
11June 2023 | Volume 27, Issue 2 GetMobile

[MOBILE PLATFORMS]

The concept of edge computing involves
distributing computation and storage services
by positioning resources in proximity to the
data sources. The term “edge networks” refers
to a hierarchical structure of data centers,
edge devices, intermediate nodes, and cloud
systems that are organized according to their
processing and storage capabilities [14].
This setup facilitates efficient data processing
and analysis. By using local data centers,
processing of data is faster with decreased

DATA MANAGEMENT SYSTEMS
FOR THE HIERARCHICAL EDGE

Editor: Shadi Noghabi

Seyed Hossein Mortazavi Department of Computer Science, University of Toronto, Toronto, Canada
Mohammad Salehe Department of Computer Science, University of Toronto, Toronto, Canada
Moshe Gabel Department of Electrical Engineering and Computer Science, York University, Toronto, Canada
Eyal de Lara Department of Computer Science, University of Toronto, Toronto, Canada

Ph
ot

o,
 is

to
ck

ph
ot

o.
co

m

In recent years, there has been an exponential increase in the generation
of data at the edge of the network. The International Data Corporation
(IDC) estimates that the Global Datasphere, which was 33 zettabytes
in 2018, will rise to 175 zettabytes by 2025, and there will be more than

150 billion connected devices worldwide [10]. The Internet of Things
(IoT) segment is expected to experience the fastest growth, with data
creation at the edge of the network projected to increase almost twice as
fast as in the cloud. As a result, worldwide spending on edge computing
is forecasted to reach $317 billion by 2026, as per IDC projections [1].

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3614214.3614218&domain=pdf&date_stamp=2023-08-05

GetMobile June 2023 | Volume 27, Issue 212

[MOBILE PLATFORMS]

latency and increased bandwidth, leading
to improved performance for a range of
applications. [2, 11, 12].

In a multitier edge computing environ-
ment, these datacenters house multiple
components including processing, streaming,
management, security, and more as shown
in Figure 1a. These components are inter-
connected through a unified distributed
storage layer, which facilitates the flow of
data vertically between different layers and
horizontally between different components.

This decentralization poses challenges in
effectively managing the data and ensuring
reliable service for end-users, which include:

•	 Storage: Edge data centers have lower
storage and processing capabilities
compared to cloud nodes. Despite
this, accessing data locally is crucial to
leverage the benefits of edge computing.
Deciding which data to store at the
edge can be a challenging task.

•	 Consistency: Synchronizing multiple
distributed resources is necessary in
edge computing, but maintaining con-
sistency among data stored in different
locations and ensuring timely updates
presents a challenge. This challenge is
especially crucial in maintaining data
consistency across geographically
distributed data centers.

•	 Partitioning and Offloading: The
distribution of computing and storage
resources across different locations
presents a challenge in deciding how
to partition and deploy application
logic effectively. This challenge involves
determining whether to consolidate data
on central nodes or partition it based on
geographical location, depending on the
specific requirements of each application.

•	 Reliability and Quality of Service:
Edge computing is preferred over cloud
computing only if it provides superior
services. However, edge computing
faces the challenge of maintaining high
throughput and low latency across various
environments and scenarios, particularly
when data centers are located in different
regions with high network latency.

• 	 Privacy: Data privacy is crucial in edge
computing because decentralization allows
sensitive data to be stored and processed
locally. Robust security measures are
essential to maintain data privacy.

In this paper, we provide an overview
of three projects executed over 3 years that
have aimed to improve the performance of
distributed database management systems
for the edge computing by addressing some
of the challenges mentioned above.

We first present PathStore [3, 9] a data
storage layer that provides eventual con-
sistency for a multitier cloud architecture.
PathStore enables data storage across a range
of data centers, from the edge to the cloud.
Additionally, we propose SessionStore [5–7],
which addresses consistency issues and im-
proves storage capabilities by providing session
consistency for mobile users at the edge.
Lastly, we present Feather [8], a hybrid
querying scheme that capitalizes on the
hierarchical structure of geo-distributed
systems. It allows for a trade-off between
temporal accuracy (freshness) and improved
latency and decreased bandwidth utilization.

