
Accord: Application-driven Networking in the Datacenter

Seyed Hossein Mortazavi,
Hossein Shafieirad, Mahmoud

Bahnasy, Ali Munir∗
Huawei Technologies

Canada

Yuanhui Cheng, Anudeep Das†
University of Waterloo

Canada

Yashar Ganjali‡
Huawei Technologies

Canada

ABSTRACT
Resource optimization algorithms in the cloud are ever more data-
driven and decision-making has become reliant on more and more
data flowing from different cloud components. Applications and the
network control layer on the other hand mainly operate in isolation
without direct communication.

Recently, increased integration between the network and appli-
cation has been advocated to benefit both the application and the
network but the information exchange has mostly been limited to
flow level information. We argue that in the realm of datacenter
networks, sharing additional information such as the function pro-
cessing times and deployment data for planning jobs and tasks can
result in major optimization benefits for the network.

In this study we present Accord as a Network Application In-
tegration solution to achieve a holistic network-application man-
agement solution. We propose a protocol as an API between the
network and application then we build a system that uses the pro-
cessing and networking data from the application to perform net-
work scheduling and routing optimizations. We demonstrate that
for a sample distributed learning application, an Accord enhanced
solution that uses the application processing information can yield
up to 27.8% reduction in Job Completion Time (JCT). In addition,
we show how Accord can yield better results for routing decisions
through a reinforcement learning algorithm that outperforms first
shortest path first by %13.

CCS CONCEPTS
• Networks→ Network design principles; Data center net-
works.

ACM Reference Format:
Seyed HosseinMortazavi, Hossein Shafieirad, Mahmoud Bahnasy, Ali Munir,
Yuanhui Cheng, AnudeepDas, and Yashar Ganjali. 2021. Accord: Application-
driven Networking in the Datacenter. In 2021 IEEE/ACM 14th International
Conference on Utility and Cloud Computing (UCC’21), December 6–9, 2021,

∗Corresponding author: seyed.hossein .mortazavi@huawei.com
†Work done during an internship at Huawei, Canada
‡Also with University of Toronto.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
UCC’21, December 6–9, 2021, Leicester, United Kingdom
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8564-0/21/12. . . $15.00
https://doi.org/10.1145/3468737.3494102

Leicester, United Kingdom. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3468737.3494102

1 INTRODUCTION
Modern datacenters use a wide range of techniques and strategies
to optimize resource usage and lower costs while providing im-
proved services and guarantees to customers. These optimizations
such as improving CPU utilization [19], VM placement [20], VM
selection [32], cache placement [34], etc. rely on information that
is constantly gathered and transferred from a wide range of com-
ponents in the cloud. Networks were slower in adapting to this
data driven evolution because (I) Network components are rigid to
change and difficult to innovate in and (II) Network components
and protocols mainly approximate and estimate the state of other
components rather than effective information exchange or query-
ing. An example of a component that has limited communication
with the network is the user application. Both the application and
the network generally operate in isolation [11] and both often go to
great measures to guess and predict the state of the other without
direct communication.

Information exchange between the network and the application
can lead to:
• Application-Aware Networking (AAN): where the network
configuration policies can be determined based on the appli-
cation requirements, intent, and/or properties, to (i) provide
performance guarantees to the application, (ii) optimize the
scheduling and resource allocation, and (iii) improve net-
work utilization.
• Network-Aware Applications (NAA): where application deci-
sions (such as worker selection for a distributed application)
can be based on the link states, congestion or topology de-
sign. This will lead to (i) improved application performance,
and (ii) cost efficient use of network resources.

Fortunately, advances in network programmability with Soft-
ware Defined Networking (SDN) and P4 switches [3] has enabled
the network to move towards application aware networking and
network aware applications due to the centralized logic control
and integrated application and network management. In addition,
various studies [13, 16, 18, 21, 24, 26] have proposed solutions,
protocols and interfaces to connect the applications and the net-
work. These approaches have opened a new paradigm in networks
called Network-Application Integration (NAI).

However, to the best of our knowledge, none of these studies
focus on cloud datacenter networks and investigate how the collabo-
ration between the network, application and the other components
can result in better optimizations for the cloud provider. In addition,

https://doi.org/10.1145/3468737.3494102
https://doi.org/10.1145/3468737.3494102
https://doi.org/10.1145/3468737.3494102
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3468737.3494102&domain=pdf&date_stamp=2021-12-17

UCC’21, December 6–9, 2021, Leicester, United Kingdom Mortazavi et al.

these solutions only suggest exchanging networking information
between the application and the network while the network can
make more informed decisions based on other information such as
application processing and deployment state. Consequently, algo-
rithms that utilize this extra information have not been developed.

We believe that the future intelligent network management sys-
tems for datacenters will be built upon automated, open API’s that
allow information exchange between the network provider and
the application. Our vision is that NAI systems will enable AAN
and NAA in datacenter environments by exchanging a wide range
of data (such as processing, networking, storage and cost) with
the application. This information will be used in cross component
optimizations that were restricted up to now because of how their
different components were either isolated from each other or were
only exposed to each other in a limited scope. The cloud provider
has control over different types of resources namely processing,
execution, storage, and power, so optimizations will result in more
efficient and more intelligent services with lower costs that are
reactive to changes in the application. For example, the network
control layer in a datacenter network can utilize information such
as application deployment logic, function processing times, and
traffic patterns between the functions to better optimize network
resources for scheduling and routing. Similarly, the application can
utilize the information such as DCN topology and network link
state to better optimize task scheduling. In addition, real-time in-
formation exchange between application and network can allow
for dynamic adaptation to the network and application state and
requirement changes.

In this paper, we propose Accord; an NAI system for datacenters
that uses networking, processing and deployment information from
the application to make routing and scheduling optimizations in
the network. Accord aims to answer the following two questions:

(i) How should the networking and processing information be com-
municated over the application network interface and (ii) how can the
network use this extra information for resource usage optimization?
We suggest a method to capture the intent and state information of
applications and the network through the application job abstrac-
tion and also present two novel approaches that use networking
processing and deployment information from the network for rout-
ing and scheduling. Using our methods, in addition to reducing cost
through network usage optimization, the network can also poten-
tially provide guarantees in form of SLAs to the application. The
proposed approaches can benefit from various applications such
as distributed machine learning, stream processing, distributed
databases, and batch processing.

We implement a prototype of Accord and demonstrate the ben-
efits of Accord in a small environment by exchanging job infor-
mation and application objective to achieve improved service. Our
experiments show that our scheduling algorithm achieves 27.8% im-
provement in Job Completion Time (JCT) compared to the fair share
strategy. Also, we show how our routing algorithm outperforms
First Shortest Path First (FSPF) by reducing resource utilization by
13% while increasing the acceptance rate by 8%.

Our contributions can be listed as follows:

• We design and implement an application network interface
that enables our vision for application-aware networking by

transferring application intents and properties for network-
ing and processing to the network.
• We present a network scheduling algorithm that schedules
flows based on application function processing and inter-
flow information.
• We propose a deep reinforcement learning algorithm for
network routing that uses information from the application
to choose optimized paths for flows.
• We implement a prototype of our system and show how the
network benefits from the additional information exchange.

