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The concept of edge computing involves 
distributing computation and storage services 
by positioning resources in proximity to the 
data sources. The term “edge networks” refers 
to a hierarchical structure of data centers, 
edge devices, intermediate nodes, and cloud 
systems that are organized according to their 
processing and storage capabilities [14].  
This setup facilitates efficient data processing 
and analysis. By using local data centers, 
processing of data is faster with decreased 
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In recent years, there has been an exponential increase in the generation 
of data at the edge of the network. The International Data Corporation 
(IDC) estimates that the Global Datasphere, which was 33 zettabytes 
in 2018, will rise to 175 zettabytes by 2025, and there will be more than  

150 billion connected devices worldwide [10]. The Internet of Things 
(IoT) segment is expected to experience the fastest growth, with data 
creation at the edge of the network projected to increase almost twice as 
fast as in the cloud. As a result, worldwide spending on edge computing 
is forecasted to reach $317 billion by 2026, as per IDC projections [1].
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latency and increased bandwidth, leading 
to improved performance for a range of 
applications. [2, 11, 12]. 

In a multitier edge computing environ- 
ment, these datacenters house multiple 
components including processing, streaming,  
management, security, and more as shown 
in Figure 1a. These components are inter- 
connected through a unified distributed 
storage layer, which facilitates the flow of 
data vertically between different layers and 
horizontally between different components. 

This decentralization poses challenges in 
effectively managing the data and ensuring 
reliable service for end-users, which include: 

•	 Storage: Edge data centers have lower 
storage and processing capabilities 
compared to cloud nodes. Despite 
this, accessing data locally is crucial to 
leverage the benefits of edge computing. 
Deciding which data to store at the  
edge can be a challenging task. 

•	 Consistency: Synchronizing multiple 
distributed resources is necessary in  
edge computing, but maintaining con-
sistency among data stored in different 
locations and ensuring timely updates 
presents a challenge. This challenge is 
especially crucial in maintaining data 
consistency across geographically  
distributed data centers. 

•	 Partitioning and Offloading: The 
distribution of computing and storage 
resources across different locations 
presents a challenge in deciding how 
to partition and deploy application 
logic effectively. This challenge involves 
determining whether to consolidate data 
on central nodes or partition it based on 
geographical location, depending on the 
specific requirements of each application. 

•	 Reliability and Quality of Service: 
Edge computing is preferred over cloud 
computing only if it provides superior 
services. However, edge computing 
faces the challenge of maintaining high 
throughput and low latency across various 
environments and scenarios, particularly 
when data centers are located in different 
regions with high network latency. 

• 	 Privacy: Data privacy is crucial in edge 
computing because decentralization allows 
sensitive data to be stored and processed 
locally. Robust security measures are 
essential to maintain data privacy. 

In this paper, we provide an overview 
of three projects executed over 3 years that 
have aimed to improve the performance of 
distributed database management systems 
for the edge computing by addressing some 
of the challenges mentioned above. 

We first present PathStore [3, 9] a data  
storage layer that provides eventual con- 
sistency for a multitier cloud architecture. 
PathStore enables data storage across a range 
of data centers, from the edge to the cloud. 
Additionally, we propose SessionStore [5–7], 
which addresses consistency issues and im- 
proves storage capabilities by providing session 
consistency for mobile users at the edge.  
Lastly, we present Feather [8], a hybrid 
querying scheme that capitalizes on the 
hierarchical structure of geo-distributed 
systems. It allows for a trade-off between 
temporal accuracy (freshness) and improved 
latency and decreased bandwidth utilization.

PATHSTORE
Data management is a vital aspect of edge 
computing platforms, as it handles the  
transformation, aggregation, and consump-
tion of data. In this section, we introduce 
PathStore, a shared database abstraction 
that enables seamless data access across 
different levels of data centers. PathStore 
[3, 9] enables data storage across a range of 
data centers, from the edge to the cloud and 
offers developers the flexibility to run their 
server-side operations on various locations, 
enabling diverse application types. These 
applications can include data-aggregating 
workloads, such as those found in IoT 
applications, as well as services that cache 
and process data across different layers, and 
stateless applications. 