PATHSTORE
Data management is a vital aspect of edge
computing platforms, as it handles the
transformation, aggregation, and consump-
tion of data. In this section, we introduce
PathStore, a shared database abstraction
that enables seamless data access across
different levels of data centers. PathStore
[3, 9] enables data storage across a range of
data centers, from the edge to the cloud and
offers developers the flexibility to run their
server-side operations on various locations,
enabling diverse application types. These
applications can include data-aggregating
workloads, such as those found in IoT
applications, as well as services that cache
and process data across different layers, and
stateless applications.

The root node of the PathStore hierarchy
has a persistent database, while other levels
act as caches. To simplify implementation,

FIGURE 1. Edge computing architecture and its component. A series of data centers arranged
between the client device and the cloud data center, which increase in size as they move towards
the cloud.

Data
Collection/
Ingestion

Data
Analytics/
Streaming

Distributed Storage
Layer

Management
Monitoring

Resource
Management

Processing/
Execution

Security/
Access
Control

Edge/Core/Cloud Data Center

Cloud

Core

Edge

(a) Overview of different components in an edge datacenter.

(b) A multi-tiered Edge Computing architecture

13June 2023 | Volume 27, Issue 2 GetMobile

[MOBILE PLATFORMS]

data replicated by a node must be a superset
of its children. Low latency is ensured by
executing read and write operations locally.
PathStore supports concurrent reads and
writes and updates are eventually propagated
through the hierarchy in the background.

Figure 2 illustrates a sample three-layer
PathStore deployment. PathStore comprises of
three main components: a native object store,
the PathStore server, and the PathStore driver.
The native object store provides persistent
storage for objects that are temporarily (or
permanently in the case of the root) replicated
at a node. In our prototype, we use Cassandra
[4], but the design can be adapted to other
storage engines. The PathStore server copies
data between its local Cassandra instance
and the Cassandra instance of its parent
node. The PathStore driver offers an API
for edge applications to query the local
PathStore node, with the prototype based
on CQL (Cassandra’s SQL dialect) for data
organization into tables and atomic read and
write operations at the row level.

PathStore replicates data at the row level
on demand in response to application queries.
Applications issue queries using the PathStore
driver, which executes them against the local
PathStore node. However, before a CQL
query is performed locally, the PathStore
server replicates from the parent node all
objects that match the query as determined
by the conditions in the where clauses of
the CQL statement. To prevent a node from
fetching data on each query from its parent,
the PathStore server maintains a query
cache consisting of all recently executed

consistency based on Cassandra’s quorum
mechanism. However, across nodes,
PathStore propagates updates at the row
granularity following an eventual consistency
model. The PathStore driver guarantees that
code executing on a specific PathStore node
will see monotonically increasing versions of
a row (i.e., the driver returns only the most
recent version of the row in the write log),
and that given enough time without new
modifications, all replicas of a row on all
PathStore nodes will converge to the same
most recent value.

Experimental Results
PathStore allows applications to deliver
localized content to edge nodes based on the
end-users’ geographic location. One example
is face recognition classifiers, which are
trained on a dataset specific to a particular
geographical location and we have developed
a face detection and recognition application
that leverages OpenCV and JavaCV to
demonstrate the performance of Pathstore.

The Face Recognizer program labels
an input image (received through HTTP
requests with a file size of 11KB) based on
a trained model. The results for processing
100 requests are illustrated in Figure 3.
Running on the edge lowers the latency by
88 percent.