The rest of the paper is organized as follows; Section 2 presents
the motivation behind this work. The design of our proposed proto-
col is discussed in Section 3. In Section 4 we present our application-
aware networking algorithms for routing and scheduling. Section 6
includes the implementation details or our protocol and experimen-
tal results. We conclude the paper in Section 7.

2 BACKGROUND AND MOTIVATION
2.1 Related Work
Several protocols have been created to facilitate the information
exchange between the applications (or host) and the network. These
approaches generally fall into two categories: (i) Network to Ap-
plication exposure [2, 24] and (ii) Application to Network expo-
sure [18, 21, 26]. Other approaches such as [9, 17] are only limited
to optimizing certain applications (such as MapReduce) or use cases.
The Alto protocol [2], defined in RFC 7285, provides the capabil-
ity to define abstractions in form of network maps and cost maps,
and allows users applications to query these maps which can then
be used to reduce costs. Perez et al. [24] optimize network views
based on network service requirements and suggest network in-
ventory capabilities for distributed cloud environments. To send
the application requirements to the network, APN6 [18] uses the
programmable space in IPv6. APN6 sends the application identi-
fiers and their requirements along with the packet to the network
which then can be used to facilitate service deployment and for the
network to provide SLA guarantees. In [26], Schmidt et al. propose
socket intents which adds socket options to the socket API to allow
applications to convey their intents such as information about a
flow to the network.

Several frameworks have been developed on how this informa-
tion can be organized and utilized [16, 23, 24]. In [16], Lachos et al.
emphasize on the benefits and potentials of direct communication
between the network and the application. In order to realize these
potentials, they present PED which is a framework for information
discovery and exposure between the network and the applications.
PED proposes a unified, abstract representation of network infor-
mation using mathematical programming constraints, as well as
a declarative language for applications to express their intents on
discovering network information. It also includes a compiler to
translate application intents to constraint programming problems
and discover corresponding network information. The idea of PED
is further expanded between multi-domain networks by Lachos et
al. in [23, 24].

Several studies have suggested NAI for carrier networks. Zhang
et al. [35] advocate for a software defined fine-grained QoS frame-
work that enables cross layer application and network integration

Accord: Application-driven Networking in the Datacenter UCC’21, December 6–9, 2021, Leicester, United Kingdom

A

B

C

D

|𝑎
1
|𝑎

2
|𝑎

3

𝑏𝑜 | | 𝑏2 | 𝑏3

𝑐
𝑜
|𝑐

1
|
|𝑐

3

𝑑𝑜 | 𝑑1 | 𝑑2 |

𝑎0 𝑏1

𝑐2𝑑3

(a) Time 𝑡 = 0

A

B

C

D
|𝑎

1
|𝑎

2
|

| | 𝑏2 | 𝑏3

𝑐
𝑜
|
|
|𝑐

3

𝑑𝑜 | 𝑑1 | |

𝑎 3
+ 𝑑

3 𝑎0 +
𝑏0

𝑏1
+ 𝑐

1𝑐2 +
𝑑2

(b) Time 𝑡 = 1

Figure 1: Ring all-reduce: message exchange

Time
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Job 0

Job 1

Job 2

Job 3

𝑓 00,0
𝑓 01,1
𝑓 02,2
𝑓 03,3

𝐶

𝐶

𝐶

𝐶

𝑓 13,0
𝑓 10,1
𝑓 11,2
𝑓 12,3

𝐶

𝐶

𝐶

𝐶

𝑓 22,0
𝑓 23,1
𝑓 20,2
𝑓 21,3

𝐶

𝐶

𝐶

𝐶

𝑓 31,0
𝑓 32,1
𝑓 33,2
𝑓 30,3

𝐶

𝐶

𝐶

𝐶

𝑓 30,0
𝑓 31,1
𝑓 32,2
𝑓 33,3

𝐶

𝐶

𝐶

𝐶

𝑓 33,0
𝑓 30,1
𝑓 31,2
𝑓 32,3

𝐶

𝐶

𝐶

𝐶

Fair Share: JCT = 18 T

Job 0

Job 1

Job 2

Job 3

𝑓 00,0

𝑓 01,1

𝑓 02,2

𝑓 03,3

𝐶

𝐶

𝐶

𝐶

𝑓 13,0

𝑓 10,1

𝑓 11,2

𝑓 12,3

𝐶

𝐶

𝐶

𝐶

𝑓 22,0

𝑓 23,1

𝑓 20,2

𝑓 21,3

𝐶

𝐶

𝐶

𝐶

𝑓 31,0

𝑓 32,1

𝑓 33,2

𝑓 30,3

𝐶

𝐶

𝐶

𝐶

𝑓 30,0

𝑓 31,1

𝑓 32,2

𝑓 33,3

𝐶

𝐶

𝐶

𝐶

𝑓 33,0

𝑓 30,1

𝑓 31,2

𝑓 32,3

𝐶

𝐶

𝐶

𝐶

Accord: JCT = 13 T

Figure 2: Ring all-reduce scenario

in 5G networks, and in [33] the authors develop a network infor-
mation exposure system for application in ISP networks using the
ALTO protocol.

Various studies have considered the relationship between flows
in terms of coflows [1, 5], or in terms of inter-coflow scheduling [6,
7, 29]. These studies do not capture the application intent and
requirements specifically and assume the coflow completion time
as the application requirement. However, different applications may
have different requirements and a lower job completion time does
not necessarily translate into better performance for application
jobs.

More recently, Jyothi et al. [13] proposed CadentFlow, an applica-
tion network interface to capture application objectives and intents
for each flow and use it to improve the performance of distributed
machine learning application.

Limitations: Existing studies only leverage network level in-
formation and application processing time information to improve
performance as these protocols are generally not designed for data
center networks. While using the processing and storage informa-
tion for managing cloud resources has been extensively researched
in various studies [14, 25, 28], to best of our knowledge, there are
no studies that use this information for network optimization as
the collaboration or data exchange between the network control
and the application or other Cloud components [16] has been lim-
ited. We argue that using processing data as well as application
placement information is essential for further optimizing network
resources in data center networks and a tighter coordination with

the application can result in many more benefits for the applica-
tion and network. We show how this extra information can help
the network controller in making better decisions for routing and
scheduling.

2.2 Example Application NAI
In order to show the network can be optimized by exchanging
application information, we present a motivating example: A dis-
tributed deep learning application that achieves better results in
JCT by exchanging information with the network. A distributed
deep learning application involves iterative computation with the
parameters on the workers (nodes) being updated and exchanged
with each other at the end of each iteration. The ring all-reduce
algorithm is one way to exchange parameters among all workers.

In this algorithm, data is partitioned into equal chunks and dis-
tributed among processing nodes which we show in Fig. 1. In Fig. 1a
the message exchange process at the first cycle where each node
transmits a unique part of the parameters to the next processing
node. In the next cycle, each node performs the reduce process on
received data and its local data. Then it transmits the result to the
next node as shown in Fig . 1b (for more details review [22]).