The root node of the PathStore hierarchy 
has a persistent database, while other levels 
act as caches. To simplify implementation, 

FIGURE 1. Edge computing architecture and its component. A series of data centers arranged 
between the client device and the cloud data center, which increase in size as they move towards 
the cloud.
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data replicated by a node must be a superset 
of its children. Low latency is ensured by 
executing read and write operations locally. 
PathStore supports concurrent reads and 
writes and updates are eventually propagated 
through the hierarchy in the background. 

Figure 2 illustrates a sample three-layer 
PathStore deployment. PathStore comprises of 
three main components: a native object store, 
the PathStore server, and the PathStore driver. 
The native object store provides persistent 
storage for objects that are temporarily (or  
permanently in the case of the root) replicated 
at a node. In our prototype, we use Cassandra 
[4], but the design can be adapted to other 
storage engines. The PathStore server copies 
data between its local Cassandra instance 
and the Cassandra instance of its parent 
node. The PathStore driver offers an API 
for edge applications to query the local 
PathStore node, with the prototype based 
on CQL (Cassandra’s SQL dialect) for data 
organization into tables and atomic read and 
write operations at the row level.

PathStore replicates data at the row level  
on demand in response to application queries.  
Applications issue queries using the PathStore  
driver, which executes them against the local 
PathStore node. However, before a CQL 
query is performed locally, the PathStore 
server replicates from the parent node all 
objects that match the query as determined 
by the conditions in the where clauses of 
the CQL statement. To prevent a node from 
fetching data on each query from its parent, 
the PathStore server maintains a query 
cache consisting of all recently executed 

consistency based on Cassandra’s quorum 
mechanism. However, across nodes, 
PathStore propagates updates at the row 
granularity following an eventual consistency 
model. The PathStore driver guarantees that 
code executing on a specific PathStore node 
will see monotonically increasing versions of 
a row (i.e., the driver returns only the most 
recent version of the row in the write log), 
and that given enough time without new 
modifications, all replicas of a row on all 
PathStore nodes will converge to the same 
most recent value. 

Experimental Results 
PathStore allows applications to deliver 
localized content to edge nodes based on the 
end-users’ geographic location. One example 
is face recognition classifiers, which are 
trained on a dataset specific to a particular 
geographical location and we have developed 
a face detection and recognition application 
that leverages OpenCV and JavaCV to 
demonstrate the performance of Pathstore. 

The Face Recognizer program labels 
an input image (received through HTTP 
requests with a file size of 11KB) based on 
a trained model. The results for processing 
100 requests are illustrated in Figure 3. 
Running on the edge lowers the latency by 
88 percent.

SESSIONSTORE 
PathStore utilizes an eventual consistency 
model to replicate data where updates are 
propagated in the background and if no new 
updates are made to an object, eventually 

CQL queries. Subsequent CQL queries that 
match an existing entry in the cache are 
directly executed on the local node. Queries 
in the query cache are periodically executed 
in the background by a pull daemon to 
synchronize the local node’s content with 
that of its parent (i.e., fetch new and updated 
records from the parent node). To minimize 
unnecessary processing, PathStore keeps 
track of the coverage of cache entries and 
the pull daemon bypasses queries that are 
otherwise subsumed by other queries that 
have a wider scope. PathStore also provides 
local tables for temporary storage. 

The system regularly removes cold query 
cache entries and locally replicated rows that 
do not match any query in the query cache 
to prevent unnecessary data from being 
fetched. If there is a resource contention 
issue, the system uses a least recently used 
(LRU) policy to free up space. 

PathStore receives write queries on a node 
and applies all changes locally. Periodically, 
a push daemon transmits these local updates 
to higher levels of the hierarchy. To keep 
track of modifications, PathStore uses a write 
log. As changes propagate up and down the 
hierarchy via the push and pull daemons, 
PathStore uses the version timestamp to 
establish the order of modifications.