SESSIONSTORE
PathStore utilizes an eventual consistency
model to replicate data where updates are
propagated in the background and if no new
updates are made to an object, eventually

CQL queries. Subsequent CQL queries that
match an existing entry in the cache are
directly executed on the local node. Queries
in the query cache are periodically executed
in the background by a pull daemon to
synchronize the local node’s content with
that of its parent (i.e., fetch new and updated
records from the parent node). To minimize
unnecessary processing, PathStore keeps
track of the coverage of cache entries and
the pull daemon bypasses queries that are
otherwise subsumed by other queries that
have a wider scope. PathStore also provides
local tables for temporary storage.

The system regularly removes cold query
cache entries and locally replicated rows that
do not match any query in the query cache
to prevent unnecessary data from being
fetched. If there is a resource contention
issue, the system uses a least recently used
(LRU) policy to free up space.

PathStore receives write queries on a node
and applies all changes locally. Periodically,
a push daemon transmits these local updates
to higher levels of the hierarchy. To keep
track of modifications, PathStore uses a write
log. As changes propagate up and down the
hierarchy via the push and pull daemons,
PathStore uses the version timestamp to
establish the order of modifications.

Consistency
At the individual node level, PathStore
maintains the storage semantics of its
underlying native object store. Our current
prototype provides local durability, row-
level isolation and atomicity, and strong

FIGURE 2. PathStore components and its
relation with the application. The Cassandra
cluster can scale horizontally, based on the
location and available resources.

FIGURE 3. CDF for response time of the Face Recognition
application when PathStore is used.

Container

Cassandra Cluster

PathStore
Server

Query Cache

Edge/Core/Cloud DataCenter

Query
Cache

Application

PathStore
Driver

GetMobile June 2023 | Volume 27, Issue 214

[MOBILE PLATFORMS]

all replicas will converge to the same value.
Eventual consistency is suitable for many
applications where clients interact with
the same replica for the duration of their
sessions. As long as the client interacts
with the same replica, the storage system in
effect provides session consistency, which
is a stronger consistency model that has
additional important properties: read-your-
writes, where subsequent reads by a client
that has updated an object will return
the updated value or a newer one; and
monotonic reads, where, if a client has seen
a particular value for an object, subsequent
reads will return the same value or a newer
one. While session consistency does not
guarantee that different clients will perceive
updates in the same order, it presents each
individual client with an intuitive view of the
world that is consistent with the client’s own
actions. Applications that can benefit from
session consistency on the edge include
authentication services, file storage applica-
tions, and messaging applications.

Session consistency is particularly
important for mobile users on the edge as it
provides a seamless and intuitive experience
for the user. Mobile users often rely on edge
storage systems for critical applications,
such as authentication services, file storage,
and messaging.

Session consistency, however, may not
be guaranteed when consecutive client
requests are sent to different replicas. This
may occur in edge applications when: (i) a
mobile client moves between different edges;
(ii) functionality is dynamically reallocated
between edges; or (iii) an application’s
functionality has been partitioned between
different data centers (e.g., running some
functions on the edge and others on the
cloud). If consecutive client requests are
sent to different replicas before the data
needed by the client request is replicated,
the application may not be able to read its
own writes or have monotonic reads.

To address the issues of consistency and
scalability in edge computing environments,
we introduce SessionStore. SessionStore
[5–7] is a specialized datastore designed for
edge computing that aims to improve upon
PathStore by providing session consistency
across a hierarchy of eventually consistent
replicas. It supports session consistency
through a session-aware reconciliation
algorithm that reconciles only the keys that

a client reads or writes at the source replica,
eliminating the need for full reconciliation of
all replicas. Furthermore, it minimizes data
transfer by not transferring up-to-date data
already existing on the destination. In our
example application use case, this saves as
much as 95% in terms of data transfer.

Design
The concept behind our approach to ensuring
session consistency is straightforward but
efficient: we organize related datastore
operations into sessions, and we keep track of
all the rows either read or written by a session
through monitoring the queries it executes.
To minimize the overhead, we aggregate the
queries used to keep track of the data. When
a client moves from a source to a destination
replica, we ensure that the same (or newer)
versions of the rows associated with their
session are present on the destination replica
before executing new queries.