Such a process can be presented as four parallel jobs where each
job has six dependent flows that form a directed acyclic graph (DAG).
Flows are noted as 𝑓 𝑘

𝑖,𝑗
where 𝑖 is the edge index (e.g., edges 𝐴→

𝐵, 𝐵 → 𝐶,𝐶 → 𝐷 and 𝐷 → 𝐴 are labeled 0, 1, 2, 3 respectively), 𝑗
refers to job number, and 𝑘 is the time cycle. Each flow 𝑓𝑖, 𝑗 transmits
fixed data size 𝑆 every 𝑇 units of time with some processing time
in between. Flows within the same job have dependency as follows:
𝑓0 ⪯ 𝑓1 ⪯ 𝑓2 ⪯ 𝑓4 ⪯ 𝑓5 ⪯ 𝑓6 (where 𝑓𝑚 ⪯ 𝑓𝑛 denotes 𝑓𝑛 depends on
𝑓𝑚). Each node requires a processing time equal to one time unit
𝑇 . We assume 𝑓0 and 𝑓2 share the same link to induce congestion
on that link. The same applies between 𝑓1 and 𝑓3. We compare a
network-aware approach with the fair share approach. Note that
the goal here is to minimize the job completion time (rather than
individual flows or coflows). As shown in Fig. 2, the fair share
approach finishes all jobs in 18𝑇 , while a network-aware approach
that knows about the dependency between flows for each job, can
finish all jobs in 13𝑇 with around 28% reduction in JCT.

3 DESIGN
In this section, we present the design details of Accord. First, we
present the overall architecture and then discuss how it can be
used to capture the application intent and state. Later we show how
this architecture helps in the scheduling (section 4) and routing
(section 5) use cases.

3.1 Overview
In Fig. 3 we show Accord’s architecture. Accord uses two key com-
ponents, a Driver module on the application host and a Broker on
the network controller, to establish a reliable channel for the com-
munication between the network and application. Applications use
the local driver on the host to share application information and
potentially fetch network state information. Similarly, the network
controller uses the broker to fetch application information and
share network state with the application.

UCC’21, December 6–9, 2021, Leicester, United Kingdom Mortazavi et al.

`

Network
Controller

Deployment
Service

Application/Function
Placement

Query the
function

Placement Shared Network
State

(Consul)

Queries/Tasks

Switch Switch Switch

Commands

CTR app

Control Server

CTR app

ANI Broker

ANI
Driver

User
Code/App

Figure 3: Accord architecture. Accord ’s components are
shown in blue while the traditional datacenter components
are in orange and the application in green

We use a programming interface to facilitate this communica-
tion. Programming interfaces are commonly used to access cloud
resources (e.g., Boto3 for AWS). The application makes function
calls or receives calls back on the local driver and the driver for-
wards the request with other statistical information to the broker.
This model hides the communication complexity between the bro-
ker and driver. The driver and the broker communicate using the
Accord protocol (see § 3.3).

3.2 Capturing Intent & State
We believe that the missing piece in current NAI platforms is the
ability to incorporate processing information (intent and state)
within their systems. While in general networks, especially geo-
distributed networks such information may be hard to obtain, in
a datacenter environment, where generally the provider also con-
trols the processing, the application is a tenant and accessing this
information is attainable.

In Accord, the applications convey their intent and state through
the jobs abstraction. Jobs are the basic units of execution defined
by the application and are a set of correlated application functions
and flow. Jobs are represented by the applications as a Directed
Acyclic Graph (DAG) and contain the relationships between flows
and application functions. The edge nodes represent the flows and
the vertices are the application functions.

Each edge node contains tuples representing the properties for
respective flow such as expected flow size, required latency or
deadline and the relationship to other flows as well as functions.
The objective of each flow can also be expressed in the tuples. This
model is similar to CadentFlows proposed by Jyothi et al. [13]. Each
vertex contains the estimated function processing time as well as
connected flows and the relationship between them. In addition to
the mean and variance values for processing times, flow sizes and
required latencies, we also include an optional distribution field for
a more comprehensive characterization of a job.

Accord’s architecture is built upon the idea of aggregating and
using any data that is available by the application or the cloud
provider. While the requested information on the flows and the

functions can be extensive, the cloud provider can obtain some of
this information through Machine Learning (ML) techniques with-
out direct application involvement. For example, predicting the cost
of workloads for function as a service (FaS) platforms [8, 10] and
also the flow size prediction [30, 31] is an active field of study. Ac-
cord can leverage such information to its use. The network provider
also maps between the application functions and the physical ma-
chines using application deployment information provided by the
cloud provider.

3.3 Protocol
The driver on the application and the broker communicate over
the Accord protocol. This protocol is designed to transfer the ap-
plication intents, requirements and properties to the network and
at the same time allow the application to get the network state.
The driver communicates with the broker using the REST protocol
on ZeroMQ [12]. After the handshaking and authentication phase,
all message headers include an application ID and a token that
identifies the application to the network. The driver submits JOB
messages to the broker that include information about the applica-
tion functions and the expected processing time for each function
as well as the expected bandwidth and latency requirements, loss
tolerance and deadlines of flows that transfer data between the
functions.

4 USING ACCORD TO ENHANCE FLOW
SCHEDULING DECISION

In this section, we show how using Accord to convey application
intent such as job DAG, flows sizes, and processing time yields
better performance in scheduling.

4.1 Example Scenario
Here, we consider a network topology represented as a directed
graph 𝐺 = (𝑉 , 𝐸), where 𝑣 ∈ 𝑉 represents both network nodes and
computational nodes, and 𝑒 ∈ 𝐸 is the set of edges (links between
nodes). Each edge 𝑒 connecting node 𝑖 to node 𝑗 is represented by
𝑒𝑖−𝑗 and assigned with a non-negative capacity 0 ≤ 𝐶 (𝑒𝑖−𝑗). Each
flow 𝑓𝑚,𝑛 is defined by a tuple (𝑎𝑚,𝑛, 𝑧𝑚,𝑛, 𝑡𝑚,𝑛, 𝑠𝑚,𝑛, 𝑑𝑚,𝑛, 𝑐𝑚,𝑛),
where 𝑎, 𝑧, 𝑠, 𝑑, 𝑐 are source, destination, arrival time, size, dead-
line and processing time at the receiving node, respectively. The
deadline defines a minimum limit for the requested rate as 𝑟𝑟𝑒𝑞𝑚,𝑛 ≥
𝑠𝑚,𝑛/(𝑑𝑚,𝑛 − 𝑡𝑚,𝑛). In addition, flows can’t send with a rate higher
than what they can generate which is defined using flow size 𝑠𝑚,𝑛

and the processing time 𝑐𝑚,𝑛 as follow 𝑟
𝑟𝑒𝑞
𝑚,𝑛 ≤

𝑠𝑚,𝑛

𝑐𝑚,𝑛
.

Flow dependency inside jobs is defined as a list of two-item tuples
D𝐹𝑚 = {(𝑓𝑚𝑛′ , 𝑓𝑚,𝑛), ...}. We define 𝑡𝑠𝑚,𝑛 = {0, .., 1, 1, .., 1, .., 0} to
be equal to the time slot vector for job 𝑚 and flow 𝑛. Each time
slot 𝑇 is equal to the transmission time of one packet. packet time,
minimum divisible number(flow sizes/𝐶)) We also assume that
each flow is served in adjacent time slots that start at index 𝑥 that
refers to the first time slot that flow 𝑓𝑚,𝑛 is being served.