Consistency 
At the individual node level, PathStore 
maintains the storage semantics of its 
underlying native object store. Our current 
prototype provides local durability, row-
level isolation and atomicity, and strong 

FIGURE 2. PathStore components and its 
relation with the application. The Cassandra 
cluster can scale horizontally, based on the 
location and available resources. 

FIGURE 3. CDF for response time of the Face Recognition 
application when PathStore is used. 
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all replicas will converge to the same value. 
Eventual consistency is suitable for many 
applications where clients interact with 
the same replica for the duration of their 
sessions. As long as the client interacts 
with the same replica, the storage system in 
effect provides session consistency, which 
is a stronger consistency model that has 
additional important properties: read-your- 
writes, where subsequent reads by a client 
that has updated an object will return 
the updated value or a newer one; and 
monotonic reads, where, if a client has seen 
a particular value for an object, subsequent 
reads will return the same value or a newer 
one. While session consistency does not 
guarantee that different clients will perceive 
updates in the same order, it presents each 
individual client with an intuitive view of the 
world that is consistent with the client’s own 
actions. Applications that can benefit from 
session consistency on the edge include  
authentication services, file storage applica- 
tions, and messaging applications. 

Session consistency is particularly 
important for mobile users on the edge as it 
provides a seamless and intuitive experience 
for the user. Mobile users often rely on edge 
storage systems for critical applications, 
such as authentication services, file storage, 
and messaging. 

Session consistency, however, may not 
be guaranteed when consecutive client 
requests are sent to different replicas. This 
may occur in edge applications when: (i) a 
mobile client moves between different edges; 
(ii) functionality is dynamically reallocated 
between edges; or (iii) an application’s 
functionality has been partitioned between 
different data centers (e.g., running some 
functions on the edge and others on the 
cloud). If consecutive client requests are  
sent to different replicas before the data 
needed by the client request is replicated,  
the application may not be able to read its 
own writes or have monotonic reads. 

To address the issues of consistency and 
scalability in edge computing environments, 
we introduce SessionStore. SessionStore 
[5–7] is a specialized datastore designed for 
edge computing that aims to improve upon 
PathStore by providing session consistency 
across a hierarchy of eventually consistent 
replicas. It supports session consistency 
through a session-aware reconciliation 
algorithm that reconciles only the keys that 

a client reads or writes at the source replica, 
eliminating the need for full reconciliation of 
all replicas. Furthermore, it minimizes data 
transfer by not transferring up-to-date data 
already existing on the destination. In our 
example application use case, this saves as 
much as 95% in terms of data transfer. 

Design 
The concept behind our approach to ensuring 
session consistency is straightforward but 
efficient: we organize related datastore 
operations into sessions, and we keep track of 
all the rows either read or written by a session 
through monitoring the queries it executes. 
To minimize the overhead, we aggregate the 
queries used to keep track of the data. When 
a client moves from a source to a destination 
replica, we ensure that the same (or newer) 
versions of the rows associated with their 
session are present on the destination replica 
before executing new queries. 

We enforce session consistency by group- 
ing related CQL requests into a Session.  
The definition of what constitutes a session 
is left up to the application developer to 
decide. For example, the developer can  
decide to make a session represent a user,  
a device belonging to a user, a set of com- 
mands executed by a function, or a subset 
of requests issued by a device. Our system 
simply enforces session consistency semantics 
among those queries that are identified as 
belonging to the same session. 

We identify each session using a custom 
token called the Session Token, or stoken. 
The stoken is included in all messages sent by 
the devices and can be encrypted and signed 
to prevent forging and misrepresentation 
by a centralized authentication system. 
Developers can choose between eventual 
and session consistency by including (or not) 
the stoken together with their queries. In our 
experiments, we use Java Servlets to run our 
server-side code and pass the stoken using 
an HTTP cookie.

