, then we would replace the factor of i2 in Lemma 5.1 by the maximum length of a
path, which is 5∆ + 1. This would lead to an extra factor of ∆h on our mixing time bound, where h is the
“height” of the tree under our given decomposition method. However, since each recursive application of
our decomposition guarantees only a reduction of the tree size by half, this extra factor is can be as large
as ∆logn = nlog ∆. This leads to a bound of nO(log ∆+∆/k log ∆) on the mixing time of the Glauber dynamics,
which is weaker than nO(1+∆/k log ∆).

Remark 5.7. We also note the effect of using the weighted block dynamics. If we had applied Proposition
3.1 instead of Proposition 3.2, the bound in (21) would become KB[ω → β] ≥ (kτ)−1, where τ = maxi τVi .

This would lead to a bound of τσT ≤ ct2
(
k−1
k−2

)t
max1≤i≤t τVi for Lemma 5.1. With this modified Lemma, the

bound in (16) would become τ2(n) ≤ ct2
(
k−1
k−2

)t
τ2 (dn/2e), leading to a mixing time bound of nO(1+∆/k),

which is weaker than nO(1+∆/k log ∆).

5.1.5 Handling the case ui ∈ ∂T

We now modify the proof of Lemma 5.1 to handle the case that there exist i such that ui ∈ ∂T . Note first
that if ui ∈ ∂T , then ui can be adjacent to only one node in ∂T , since |∂Vi| ≤ 2 and v ∈ ∂Vi.

We used the assumption ui 6∈ ∂T when defining our canonical paths with colours ai, bi, ci: this allowed
us to assume that there existed colourings of Vi in which the colour of ui was ai (or bi, or ci). If ui ∈ ∂T ,
it’s possible that one or more of these colours will conflict with the boundary configuration, so it may
not be possible to use these colours in the construction of our canonical path. Our approach will be to
construct alternative “fixed” versions of these colours, then show that it is easy to reconstruct the original
colours from their fixed counterparts.

For each 1 ≤ i ≤ t we define colours a′i, b
′
i, and c′i. If there exists a colouring of Vi in which ui has

colour ai, then set a′i = ai. Otherwise it must be that ui ∈ ∂T , and in this case we set a′i to be any other
colour not in {ai, α(v), η(v)}. Such a colour must exist since k ≥ 4. Also, since ui is adjacent to at most
one vertex in ∂T and a′i 6= ai, there must exist some colouring of Vi in which the colour of ui is a′i. We
define b′i and c′i in a similar way, corresponding to bi and ci. We then use a′i, b

′
i, and c′i in the definition of

our canonical paths instead of colours ai, bi, and ci.
How does this affect our analysis? When we compute the number of (α, η) such that (ω, β) ∈ γ(α, η),

there may be one or more vertices uj for which we have to reconstruct aj , bj , and/or cj from their fixed
versions a′j , b

′
j , and/or c′j . For any such j, if uj 6∈ ∂T (which is determined by the structure of T and does

not depend on the configuration) then the fixed and original colours are the same. When uj ∈ ∂T , there
will be at most two possibilities for each of these colours (ie. either aj = a′j or aj is the colour that conflicts

with the boundary configuration, and similarly for bj and cj). Since there are at most 2 nodes uj in ∂T ,
this adds a factor of at most 4 to our analysis.

We conclude that the analysis for Lemma 5.1 leads to the same result, with an extra factor of 4. This
gives Lemma 6.1 as required.

5.2 A balanced mapping function

We now present the mapping function f used in the proof of Lemma 5.1, which satisfies (17). We will
actually prove the existence of f in the following, equivalent, arena.

Lemma 5.8. For all k ≥ 3 and 1 ≤ t ≤ ∆, there is a function f : [k − 1]t → [k − 2]t such that for all
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y ∈ [k − 2]t, z ∈ [k − 1]t, and 1 ≤ i ≤ t,

|{x : (xj = zj ∀j > i) ∧ (f(x)j = yj ∀j ≤ i)}| ≤

⌈(
k − 1

k − 2

)i⌉
.

Proof. Given x ∈ [k − 1]t, interpret x as the representation of an integer d in base k − 1. Let y be the
representation of d mod (k − 2)t in base k − 2. Then we define f to be the function mapping x to y.