4.2 Problem Formulation
To this end, we design an optimization problem to define an optimal
first time slot 𝑥𝑚,𝑛 and rate 𝑟𝑚,𝑛 for each flow that minimize the

Accord: Application-driven Networking in the Datacenter UCC’21, December 6–9, 2021, Leicester, United Kingdom

maximumflow completion time 𝜏𝑤,𝑛 . We can formulate the problem
as follows:

min
𝑥, 𝑟

max
𝑚,𝑛
(𝜏𝑚,𝑛) (1a)

s.t. 𝑥𝑚,0 = 𝑡𝑚,0 ∀𝑚 ∈ 𝑀, (1b)
(𝜏𝑚,𝑛 − 𝑥𝑚,𝑛) · 𝑟𝑚,𝑛 = ⌈𝑠𝑚,𝑛⌉ ∀𝑛 ∈ 𝑁,∀𝑚 ∈ 𝑀,

(1c)
𝜏𝑚,𝑛 ·𝑇 + 𝑐𝑚,𝑛 ≤ 𝑥𝑚,𝑛′ ·𝑇, (𝑓𝑚𝑛′ , 𝑓𝑚𝑛

) ∈ D𝐹𝑚 , (1d)
𝑠𝑚,𝑛

𝑐𝑚,𝑛
≥ 𝑟𝑚,𝑛 ≥

𝑠𝑚,𝑛

(𝑑𝑚,𝑛 − 𝑡𝑚,𝑛)
∀𝑛 ∈ 𝑁,∀𝑚 ∈ 𝑀, (1e)∑︁

𝑓 𝑙𝑚,𝑛

(𝑡𝑠𝑚,𝑛 [𝑖] · 𝑟𝑚,𝑛) ≤ 1∀𝑖 ∈ {0, 1, ..𝑘},∀𝑙 ∈ all links (1f)

As shown in the formulation, constraint 1b states that the first
flow starts at the arrival time of the job. In constraint 1c, 𝜏 is defined
as the index the first available time slot after finishing flow 𝑓𝑚,𝑛 .
Hence, this constraint limits the transmission bytes per flow to its
size. We also added fake dependency between flows based on their
sizes (shorter flows first) to imitate Shortest Job First (SJF) module.
All flow dependencies requirements are met using constraint 1d.
Constraint 1e ensures that the transmission rate to be greater than
the minimum rate that meets the flow deadline. Flow transmission
rates are limited by the maximum processing capability of the
receiving node. Finally, constraint 1f guarantees that link utilization
does not exceed link capacity.

We simplified such a problem considering that flows are sent
with maximum link capacity for each reserved time slot as stated
below. One can notice that the new constraints; namely 2c, 2d and
2e, simplify the problem as shown in the new problem formulation.
Note that the constraint 2e states that all flows that share one link
can’t use time slots more than their maximum utilization. Therefore,
we no longer need to manage each slot in the 𝑡𝑠 vector. We rather
need to manage the starting and ending transmission time for each
flow (𝑥 and 𝜏).

min
𝑥

max
𝑚,𝑛
(𝜏𝑚,𝑛) (2a)

s.t. 𝑥𝑚,0 = 𝑇𝑚,0 ∀𝑚 ∈ 𝑀, (2b)
(𝜏𝑚,𝑛 − 𝑥𝑚,𝑛) ·𝐶 = ⌈𝑠𝑚,𝑛⌉ ∀𝑛 ∈ 𝑁,∀𝑚 ∈ 𝑀, (2c)
𝜏𝑚,𝑛 ·𝑇 + 𝑐𝑚,𝑛 ≤ 𝑥𝑚,𝑛′ ·𝑇, (𝑓𝑚𝑛′ , 𝑓𝑚𝑛

) ∈ D𝐹𝑚 , (2d)

max
𝑓 𝑙𝑚,𝑛

(𝜏𝑚,𝑛) −min
𝑓 𝑙𝑚,𝑛

(𝑥𝑚,𝑛) ≥
∑︁
𝑓 𝑙𝑚,𝑛

(𝜏𝑚,𝑛 − 𝑥𝑚,𝑛) ∀𝑙 ∈ all links

(2e)

4.3 Flow Scheduling Algorithm
To solve the optimization problem, we propose Shortest Available
Flow First (SAFF), a heuristic scheduler that takes advantage of the
knowledge provided by Accord protocol. The SAFF scheduler uses
the DAG provided by the application to extract its intent. In this
regard, consider the example depicted in Fig. 4 where flows 𝑓1, 𝑓2
and 𝑓3 are served and flows 𝑓4 and 𝑓5 are available and ready to
be scheduled. The DAG allows us to know that after serving 𝑓4,
𝑓6 becomes available. Therefore, it is better to schedule 𝑓6 before
𝑓5. Hence, the scheduler avoids possible delays due to the large

size of 𝑓5 that might result in delaying future flows and therefore
increasing the Flow Completion Time (FCT). Traditionally, such an
objective can be achieved using flow preemption. However, with
the information available in the DAG such optimized decision can
be fulfilled in one step while avoiding extra overhead and delays.

𝑓1 : 1 𝑓2 : 3 𝑓3 : 5

𝑓4 : 4 𝑓5 : 20

𝑓6 : 2 𝑓7 : 1

Figure 4: Dependency graph example

To take advantage of available information from the applica-
tion through the DAG, we design SAFF that considers functions’
processing and link utilization for scheduling. The proposed algo-
rithm considers a finite time horizon divided into𝑇 time slots, each
with length𝑤 sec. The proposed approach, shown in Algorithm 1,
allocates rates per time slot for all flows.

We start by extracting all flows from the incoming request. Then,
we sort all available flows based on both their expected transmission
time, motivated by SJF scheduling, and dependency constraints.
Flows are sorted using the SAFF scheduling strategy described in
Section 4.4. The outputs of Algorithm 1 are: (i) flow rates, and (ii)
reserved time slots per flow. For each flow, if there is no feasible
rate due to the delay constraint, the available rate is sent to the
application to decide whether to accept the assigned rate or to
resubmit its request with different criteria (e.g., different service
node or different rate).

At each time slot 𝑡 , the assigned rate for flow 𝑓 , denoted by 𝑟𝑡
𝑓
,

is generated as shown in line 9 considering the processing time
𝑃𝑓 , remaining flow size 𝑆𝑓 and the available bandwidth for that
flow at the mentioned time slot. Link sharing is also allowed among
flows sharing links which helps better rate allocation of flows. The
remaining size of flow is updated at the end of each time slot (line
10). The AssignStartingTime(·) function assigns the first time slot
that a flow can be scheduled based on other flows it depends on as
well as available bandwidth.

Given the flow size and considering that only one congested link
exists per datapath, Shortest Flow First (SFF) is shown to result in
the optimal average FCT. However, considering the dependency
constraints, the scheduling problem becomes a challenging NP-hard
combinatorial problem. Therefore, we propose SAFF, a centralized
greedy scheduling algorithm, which by taking the advantage of
DAG, uses both size and flow dependencies for the scheduling
problem of our interest to minimize the FCT.