State Tracking. To keep track of data related 
to a session, a CommandCache is added to 
each replica that stores all the queries that 
were executed on behalf of a session s. For 
INSERT, UPDATE and DELETE commands, 
we keep track of modified rows affected by 
associated SELECT queries. For example if the 
session executes the command where a1 is 
the primary key (key): 

INSERT INTO T1(key, v1) VALUES (a1,b1)

we store the following query in 
CommandCache[s]: 
SELECT * FROM T1 WHERE key = a1

This transformation creates a query that 
tracks the accessed key a1. 

The entries in the CommandCache[s] 
precisely identify the data accessed by a 
session. To recover the rows associated with 
a session, we simply have to execute the 
queries without any projections (SELECT(*)) 
and without any aggregations (without any 
GROUP BY). Our database implementation 
is based on Cassandra, where queries are 
limited to a single table (no joins). 

Switching. We use a token (stoken) to track 
when a client switches between replicas, 
such as moving from ns to nd. The new 
replica checks the stoken and begins the 
reconciliation process if the client has 
switched. The source replica (ns) is halted 
and the new replica (nd) waits for the 
reconciliation process to finish before 
fetching data. The process involves the 
destination replica (nd) sending a request to 
the source replica for all session data, which 
is retrieved by re-executing the session’s 
queries. The resulting data and queries are 
then transmitted to the destination replica. 
Queries are used to track accessed rows, 
with writes mapped to separate queries 
and reads being aggregated. We also 
implemented other optimizations to lower 
data transfer between (ns,nd), by monitoring 
the data that is already present on the nd. 

If a source replica fails while a destination 
is replicating data from it, SessionStore waits 
for the source to become available again to 
continue transferring the rows that were not 
already replicated.

The application is notified of any issues 
via an exception and can choose to wait and 
retry or restart by invalidating the session. 

Experimental Results 
We conduct our experiments on an emulated  
hierarchical edge. Our topology consists 
of a cloud datacenter (cl), and two mobile 
networks each with a datacenters at its core 
(c1,c2), and one or two additional datacenters 
at edge location such as base stations (e1, e2, 
e3). We assume the latency between the cloud 
and the core is 20 ms and between the core 
and the edge is 2 ms. 
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FIGURE 4. CDF of latency required to read and write a 1KB row on a cloud node (cl) a core node (c1) and an edge node (e1).

(a) Reads (b) Writes

Here we present results that quantify 
the overhead of keeping track of session 
information and compare the approach to 
alternatives that enforce stronger consistency 
as the cost of higher overhead. To measure 
the cost of keeping track of session state, we 
compared the latency for reading and writing 
single 1KB row on e1 with SessionStore. The 
experiment is repeated for 10 000 different 
rows. Figure 4a shows a CDF of the read 
latencies for SessionStore in three different 
scenarios that assume the rows being read 
are already replicated on e1, c1, and el, 
respectively. As expected, the figure shows 
that replication at the edge reduces read 
times dramatically. The average time to read 
a row already available on the edge was  
0.9 ms, compared to an average of 4.65 and 
26.2 ms when the row had to be fetched 
from the core and cloud, respectively.

Figure 4b shows a CDF of the write 
latency for SessionStore. There is only one 
configuration as all writes are performed  
on the local replica (e1). The average write 
time is 0.73 ms. 

FEATHER 
Managing data in a geographically distri- 
buted environment poses challenges due to 
limitations in network links, such as limited 
bandwidth and high latency variations. 
However, many applications have a strong 
locality where most reads and writes can 
be done locally and changes do not need to 
be immediately replicated throughout the 
network. The traditional approach of storing 
data locally and replicating it periodically 
to higher layers can provide fast local reads 
and writes but can’t guarantee freshness and 
completeness of read queries when executed 
at the parent layer such as in PathStore. 
Executing the query on the cloud’s local 
replica can result in stale data, while fetching 
data from edge devices incurs high latency, 
added load, and potential data loss if an edge 
is unreachable. Here, we present a hybrid 
approach for efficient on-demand global 
queries with guaranteed freshness by utilizing 
the hierarchical structure of edge networks. 