To see that f satisfies the required property, fix some 1 ≤ i ≤ t. Consider the image of f on all
z ∈ [k − 1]t such that xj = zj for all j > i, in lexicographic order. This image is simply a sequence of
(k−1)i consecutive integers, modulo (k−2)t, in base k−2. In particular, each pattern of i least significant

digits occurs once every (k − 2)i values, and hence occurs at most

⌈(
k−1
k−2

)i⌉
times over the sequence of

integers. This is therefore a bound on the size of the preimage of f restricted to this set, as required.

6 Extending to general boundary conditions

In the proofs of Theorem 1.1 and Lemma 5.1, we were careful to consider only subtrees with at most 2
boundary vertices. This was enough to prove Theorem 1.1 and simplified our arguments. However, this
restriction can be relaxed when k > 4. Indeed, all that is required by our technique is that |∂T | ≤ k − 2.

Theorem 1.4 is a variant of Theorem 1.1 that uses this relaxation. We will prove it by making use of
the following variant of Lemma 5.1.

Lemma 6.1. Suppose k ≥ 3 and let T be a subtree of a tree G with b := |∂T | ≤ k − 2 and let σ ∈ Ω be a
boundary condition for T . Choose x ∈ T and consider Dx = {{x}, V1, . . . , Vt}, where 1 ≤ t ≤ ∆. Suppose
|∂Vi| ≤ b for each Vi. Then, for some constant c,

τσT ≤ cb2b max
1≤i≤t

i2
(
k − 1

k − 2

)i
τVi .

Before proving Lemma 6.1, we will discuss how it implies Theorem 1.4. Indeed, this implication follows
the deduction of Theorem 1.1 from Lemma 5.1 almost exactly. Define τb(n) as in Section 5.1. Then the
argument from Lemma 5.2 yields

τb−1(n) ≤ cb2b max
1≤i≤t

i2
(
k − 1

k − 2

)i
τb(bn/ic). (23)

To bound τb(n), we proceed as in Lemma 5.3. Define the boundary tree of T to be the union of the paths
between vertices of ∂T in T . Note that this is, indeed, a subtree of T . Choose a vertex x ∈ T that
separates T into subtrees with at most n/2 vertices, then let y be the vertex that is the least ancestor
of x that is in the boundary tree. Just as in Lemma 5.3 we can apply Lemma 6.1 (using the partition
Dy = {{y}, V1, . . . , Vt}), then use (23), to obtain the bound

τb(n) ≤ c2b222b max
1≤i≤t

i2
(
k − 1

k − 2

)i+1

τb(n/i).

Induction then implies that τb(n) ≤ nd(1+b+∆/k log ∆) for some sufficiently large constant d. This follows in
precisely the same way that (16) implies Theorem 1.1 in Section 5.

It remains to give the proof of Lemma 6.1, which mirrors the proof of Lemma 5.1 with two changes.
First, we require the following more general version of Lemma 5.4.
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Lemma 6.2. Choose S ⊆ T with b := |∂S| ≤ k − 2 and boundary configuration ξ, and suppose x ∈ ∂S.

Choose c ∈ A and suppose there exists some η ∈ Ωξ
S with η(x) = c. Then πξS [ω : ω(x) = c] ≥ 1/(b+ 1)k.

Proof. Think of x as the root of S and consider choices of colours top-down. Then for any colour c, since
|∂S| = b, (k − 1)n−2(k − b + 1) ≤ |{η ∈ Ωξ

S : η(x) = c}| ≤ (k − 1)n−1, as long as there is at least one
colouring in which x has colour c. Thus

πξS [η : η(x) = c] =
|{η ∈ Ωξ

S : η(x) = c}|
|Ωξ
S |

≥ (k − 1)n−2(k − b+ 1)

(k − 1)n−1(k − 2) + (k − 1)n−2(k − b+ 1)

=
1

1 + (k−2)(k−1)
k−b+1

≥ 1

(b+ 1)k

as required.