Considering the dependency between flows, an efficient strategy
among others is to first, sort all flows based on their sizes. Second, re-
locating flows based on their dependency constraints as dependent
flows must be scheduled after the flows they depend on. Although

UCC’21, December 6–9, 2021, Leicester, United Kingdom Mortazavi et al.

Algorithm 1: Scheduling Algorithm
1 Algorithm Main(NAI Message):

Data: Network link occupancy, New job (NAI message)
Result: Flow Scheduling Table (FST)

2 𝐹 ← flows from NAI message;
3 𝐿 ← 𝑆𝐴𝐹𝐹 (𝐹);
4 forall 𝑓 ∈ 𝐿 do
5 𝑅 = 𝐴𝑠𝑠𝑖𝑔𝑛𝑅𝑜𝑢𝑡𝑒 (𝑓);
6 Γ = 𝐹𝑙𝑜𝑤𝑠𝑂𝑛𝑃𝑎𝑡ℎ(𝑅);
7 𝑡 = 𝐴𝑠𝑠𝑖𝑔𝑛𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑇𝑖𝑚𝑒 (𝑓);
8 do
9 𝑟𝑡

𝑓
=𝑚𝑖𝑛(𝑆𝑓

𝑃𝑓
, 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐵𝑊 (Γ(𝑅));

10 𝑆𝑓 ← 𝑆𝑓 − 𝑟𝑡𝑓 ×𝑤 𝑡 ← 𝑡 + 1
11 while 0 ≤ 𝑆𝑓 ;

12 Function SAFF(𝐹):
Data: Network link occupancy, New job (NAI message)
Result: Flow scheduling sorted list 𝐿

13 𝐿 ← {};
14 Initialize 𝑆 with active flows;
15 𝐹 ← flows from NAI message;
16 do
17 A← 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐹𝑙𝑜𝑤𝑠 (𝐹);
18 𝑓𝑠 = 𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝐹𝑙𝑜𝑤 (A);
19 𝐿.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑓𝑠)
20 while 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐹𝑙𝑜𝑤𝑠 (𝐹)! = ∅;
21 return 𝐿;

the mentioned two-stage sorting algorithm is simple and efficient,
it does not always result in the best average FCT.

For example, Fig. 1 demonstrates (white nodes) the output of
such a simple strategy for the DAG is demonstrated in Fig. 4. One
can notice that 𝑓5 of size 20 unit delays smaller size flows 𝑓4 and 𝑓6
while if 𝑓4 is scheduled before 𝑓5, the average FCT decreases. This
motivates us in proposing the Shortest Available Flow First (SAFF)
scheduling strategy. SAFF strategy considers both flow sizes and de-
pendency constraints into account simultaneously. In what follows,
we show how this greedy approach can improve the scheduling
process, when the DAG is available.

4.4 Shortest Available Flow First SAFF
The SAFF strategy, as represented in Algorithm 1, is a centralized
greedy scheduling approach that at each step, a set of available
flows that can be scheduled according to DAG, denoted by A, is
generated. The set A is updated at each step based on flows ready
to be scheduled according to both available bandwidth and also
other flows they depend on. All flows in A are sorted based on
their expected transmission time and the flow with the shortest
transmission time (𝑓𝑠) is selected. This procedure repeats until all
flows are selected and listed in the scheduling table 𝐿.

In the example depicted in Fig. 4, we assume flows 𝑓1, 𝑓2 and 𝑓3
are available in the first step and 𝑓1 has the smallest transmission
time (considering there is only one congested link per data-path).

Therefore 𝑓1, is selected to be the first flow to be served. The set A
then is updated as A = {𝑓2, 𝑓3, 𝑓4, 𝑓5} and flow 𝑓2 and after that 𝑓4
are selected. In this way, 𝑓4 is selected before 𝑓5 resulting in the final
sorted list of flows depicted in Table 1 using SAFF (gray nodes). The
sorted list of flows using SAFF is then used as explained in lines
3−15 of Algorithm 1 for generating flows’ assigned rates according
to the available link capacities, flows’ processing time and size.

𝑓1 : 1 𝑓2 : 3 𝑓3 : 5 𝑓5 : 20 𝑓7 : 1 𝑓4 : 4 𝑓6 : 2
𝑓1 : 1 𝑓2 : 3 𝑓4 : 4 𝑓3 : 5 𝑓6 : 2 𝑓5 : 20 𝑓7 : 1

Table 1: Scheduling for the example depicted in Fig . 4. Short-
est flows algorithm (white) vs the SAFF algorithm (gray)

5 USING ACCORD TO ENHANCE ROUTING
In this section, we present a routing optimization algorithm that
uses information provided from the applications by Accord.

We propose a machine learning-based module to make routing
decisions knowing the network state and application intent. This
model uses Deep Reinforcemnet Learning (DRL) to optimize the
routing decisions where we adopt a simple Deep Q-Network (DQN)
as our agent. Our model is inspired by the model discussed in [4, 27].
The main objective of DRL is to learn the optimal policy that yields
maximum cumulative reward. This problem can be modeled using
Markov Decision Process (MDP). In this research, we focus on
optimizing the routing actions taken for all jobs to maximize the
acceptance ratio and reduce network resource usage. Therefore,
such a model fits our expectations.

The MDP is defined by the tuple {𝑆,𝐴,𝑇 , 𝑅} where the state set
(𝑆) must represent enough information about the environment. The
action set (𝐴) refers to all possible actions that can be applied at
any state. In our model, we adopt discrete action space as we train
the agent to select the best possible path among certain candidates.
The transition function (𝑇 (𝑠, 𝑎)) defines how the environment, the
network in our case, evolves from the state (𝑠 ∈ 𝑆) after taking
action (𝑎 ∈ 𝐴). In our case, the transition function is defined by
three main steps. First, we validate if the action is a valid action
and the network can support it. Second, we update the network
state by subtracting the requested rate from all links that are in the
selected path. Third, we randomly generate a new request using a
uniform distribution.

In this model, we define the environment as the network topol-
ogy and the current state of link occupancy. We provide a feature
extraction module that simplifies the agent task by extracting use-
ful information from the network state. This process considerably
reduces the training required from the agent to learn the relation-
ship between network state and useful features. To that end, we
represent the state of the environment using the features of the
shortest available paths that can serve application requests. The re-
quest information is also encoded in the environment state. Current
model representation assumes that the DRL agent stores network
state information in local storage, and it can access application
intent through Accord protocol. The action space is defined as the
probability of selecting a certain path among the shortest ones.

Accord: Application-driven Networking in the Datacenter UCC’21, December 6–9, 2021, Leicester, United Kingdom

Request
(src, dst, rate)

Dest

Req rate

Path Length

Sum
 (AVBW

)

AVBW
 per path

Rem
aining AVBW

C
an

d
id

ate
P

ath
s

DQN
Agent

Action

Rewards Network
Controller

Network State
Update

Network

Network/Request State

Feature Extraction

Environment State Matrix

Figure 5: Reinforcement learning model for routing opti-
mization

Fig. 5 depicts the model architecture. First, application requests,
provided by Accord, is passed alongside the environment state
through a feature extraction module. The feature extraction module
represents the network state and the application request as the state
of the shortest 𝐾 = 10 paths that can serve this request. The output
from this stage is indicated by the environment matrix. Such matrix
contains information of the source/destination pair, requested rate,
path length, the sum of Available Bandwidth (AVBW) per path,
AVBW per path, and the remaining AVBW in the network (features
are shown in the same order in Fig. 5). In this experiment, we use
FSPF as our baseline for comparison with DQN.