We enforce session consistency by group-
ing related CQL requests into a Session.
The definition of what constitutes a session
is left up to the application developer to
decide. For example, the developer can
decide to make a session represent a user,
a device belonging to a user, a set of com-
mands executed by a function, or a subset
of requests issued by a device. Our system
simply enforces session consistency semantics
among those queries that are identified as
belonging to the same session.

We identify each session using a custom
token called the Session Token, or stoken.
The stoken is included in all messages sent by
the devices and can be encrypted and signed
to prevent forging and misrepresentation
by a centralized authentication system.
Developers can choose between eventual
and session consistency by including (or not)
the stoken together with their queries. In our
experiments, we use Java Servlets to run our
server-side code and pass the stoken using
an HTTP cookie.

State Tracking. To keep track of data related
to a session, a CommandCache is added to
each replica that stores all the queries that
were executed on behalf of a session s. For
INSERT, UPDATE and DELETE commands,
we keep track of modified rows affected by
associated SELECT queries. For example if the
session executes the command where a1 is
the primary key (key):

INSERT INTO T1(key, v1) VALUES (a1,b1)

we store the following query in
CommandCache[s]:
SELECT * FROM T1 WHERE key = a1

This transformation creates a query that
tracks the accessed key a1.

The entries in the CommandCache[s]
precisely identify the data accessed by a
session. To recover the rows associated with
a session, we simply have to execute the
queries without any projections (SELECT(*))
and without any aggregations (without any
GROUP BY). Our database implementation
is based on Cassandra, where queries are
limited to a single table (no joins).

Switching. We use a token (stoken) to track
when a client switches between replicas,
such as moving from ns to nd. The new
replica checks the stoken and begins the
reconciliation process if the client has
switched. The source replica (ns) is halted
and the new replica (nd) waits for the
reconciliation process to finish before
fetching data. The process involves the
destination replica (nd) sending a request to
the source replica for all session data, which
is retrieved by re-executing the session’s
queries. The resulting data and queries are
then transmitted to the destination replica.
Queries are used to track accessed rows,
with writes mapped to separate queries
and reads being aggregated. We also
implemented other optimizations to lower
data transfer between (ns,nd), by monitoring
the data that is already present on the nd.

If a source replica fails while a destination
is replicating data from it, SessionStore waits
for the source to become available again to
continue transferring the rows that were not
already replicated.

The application is notified of any issues
via an exception and can choose to wait and
retry or restart by invalidating the session.

Experimental Results
We conduct our experiments on an emulated
hierarchical edge. Our topology consists
of a cloud datacenter (cl), and two mobile
networks each with a datacenters at its core
(c1,c2), and one or two additional datacenters
at edge location such as base stations (e1, e2,
e3). We assume the latency between the cloud
and the core is 20 ms and between the core
and the edge is 2 ms.

15June 2023 | Volume 27, Issue 2 GetMobile

[MOBILE PLATFORMS]

FIGURE 4. CDF of latency required to read and write a 1KB row on a cloud node (cl) a core node (c1) and an edge node (e1).

(a) Reads (b) Writes

Here we present results that quantify
the overhead of keeping track of session
information and compare the approach to
alternatives that enforce stronger consistency
as the cost of higher overhead. To measure
the cost of keeping track of session state, we
compared the latency for reading and writing
single 1KB row on e1 with SessionStore. The
experiment is repeated for 10 000 different
rows. Figure 4a shows a CDF of the read
latencies for SessionStore in three different
scenarios that assume the rows being read
are already replicated on e1, c1, and el,
respectively. As expected, the figure shows
that replication at the edge reduces read
times dramatically. The average time to read
a row already available on the edge was
0.9 ms, compared to an average of 4.65 and
26.2 ms when the row had to be fetched
from the core and cloud, respectively.