Feather [8] is a data management system  
that manages the trade-off between data 

freshness and query latency in edge computing  
applications. Users can specify freshness 
constraints or deadlines for each query 
and Feather will execute it over a subset of 
the network using local replicas as caches, 
returning a result set that meets the freshness 
requirements. The system can handle 
intermittent link errors and provides an 
estimate of missed data. It supports features 
found in high-performance tabular data 
stores and can be used to port existing read 
queries from centralized databases.

Design
Feather is a storage system that offers both 
local and global queries. Local queries are 
similar to those of other edge-centric data- 
bases and are executed directly on the high-
performance local data store. Global queries, 
however, provide freshness guarantees and are 
computed from recent local and descendant 
data up to a limit, avoiding remote queries for 
faster response and conserving bandwidth. 
Feather also includes features like query 
deadlines, result coverage estimation, and 
graceful link failure handling. 

Feather guarantees that the set of rows 
used to process a query will contain all data 
updates (insertions, deletions, and updates) 
that occurred before a user-defined freshness 
threshold, Tq − L, where Tq is the time the 
query was sent for execution and L is the 
specified limit on data freshness. The query 
results also include an actual freshness time, 
Tf, which represents the time when all data 
updates included in the answer were made.
The exact value of Tf may vary depending 
on the replication status and transfer time 
between datacenters. Additionally, the answer 

FIGURE 5. The freshness guarantees for Feather global queries. Actual freshness Tf is guaranteed 
to be between Tq−L and Ta. Any row created before Tf (blue) is guaranteed to be included in the 
results, while rows created after Tf (green) may or may not be included. 
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may be slightly out of date due to query 
execution and data transfer time, and the 
difference between the answer time, Ta, and 
actual freshness time is defined as staleness, 
Ta − Tf . Feather assumes that all replicas have 
sufficiently synchronized GPS clocks. 

In summary, Feather guarantees: 
Tq − L ≤ Tf  ≤ Tq
Figure 5 illustrates these semantics. By 

tuning the laxity constraint, system operators 
can fine-tune the trade-off between query 
response time and freshness. Higher laxity 
thresholds can result in faster response 
latency and reduced bandwidth. 

Feather consists of four components 
on each node: a persistent storage, a query 
server to receive and execute queries, a 
push daemon to push periodic updates to 
higher-layer nodes, and a receive daemon 
to receive updates from lower-layer nodes. 
The push daemon is responsible for repli-
cating updated data upstream, marking it 
as dirty and sending it in batches sorted 
by timestamp. The receive daemon is 
responsible for receiving updates from the 
push daemon and storing it in the persistent 
storage. The query server is responsible for 
executing global queries. 

The global queries are processed hier- 
archically, with each replica determining 
the set of children needed to execute the 
query and then recursively sending it to each 
child. The querying algorithm is a recursive, 
parallel tree traversal. The nodes execute 
queries in parallel and determine if the data 
they have is recent enough to answer the 
query locally or if they need to visit a child. 

The actual freshness time for the result is 
defined by the minimum of the latest update 
time for the current node and the freshness 
returned by each of the sub-queries on sub-
trees. This depends on the push period and 
depth of the hierarchical network. 

The result sets are updated incrementally 
by adding rows for non-aggregate queries  
and updating values for aggregate and group  
by queries (e.g. sum, maximum/minimum,  
matching groups). The current implementa- 
tion assumes rows sets are disjoint and 
only updated by the same edge node. More 
complicated aggregation algorithms are 
required to handle disjoint data that is left 
for future work. For aggregation queries 
(MIN, MAX, SUM, COUNT), a single value is 
retrieved as result, while for AVG, two values 
are required. If there is a GROUP BY clause, 
the results are computed for each group and 
sent to the parent node for merging. WHERE 
clause is applied locally and sent to parent 
node, while DISTINCT, ORDER, LIMIT 
clause is aggregated at the final layer. 