6 EXPERIMENTAL EVALUATION
In this section, we conduct two main experiments to illustrate
the benefits of our approaches. In Section 6.1, we experimentally
demonstrate the benefits of exchanging job information and appli-
cation objective in achieving better service. We specifically show
how using the processing time information from functions can
lead to better scheduling. In addition, with another experiment
in section 6.2, we illustrate how information provided from the
application yields better routing decision and higher acceptance
rate.

6.1 Experiment I: Using application
information to enhance scheduling

We use Mininet to emulate the spine-leaf topology depicted in Fig. 6.
In this experiment, services𝐴, 𝐵,𝐶 , and𝐷 are deployed at hosts 1, 4,
2, and 3 respectively. One can notice that such configuration creates
a bottleneck between leaf switches and the spine switch. Such a
bottleneck is intended to throttle rate transmission to depict the
enhancement in performance while using our proposed mechanism.
Ryu controller is used to apply flow rules that are calculated using
our proposed SAFF algorithm. Link capacity is set to 10 Mbps
unless stated otherwise. Flow scheduling, route selection, and rate
allocation are carried out using a control-plane application running

Leaf 1 Leaf 2

Spine

A C BD

Figure 6: Network Topology

inside the Ryu controller. Moreover, a Remote Procedure Call (RPC)
is used to exchange ANI messages between our control application
and hosts.

In this experiment, we emulate the ring all-reduce discussed
in Section 2.2. The performance metric used here is the FCT as
illustrated in Fig. 7. We use fair share approach as the baseline to
demonstrate the advantage in using the proposed algorithm. One
can notice that while using fair share, four flows share the network
in both directions at the same time. Therefore, all flows are throttled
to 5 Mbps (dashed lines). However, our approach succeeded in bet-
ter scheduling flow transmission to utilize maximum link capacity
all time and eliminating idle time (solid lines). The results demon-
strated in Fig. 7 shows that JCT while using Accord is 27.8% shorter
than the fair share approach . The unused gap between flows using
fair share approach, as depicted in Fig . 7, is mainly due to the
processing time of flows which is efficiently used in Accord. The
results achieved in this experiment match our expectation shown
in Fig. 2 in Section 2.2.

0 5 10 15 20
4

6

8

10

Epoch

Th
ro
ug

hp
ut

(M
bp

s)

Accord
Fair Share

Figure 7: Throughput (Fair share vs Accord)

6.2 Experiment II: Using application
requirements to enhance routing decision

In this experiment, we demonstrate a different method to use
application-network interaction to enhance network performance.

We conducted such an experiment by simulation using network
topologies provided by Topology Zoo [15]. For this experiment, we
normalize link capacity to 1 unit, and we generate flows randomly
by generating source/destination pairs from a uniform distribution.
Flow rates are also sampled from a uniform distribution between
[0, 0.1] unit.

Two key pieces of information that Accord provides are the
processing time and application deadlines. Thus, we use this infor-
mation to define the minimum and the maximum rate that a flow
can use. To this end, a flow rate 𝑟 can not exceed the processing
time required to generate the data of this flow 𝑟 ≤ 𝑠

𝑐 , where 𝑠 is

UCC’21, December 6–9, 2021, Leicester, United Kingdom Mortazavi et al.

0 0.2 0.4 0.6 0.8 1
·104

0.4

0.5

0.6

Epoch

A
cc
ep
ta
nc
e
Ra

te
(%
)

DQN
FSPF

(a) Acceptance Rate

0 0.2 0.4 0.6 0.8 1
·104

0.3

0.4

0.5

Epoch

Re
m
ai
ni
ng

AV
BW

(%
)

DQN
FSPF

(b) Remaining available bandwidth

0 0.2 0.4 0.6 0.8 1
·104

0.51

0.51

0.52

Epoch

FC
T
Ra

tio
(%
) DQN

FSPF

(c) FCT reduction

Figure 8: Results for Reward = Acceptance Rate

the flow size and 𝑐 is the processing time. In addition, to satisfy
deadline requirements, the rate must be greater than the minimum
transmission rate defined by the deadline 𝑑 and arrival time 𝑡 as
follows: 𝑟 ≥ 𝑠

(𝑑−𝑡) .
We build a reinforcement learning module using DQN network

as depicted in Fig. 5. We compare the performance of DQN to the
FSPF. We aim to train the DRL agent to serve the maximum number
of flows with minimum resources. Therefore, for performance eval-
uation we adopt three main metrics; namely, i) the percentage of
remaining available bandwidth, ii) the Acceptance rate, and iii) the
FCT ratio to the maximum value. To satisfy flows’ deadlines and
rate requirements stated by their processing time, we introduce the
FCT ratio as set it to the maximum value as a third metric to evalu-
ate the performance of the DQN routing module. Such a metric is
calculated by dividing the FCT of a flow, if served, with a higher
rate depending on the available bandwidth of the selected path
compared to its minimum rate that satisfies deadline constraint.

0 0.5 1 1.5
·104

0.4

0.5

0.6

0.7

Epoch

A
cc
ep
ta
nc
e
Ra

te
(%
)

DQN
FSPF

(a) Acceptance Rate

0 0.5 1 1.5
·104

0.25

0.3

0.35

0.4

0.45

Epoch

Re
m
ai
ni
ng

AV
BW

(%
)

DQN
FSPF

(b) Remaining available bandwidth

0 0.5 1 1.5
·104

0.51

0.52

Epoch

FC
T
Ra

tio
(%
) DQN

FSPF

(c) FCT reduction

Figure 9: Results for Reward =
𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒_𝑟𝑎𝑡𝑒∑
𝑒∈𝐸 𝑎𝑣𝑏𝑤 / ∑𝑒∈𝐸 𝐶

Hence, our objective is to maximize acceptance rate, and remaining
available bandwidth while maximizing the FCT ratio.

The performance of reinforcement learning depends heavily on
the choice of the reward function. Thus, we proposed three reward
functions that match most network providers’ requirements. First,
we defined the reward function to be equal to the percentage of
the remaining available bandwidth on all links after admitting each
request (EQ. 3). In such a way, we aim to reduce network utilization
that is required.

𝑟 =

∑
𝑒∈𝐸 𝑎𝑣𝑏𝑤∑
𝑒∈𝐸 𝐶

(3)

where 𝐸 is the set of all edges in the network.
Fig. 8a, 8b and 8c show the percentage of the acceptance rate,

the percentage of the remaining available bandwidth and FCT ratio
respectively. One can see that our agent is able to outperform FSPF
in terms of the percentage of remaining available bandwidth and

Accord: Application-driven Networking in the Datacenter UCC’21, December 6–9, 2021, Leicester, United Kingdom

0 0.5 1 1.5
·104

0.4

0.5

0.6

0.7

Epoch

A
cc
ep
ta
nc
e
Ra

te
(%
)

DQN
FSPF

(a) Acceptance Rate

0 0.5 1 1.5
·104

0.3

0.4

0.5

Epoch

Re
m
ai
ni
ng

AV
BW

(%
)

DQN
FSPF

(b) Remaining available bandwidth

0 0.5 1 1.5
·104

0.51

0.51

0.52

Epoch

FC
T
Ra

tio
(%
) DQN

FSPF

(c) FCT reduction

Figure 10: Results for Reward = 1 − 𝑟𝑒𝑞_𝑟𝑎𝑡𝑒∗𝑝𝑎𝑡ℎ_𝑙𝑒𝑛𝑔𝑡ℎ∑
𝑒∈𝐸 𝑎𝑣𝑏𝑤

FCT ratio. However, the enhancement in the acceptance rate is
marginal as shown in Fig. 8a.