This change to Lemma 5.4 affects (19), adding a factor of (b+ 1) to our analysis.
Second, recall our discussion of the case that ui ∈ ∂T at the end of the proof of Lemma 5.4. We will

give a simple extension of this approach. For each 1 ≤ i ≤ t we will define colours a′i, b
′
i, and c′i. If there

exists a colouring of Vi in which ui has colour ai, then set a′i = ai. Otherwise it must be that ui ∈ ∂T ,
and in this case we set a′i to be any other colour not in {ai, σ(v), η(v)}. This colour a′i must exist since
k ≥ b + 2, and there will exist some colouring of Vi in which ui has colour a′i. We define b′i and c′i in a
similar way. We then use a′i, b

′
i, and c′i in the definition of our canonical paths instead of colours ai, bi,

and ci.
How does this affect our analysis? When we compute the number of (σ, η) such that (α, β) ∈ γ(σ, η),

we must reconstruct aj , bj , and/or cj from their fixed versions. If uj 6∈ ∂T then the fixed and original
colours are the same. When uj ∈ ∂T , there will be at most two possibilities for each of these colours (ie.
either aj = a′j or aj is the colour that conflicts with the boundary configuration, and similarly for bj and

cj). Since there are at most b nodes uj in ∂T , this adds a factor of at most 2b to our analysis.
We conclude that the analysis for Lemma 5.1 leads to the same result, with an extra factor of (b+ 1)2b.

This gives Lemma 6.1 as required.

7 A Lower Bound

We will now prove Theorem 1.3: that the mixing time for the Glauber dynamics on the complete tree of
degree ∆ is nΩ(∆/k log ∆). Recall that we are working in the continuous-time setting.

Let T be the complete tree with degree ∆ and height h, where a singleton is said to have height 0. Let
n = |T | and note h ≥ log∆ n− 1. For each 0 ≤ i ≤ h, define Ti by

Ti =
1

10(k − 1)

(
1

20(k − 1)2

(
1− 9

10(k − 1)

)−∆
)i
.
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Note that, in particular,

Th =
1

10(k − 1)

(
1

20(k − 1)2

(
1− 9

10(k − 1)

)−∆
)h

≥ 1

10(k − 1)

(
1

20(k − 1)2

(
1− 9

10(k − 1)

)−∆
)log∆ n−1

>
1

10(k − 1)
(2logn)− log(20(k−1)2)/ log ∆(2logn)

9
10(k−1)

∆/ log ∆

= nΩ(∆/k log ∆−log k/ log ∆)

= nΩ(∆/k log ∆).

Choose a vertex v, say at height i. We will prove the following:

Lemma 7.1. The probability that v changes colour before time Ti during a run of the Glauber dynamics,
starting from a uniformly chosen colouring, is at most 1

10(k−1) .

Before proving the Lemma, we show how to use it to get our lower bound. Lemma 7.1 implies that
the probability that the root r changes colour in Th steps is at most 1

10(k−1) . There must therefore be a

particular initial colouring η0 such that Pr[ηTh(r) = η0(r)] ≥ 1− 1
10(k−1) .

We now have

||ηTh − π||TV ≥ 1− 1

10(k − 1)
− 1

k
>

1

3

and therefore the mixing time must be greater than Th ≥ nΩ(∆/k log ∆), giving us the desired bound.

Proof of Lemma 7.1. Let σ = σ0 denote an initial uniformly chosen colouring. Denote by σt the colouring
at time t. Note that σt is uniformly distributed for every t.

Recall that i is the height of v. We will first prove the claim for the case i = 0. When i = 0 we
have that v is a leaf. Then T0 = 1

10(k−1) and the time until v is selected by the Glauber dynamics is
exponentially distributed with mean 1. Thus the probability that v changes colour before time T0 is at
most 1− e−1/(10(k−1)) < 1

10(k−1) , as required.
We will now assume i ≥ 1, so that v is not a leaf. Assume now that Ti ≤ Ti−1. This implies that(

1

20(k − 1)2

(
1− 9

10(k − 1)

)−∆
)
≤ 1.

But then we have Ti ≤ Ti−1 ≤ Ti−2 ≤ . . . ≤ T0. By the same argument as for the case i = 0, the probability
that v is selected by the Glauber dynamics before time Ti is at most 1

10(k−1) . Thus 1
10(k−1) is a bound on

the probability that v changes colour and we are done. We can therefore assume that Ti > Ti−1.
Let the children of v be u1, . . . , u∆. We say that the children of v avoid a colour at time t if there is a

colour a 6= σt(v) such that σ(uj) 6= a for all 1 ≤ j ≤ ∆. Let A be the event that the children of v avoid a
colour at some time before Ti.

We will now prove the stronger result that Pr[A] ≤ 1
10(k−1) . Note that this is truly a stronger result,

since if v changes colour before time Ti then it must be that event A has occurred. In fact, an even stronger
event must have occurred, since the same colour must not be on the parent of v as well; however, focusing
on event A will suffice for our lower bound.