Feather also offers analytical information 
for each query result, including the number 
of participating nodes, the number of includ- 
ed data rows, and an estimate of excluded 
data rows due to freshness constraints or 

link errors. We implemented a prototype of 
Feather as a Kotlin standalone application 
that uses Cassandra as its persistent storage. 

Results 
Feather’s performance is evaluated through 
controlled experiments and a real-world 
deployment processing Twitter data across 
multiple continents. It is able to provide 
fresher answers than cloud-based execution 
while reducing network bandwidth and load 
on edge nodes. 

We conduct controlled experiments to 
assess the performance of Feather using the 
New York taxi dataset [13]. The experiments 
use one of three network topologies: wide, 
deep, and medium, with varying depths and 
splits as shown in Table 1. 

Feather is designed to provide controlled 
trade-off of answer latency and answer 
staleness in global queries. This trade-off 
depends on query laxity, network topology, 
period of the push demon, and data update 
distribution among the edges. 

Figure 6 shows the performance across 
different topologies and push daemon period f.  
Each point depicts the answer staleness and 
latency for that query, and the color indicates 
the lowest tier involved in answering the query.

FIGURE 6. Staleness vs latency of the answer for each query. Colors/markers indicate the depth of most distant node, 
which was involved in answering the query. For clarity, we only show a sample of the queries. 

Topology 	 Depth 	 Split 	 Nodes per tier 	 Latency per tier

Wide 	 3 	 10 	 1-10-100 	 85, 45

Deep 	 5 	 3 	 1-3-9-27-81 	 70, 30, 20, 10

Medium 	 4 	 3 	 1-3-9-27 	 80, 85, 15

TABLE 1. Toplogies in Controlled Experiments
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The most immediate observation is 
that query performance is clustered based 
on the depth of the lowest tier involved in 
answering them. This is partly because our 
controlled topologies have similar latency 
for all nodes in a tier, and the key factor is 
the round-trip time from cloud to the most 
distant node. We also observe that frequent 
pushes (top row) result in much fresher 
answers, at the cost of increased load on  
the network.  

CONCLUSION AND  
OPEN DIRECTIONS
Edge computing aims to provide highly 
responsive service by moving data processing 
and management resources closer to end-users 
and devices. This requires new architectures 
for running applications and storing/managing 
their data. In this manuscript, we presented 
PathStore, SessionStore, and Feather, which 
are systems that take the first steps to make 
the edge computing vision a reality by 
providing a new model for structuring and 
deploying applications and managing their 
data. We believe that the systems presented 
in this research can be improved in the 
following terms: 

• 	 Improved replication strategies: 
Replicate and cache data and processes 
on regional datacenters with data 
consumption determining caching policy 
as storage and process get cheaper. 
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• 	 Privacy: Benefit of edge computing is 
local storage and processing, with only 
some analytical data sent to the cloud, 
protecting end-user data in healthcare 
and other applications. 

• 	 Resource allocation: Need global strategies 
to manage limited processing, storage, and 
bandwidth resources in edge datacenters 
to ensure performance and reliability. 

• 	 Service level agreements (SLAs): 
Research direction to identify SLAs for 
databases and processes on the edge that 
guarantee throughput, data availability, 
and performance. 

• 	 Billing: How to define billing mechan- 
isms for edge computing, considering  
parameters such as resources used,  
service guarantees, etc. 

• 	 Fail-over capabilities: Balance between  
reliability and performance in maintain- 
ing uninterrupted data delivery services 
when networks on the edge of the network 
experience failures.

This paper focused on bridging the gap 
between the limited real-world implementa- 
tions of data management on the edge and  
the many theoretical ideas for its use. By 
implementing systems that fit current real-
world networks and address challenges, 
edge computing can evolve into a disruptive 
technology that offers significant benefits 
to organizations, businesses, and users for 
years to come. n
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