To enhance the performance regarding the acceptance rate, we
design the second reward function to consider both the acceptance
rate and the percentage of the remaining available bandwidth. As
stated in (4), the reward function is defined as the division of the
acceptance rate and the ratio of the remaining available bandwidth
to the sum of all link capacities (𝐶).

𝑟 =

{
𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒_𝑟𝑎𝑡𝑒∑
𝑒∈𝐸 𝑎𝑣𝑏𝑤 / ∑𝑒∈𝐸 𝐶

𝐼 𝑓 𝑆𝑒𝑟𝑣𝑒𝑑

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(4)

Such a reward function is indeed capable of enhancing the ac-
ceptance rate and FCT ratio as shown in Fig. 9a and 9c respectively.
However, this reward function is not able to train the DRL agent to
achieve better resource utilization as shown by the percentage of
the remaining available bandwidth in Fig. 9b.

Finally, we adopt the cost of fulfilling flow requests to guide
the DRL agent training. With that in mind, we add both the re-
quested rate and path length in the reward calculation as depicted
in (5). In addition, such a function considers the ratio of the cost
(𝑟𝑒𝑞_𝑟𝑎𝑡𝑒 ∗ 𝑝𝑎𝑡ℎ_𝑙𝑒𝑛𝑔𝑡ℎ) to the sum of all link capacity (𝐶).

𝑟 =

{
1 − 𝑟𝑒𝑞_𝑟𝑎𝑡𝑒∗𝑝𝑎𝑡ℎ_𝑙𝑒𝑛𝑔𝑡ℎ∑

𝑒∈𝐸 𝑎𝑣𝑏𝑤
𝐼 𝑓 𝑆𝑒𝑟𝑣𝑒𝑑

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(5)

As depicted in Fig. 10a, 10b and 10c, such a reward function al-
lows the DRL agent to outperform FSPF in all three metrics; namely
acceptance rate, remaining available bandwidth and FCT ratio. The
figure shows also that DQN reduces the resource utilization by 13%
while increases the acceptance rate by 8%.

Therefore, we conclude that enriching routing algorithms with
application intent provides better routing decisions and enhances
network and application performance. It is worth mentioning that
the related state-of-the-art technologies does not consider and dis-
cuss the performance of their proposed reward functions from the
perspective of all three metrics we discussed above.

7 CONCLUSION
Networks are evolving to become more receptive to application
requirements and properties through Network Application Inte-
gration with advances in Software Defined Networking and Appli-
cation Network interfaces. This integration will result in benefits
both for the application and the network. However, the current NAI
frameworks are not targeted for the datacenter and do not integrate
processing and deployment information for optimizations.

In this paper, we presented Accord , an NAI framework for the
cloud datacenter that transfers networking and processing data
between the application and the network and uses this information
to better optimize network resources with two novel scheduling
and routing algorithms. Accord takes the first steps of enabling the
vision of application-aware networking inside the datacenter. Using
distributed deep learning as an example application, we demon-
strate that our proposed scheduling algorithm can significantly
improve application performance compared to the fair share ap-
proach. We also show how our proposed reinforcement learning
framework can improve resource utilization and acceptance rate in
routing.

As for future work our goal is to further improve network ser-
vices using processing, network and storage information by pro-
viding QoS guarantees in form of SLA’s for applications and also
extend our framework for network aware application optimizations.
We are also testing our solution on other applications and we are
working on generalizing our API. Experimental evaluation in a
more complex/larger environments with different applications is
another goal we are actively pursuing.

REFERENCES
[1] Saksham Agarwal, Shijin Rajakrishnan, Akshay Narayan, Rachit Agarwal, David

Shmoys, and Amin Vahdat. 2018. Sincronia: Near-optimal network design for
coflows. In Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication. 16–29.

[2] Richard Alimi, R Penno, Y Yang, S Kiesel, S Previdi, W Roome, S Shalunov, and R
Woundy. 2014. Application-layer traffic optimization (ALTO) protocol. RFC 7285
(2014).

UCC’21, December 6–9, 2021, Leicester, United Kingdom Mortazavi et al.

[3] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al.
2014. P4: Programming protocol-independent packet processors. ACM SIGCOMM
Computer Communication Review 44, 3 (2014), 87–95.

[4] Xiaoliang Chen, Jiannan Guo, Zuqing Zhu, Roberto Proietti, Alberto Castro,
and S. J. B. Yoo. 2018. Deep-RMSA: A Deep-Reinforcement-Learning Routing,
Modulation and Spectrum Assignment Agent for Elastic Optical Networks. In
2018 Optical Fiber Communications Conference and Exposition (OFC). 1–3.

[5] Mosharaf Chowdhury and Ion Stoica. 2012. Coflow: A networking abstraction
for cluster applications. In Proceedings of the 11th ACM Workshop on Hot Topics
in Networks. 31–36.

[6] Mosharaf Chowdhury and Ion Stoica. 2015. Efficient coflow scheduling without
prior knowledge. ACM SIGCOMM Computer Communication Review 45, 4 (2015),
393–406.

[7] Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica. 2014. Efficient coflow schedul-
ing with varys. In Proceedings of the 2014 ACM conference on SIGCOMM. 443–454.

[8] Simon Eismann, Johannes Grohmann, Erwin Van Eyk, Nikolas Herbst, and Samuel
Kounev. 2020. Predicting the Costs of Serverless Workflows. In Proceedings of the
ACM/SPEC International Conference on Performance Engineering. 265–276.

[9] Monia Ghobadi, Soheil Hassas Yeganeh, and Yashar Ganjali. 2012. Rethinking
end-to-end congestion control in software-defined networks. In Proceedings of
the 11th ACM Workshop on Hot Topics in networks. 61–66.

[10] Alim Ul Gias and Giuliano Casale. 2020. COCOA: Cold Start Aware Capacity
Planning for Function-as-a-Service Platforms. In 2020 28th International Sympo-
sium on Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS). IEEE, 1–8.

[11] Jetmir Haxhibeqiri, Amina Seferagic, Ramyashree Venkatesh Bhat, Ingrid Mo-
erman, and Jeroen Hoebeke. 2021. Tighter application-network interfacing to
drive innovation in networked systems. In Proceedings of the ACM SIGCOMM
2021 Workshop on Network-Application Integration. 53–57.

[12] Pieter Hintjens. 2013. ZeroMQ: messaging for many applications. " O’Reilly Media,
Inc.".

[13] Sangeetha Abdu Jyothi, Sayed Hadi Hashemi, Roy Campbell, and Brighten God-
frey. 2020. Towards An Application Objective-Aware Network Interface. In 12th
{USENIX} Workshop on Hot Topics in Cloud Computing (HotCloud 20).