We proceed by induction on i. Consider first the base case i = 1, so that the children of v are leaf
nodes. For any time t ≥ 0, define the time interval It := [t, t + T0). Let A(t) denote the event that there
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is at least one time in It at which the children of v avoid a colour. Given colour c 6= σt(v), let A(t, c) be
the event that there is at least one time in It at which the children of v avoid colour c. Finally, for all
1 ≤ j ≤ ∆, let A(t, j, c) denote the event that either σt(uj) 6= c or uj is selected by the Glauber dynamics
at some time in It.

The union bound implies that

Pr[A(t, j, c)] ≤ Pr[σt(uj) 6= c] + Pr[uj is selected in It]

< 1− 1

k − 1
+ 1− e−1/(10(k−1))

≤ 1− 9

10(k − 1)
.

Furthermore, we note that the events A(t, 1, c), . . . , A(t,∆, c) are mutually independent (due to the uni-
formity of σt and the independence of vertex selection by the Glauber dynamics). This implies

Pr[A(t)] ≤
∑

c 6=σt(v)

Pr[A(t, c)] ≤
∑

c6=σt(v)

∏
1≤j≤∆

Pr[A(t, j, c)]

≤ (k − 1)

(
1− 9

10(k − 1)

)∆

.

Denote by Xt the random variable

Xt =

bt/T0c∑
j=0

1A(jT0).

Then Xt denotes the number of time intervals It of length T0, starting at times between 0 and t that are
multiples of T0, in which the children of v avoid a colour at some point. Note that, for all t > T0,

E[Xt] =

bt/T0c∑
j=0

Pr[A(jT0)]

≤ (bt/T0c+ 1)(k − 1)

(
1− 9

10(k − 1)

)∆

≤ 2t

T0
(k − 1)

(
1− 9

10(k − 1)

)∆

.

Then since Ti > Ti−1, it must be that

E[XT1 ] ≤ 2T1

T0
(k − 1)

(
1− 9

10(k − 1)

)∆

≤ 2

(
1

20(k − 1)2

)(
1− 9

10(k − 1)

)−∆

(k − 1)

(
1− 9

10(k − 1)

)∆

=
1

10(k − 1)

so by Markov’s Inequality

Pr[XT1 ≥ 1] ≤ 1

10(k − 1)
.

But now we note that Pr[A] ≤ Pr[XT1 ≥ 1], and hence Pr[A] ≤ 1
10(k−1) as required. This concludes the

base case.
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Now consider general i ≥ 1. Let the children of v be u1, . . . , u∆. For each t ≥ 0, let It be the interval
of length Ti−1 starting at time t. Let A(t) denote the event that there is at least one time in It at which
the children of v avoid a colour. Given colour c 6= σt(v), let A(t, c) be the event that there is at least one
time in It at which the children of v avoid colour c. Let A(t, j, c) be the event that either σt(uj) 6= c or the
children of uj avoid a colour at some time in It. Note that A(t) and A(t, c) are defined similarly as in the
base case, while A(t, j, c) is defined differently.

Now note that

Pr[At,j,c] ≤ Pr[σt(uj) 6= c] + Pr[children of uj avoid a colour at some time in It]

≤ 1− 1

k − 1
+

1

10(k − 1)

= 1− 9

10(k − 1)

by induction.
We now claim that the events A(t, 1, c), . . . , A(t,∆, c) are mutually independent. For each i, 1 ≤ i ≤ ∆,

let Ti be the subtree rooted at ui. Consider σt(Ti), the colouring of Ti at time t, plus the sequence of
attempted assignments of colours to vertices in Ti in the time period It. We claim that event A(t, i, c) is
determined entirely by σt(Ti) plus these attempted assignments. This follows since the colouring of Ti can
be affected by other events only if the colour of ui changes, but event A(t, i, c) is a prerequisite for a change
in the colour of ui.

But now note that the trees T1, . . . , T∆ are disjoint, so the attempted colouring events over different
trees are independent by the definition of the Glauber dynamics. Also, the colourings of these trees at
time t are also independent, since σt is uniformly chosen from the set of colourings. We conclude that the
events A(t, 1, c), . . . , A(t,∆, c) must be independent as well.

Using mutual independence, we have that

Pr[At] ≤
∑
c

Pr[At,c]

≤
∑
c

∏
j

Pr[At,j,c]

≤ (k − 1)

(
1− 9

10(k − 1)

)∆

.