[14] Kamal Kc and Kemafor Anyanwu. 2010. Scheduling hadoop jobs tomeet deadlines.
In 2010 IEEE Second International Conference on Cloud Computing Technology and
Science. IEEE, 388–392.

[15] Simon Knight, Hung X Nguyen, Nickolas Falkner, Rhys Bowden, and Matthew
Roughan. 2011. The internet topology zoo. IEEE Journal on Selected Areas in
Communications 29, 9 (2011), 1765–1775.

[16] Danny Lachos, Qiao Xiang, Christian Rothenberg, Sabine Randriamasy, Luis M
Contreras, and Börje Ohlman. 2020. Towards deep network & application inte-
gration: Possibilities, challenges, and research directions. In Proceedings of the
Workshop on Network Application Integration/CoDesign. 1–7.

[17] Ziyang Li, Yiming Zhang, Yunxiang Zhao, and Dongsheng Li. 2016. Efficient
semantic-aware coflow scheduling for data-parallel jobs. In 2016 IEEE Interna-
tional Conference on Cluster Computing (CLUSTER). IEEE, 154–155.

[18] HE Lin, Peng KUANG, WANG Shicheng, LIU Ying, LI Xing, and PENG Shuping.
2019. Application-aware IPv6 networking. Telecommunications Science 36, 8
(2019), 36.

[19] Karl Mason, Martin Duggan, Enda Barrett, Jim Duggan, and Enda Howley. 2018.
Predicting host CPU utilization in the cloud using evolutionary neural networks.
Future Generation Computer Systems 86 (2018), 162–173.

[20] Sambit Kumar Mishra, Deepak Puthal, Bibhudatta Sahoo, Prem Prakash Jayara-
man, Song Jun, Albert Y Zomaya, and Rajiv Ranjan. 2018. Energy-efficient
VM-placement in cloud data center. Sustainable computing: informatics and
systems 20 (2018), 48–55.

[21] Takuya Miyasaka, Yuichiro Hei, and Takeshi Kitahara. 2020. NetworkAPI: An In-
band Signalling Application-aware Traffic Engineering using SRv6 and IP anycast.
In Proceedings of theWorkshop on Network Application Integration/CoDesign. 8–13.

[22] Pitch Patarasuk and Xin Yuan. 2009. Bandwidth optimal all-reduce algorithms
for clusters of workstations. J. Parallel and Distrib. Comput. 69, 2 (2009), 117–124.
https://doi.org/10.1016/j.jpdc.2008.09.002

[23] Danny Alex Lachos Perez and Christian Esteve Rothenberg. 2020. MUDED:
Integrating Networks with Applications through Multi-Domain Exposure and
Discovery Mechanisms. In 2020 IEEE Conference on Network Function Virtualiza-
tion and Software Defined Networks (NFV-SDN). IEEE, 132–137.

[24] Danny Alex Lachos Perez, Christian Esteve Rothenberg, Mateus Santos, and
Pedro Henrique Gomes. 2020. Ani: Abstracted network inventory for streamlined
service placement in distributed clouds. In 2020 6th IEEE Conference on Network
Softwarization (NetSoft). IEEE, 319–325.

[25] Zhengwei Qi, Jianguo Yao, Chao Zhang, Miao Yu, Zhizhou Yang, and Haibing
Guan. 2014. VGRIS: Virtualized GPU resource isolation and scheduling in cloud
gaming. ACM Transactions on Architecture and Code Optimization (TACO) 11, 2
(2014), 1–25.

[26] Philipp S Schmidt, Theresa Enghardt, Ramin Khalili, and Anja Feldmann. 2013.
Socket intents: Leveraging application awareness for multi-access connectivity.

In Proceedings of the ninth ACM conference on Emerging networking experiments
and technologies. 295–300.

[27] Jose Suarez-Varela, Albert Mestres, Junlin Yu, Li Kuang, Haoyu Feng, Pere Barlet-
Ros, and Albert Cabellos-Aparicio. 2019. Feature Engineering for Deep Reinforce-
ment Learning Based Routing. In ICC 2019 - 2019 IEEE International Conference
on Communications (ICC). 1–6. https://doi.org/10.1109/ICC.2019.8761276

[28] Amoghvarsha Suresh and Anshul Gandhi. 2019. Fnsched: An efficient scheduler
for serverless functions. In Proceedings of the 5th International Workshop on
Serverless Computing. 19–24.

[29] Hengky Susanto, Hao Jin, and Kai Chen. 2016. Stream: Decentralized opportunis-
tic inter-coflow scheduling for datacenter networks. In 2016 IEEE 24th Interna-
tional Conference on Network Protocols (ICNP). IEEE, 1–10.

[30] Vojislav Ðukić, Sangeetha Abdu Jyothi, Bojan Karlaš, Muhsen Owaida, Ce Zhang,
and Ankit Singla. 2019. Is advance knowledge of flow sizes a plausible as-
sumption?. In 16th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 19). 565–580.

[31] SuWang, ShuoWang, Dong Zhou, Yiran Yang,Wenjie Zhang, TaoHuang, RuHuo,
and Yunjie Liu. 2020. Large-scale and rapid flow size estimation for improving flow
scheduling. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS). IEEE, 1141–1146.

[32] Rahul Yadav, Weizhe Zhang, Huang Chen, and Tao Guo. 2017. Mums: Energy-
aware vm selection scheme for cloud data center. In 2017 28th International
Workshop on Database and Expert Systems Applications (DEXA). IEEE, 132–136.

[33] Jingxuan Zhang, Luis Contreras, Kai Gao, Francisco Cano, Patricia Cano, Anais
Escribano, and Y Richard Yang. 2021. Sextant: Enabling automated network-
aware application optimization in carrier networks. In 2021 IFIP/IEEE International
Symposium on Integrated Network Management (IM). IEEE, 586–593.

[34] Yu Zhang, Ke Zhou, Ping Huang, Hua Wang, Jianying Hu, Yangtao Wang, Yong-
guang Ji, and Bin Cheng. 2020. A machine learning based write policy for
SSD cache in cloud block storage. In 2020 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 1279–1282.

[35] Zhi-Li Zhang, Udhaya Kumar Dayalan, Eman Ramadan, and Timothy J Salo. 2021.
Towards a Software-Defined, Fine-Grained QoS Framework for 5G and Beyond
Networks. In Proceedings of the ACM SIGCOMM 2021 Workshop on Network-
Application Integration. 7–13.

https://doi.org/10.1016/j.jpdc.2008.09.002
https://doi.org/10.1109/ICC.2019.8761276

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Related Work
	2.2 Example Application *nai

	3 Design
	3.1 Overview
	3.2 Capturing Intent & State
	3.3 Protocol

	4 Using Accord to enhance flow scheduling decision
	4.1 Example Scenario
	4.2 Problem Formulation
	4.3 Flow Scheduling Algorithm
	4.4 Shortest Available Flow First *saff

	5 Using Accord to enhance routing
	6 Experimental Evaluation
	6.1 Experiment I: Using application information to enhance scheduling
	6.2 Experiment II: Using application requirements to enhance routing decision

	7 conclusion
	References