Just as in the base case, we define random variable Xt as

Xt =

bt/Ti−1c∑
j=0

1A(jTi−1).

Then, by the same argument used in the base case, we find

Pr[A] ≤ Pr[XTi ≥ 1] ≤ 1

10(k − 1)

as required.
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8 Open Problems

Our results raise questions about the Glauber dynamics on planar graphs of bounded degree. Hayes, Vera
and Vigoda [9] noted that when ∆ ≥ nη for any η > 0 then certain trees require k ≥ c∆/ log ∆ for polytime
mixing, where c is an absolute constant. Our results imply that the same is true for any ∆ that grows
with n. But for ∆ = O(1), Theorem 1.1 shows that no trees require k > 4. Is there a constant K such
that for every k ≥ K and constant ∆, the Glauber dynamics mixes in polytime on k-colourings of every
planar graph with maximum degree ∆?

Another question is how far Theorem 1.4 can be extended. In other words, how many leaves can we
fix and still guarantee polytime mixing? It is easy to fix the colours of k − 1 neighbours of each of two
adjacent vertices u, v so that the chain is not ergodic, so the answer lies between k − 2 and 2k − 2.

Acknowledgements

We thank Nayantara Bhatnagar, Jian Ding, Thomas Hayes, Juan Vera and Eric Vigoda for some insightful
discussions. We also thank two anonymous referees for their many helpful comments.

References

[1] D. Achlioptas and A. Coja-Oghlan. Algorithmic barriers from phase transitions. In Proc. 49th IEEE
Symp. on Foundations of Computer Science, pages 793–802, 2008.

[2] N. Berger, C. Kenyon, E. Mossel, and Y. Peres. Glauber dynamics on trees and hyperbolic graphs.
Probability Theory and Related Fields, 131(3):311–340, 2005.

[3] N. Bhatnagar, J. Vera, E. Vigoda, and D. Weitz. Reconstruction for colorings on trees. To appear.
Available at arXiv:0711.3664v2, 2008.

[4] G. Brightwell and P. Winkler. Random colorings of a cayley tree. In Bollobs and Bela, editors,
Contemporary Combinatorics, pages 247–276. 2002.

[5] P. Diaconis and L. Saloff-Coste. Comparison theorems for reversible markov chains. Annals of Applied
Probability, 3(3):696–730, 1993.

[6] P. Diaconis and D. Stroock. Geometric bounds for eigenvalues of markov chains. Annals of Applied
Probability, 1(1):36–61, 1991.

[7] M. Dyer, L. Goldberg, and M. Jerrum. Systematic scan for sampling colorings. Annals of Applied
Probability, 16(1):185–230, 2006.

[8] L. Goldberg, M. Jerrum, and M. Karpinski. The mixing time of glauber dynamics for coloring regular
trees. Random Structures and Algorithms, 36(4):464–476, 2010.

[9] T. Hayes, J. Vera, and E. Vigoda. Randomly coloring planar graphs with fewer colors than the
maximum degree. In Proc. 38th ACM Symp. on Theory of Computing, pages 450–458, 2007.

[10] M. Jerrum and A. Sinclair. Approximating the permanent. SIAM Journal on Computing, 18(6):1149–
1178, 1989.

[11] J. Jonasson. Uniqueness of uniform random colourings of regular trees. Statistics and Probability
Letters, 57(3):243–248, 2002.

26



[12] F. Martinelli. Lectures on glauber dynamics for discrete spin models. Lecture Notes in Mathematics,
1717:93–191, 2000.

[13] F. Martinelli, A. Sinclair, and D. Weitz. Fast mixing for independent sets, colorings and other models
on trees. Random Structures and Algorithms, 31(2):134–172, 2007.

[14] D. Randall and P. Tetali. Analyzing glauber dynamics by comparison of markov chains. In Proc. 3rd
Latin American Symposium on Theoretical Informatics, pages 292–304, 1998.

[15] A. Sinclair. Improved bounds for mixing rates of markov chains and multicommodity flow. Combina-
torics, Probability and Computing, 1:351–370, 1992.

[16] A. Sly. Reconstruction of random colorings. Communications in Mathematical Physics, 288(1):943–
961, 2009.

[17] P. Tetali, J. Vera, E. Vigoda, and L. Yang. Phase transition for the mixing time of the glauber dynamics
for coloring regular trees. In Proc. 21st ACM Symp. on Discrete Algorithms, pages 1646–1656, 2010.

27