Figure 4b shows a CDF of the write
latency for SessionStore. There is only one
configuration as all writes are performed
on the local replica (e1). The average write
time is 0.73 ms.

FEATHER
Managing data in a geographically distri-
buted environment poses challenges due to
limitations in network links, such as limited
bandwidth and high latency variations.
However, many applications have a strong
locality where most reads and writes can
be done locally and changes do not need to
be immediately replicated throughout the
network. The traditional approach of storing
data locally and replicating it periodically
to higher layers can provide fast local reads
and writes but can’t guarantee freshness and
completeness of read queries when executed
at the parent layer such as in PathStore.
Executing the query on the cloud’s local
replica can result in stale data, while fetching
data from edge devices incurs high latency,
added load, and potential data loss if an edge
is unreachable. Here, we present a hybrid
approach for efficient on-demand global
queries with guaranteed freshness by utilizing
the hierarchical structure of edge networks.

Feather [8] is a data management system
that manages the trade-off between data

freshness and query latency in edge computing
applications. Users can specify freshness
constraints or deadlines for each query
and Feather will execute it over a subset of
the network using local replicas as caches,
returning a result set that meets the freshness
requirements. The system can handle
intermittent link errors and provides an
estimate of missed data. It supports features
found in high-performance tabular data
stores and can be used to port existing read
queries from centralized databases.

Design
Feather is a storage system that offers both
local and global queries. Local queries are
similar to those of other edge-centric data-
bases and are executed directly on the high-
performance local data store. Global queries,
however, provide freshness guarantees and are
computed from recent local and descendant
data up to a limit, avoiding remote queries for
faster response and conserving bandwidth.
Feather also includes features like query
deadlines, result coverage estimation, and
graceful link failure handling.

Feather guarantees that the set of rows
used to process a query will contain all data
updates (insertions, deletions, and updates)
that occurred before a user-defined freshness
threshold, Tq − L, where Tq is the time the
query was sent for execution and L is the
specified limit on data freshness. The query
results also include an actual freshness time,
Tf, which represents the time when all data
updates included in the answer were made.
The exact value of Tf may vary depending
on the replication status and transfer time
between datacenters. Additionally, the answer

FIGURE 5. The freshness guarantees for Feather global queries. Actual freshness Tf is guaranteed
to be between Tq−L and Ta. Any row created before Tf (blue) is guaranteed to be included in the
results, while rows created after Tf (green) may or may not be included.

time

query time
Tq

actual
freshness

Tf

freshness
threshold

answer time
Ta

laxity L
staleness

latency

GetMobile June 2023 | Volume 27, Issue 216

[MOBILE PLATFORMS]

0

200

400

la
te

nc
y

[m
s]

deep topology with f = 30 medium topology with f = 30 wide topology with f = 30

0 100 200

staleness [sec]

0

200

400

la
te

nc
y

[m
s]

deep topology with f = 60

0 100 200

staleness [sec]

medium topology with f = 60

0 100 200

staleness [sec]

wide topology with f = 60

mechanism
on-cloud
down-to-1
down-to-2
down-to-3
down-to-4

may be slightly out of date due to query
execution and data transfer time, and the
difference between the answer time, Ta, and
actual freshness time is defined as staleness,
Ta − Tf . Feather assumes that all replicas have
sufficiently synchronized GPS clocks.

In summary, Feather guarantees:
Tq − L ≤ Tf ≤ Tq
Figure 5 illustrates these semantics. By

tuning the laxity constraint, system operators
can fine-tune the trade-off between query
response time and freshness. Higher laxity
thresholds can result in faster response
latency and reduced bandwidth.

Feather consists of four components
on each node: a persistent storage, a query
server to receive and execute queries, a
push daemon to push periodic updates to
higher-layer nodes, and a receive daemon
to receive updates from lower-layer nodes.
The push daemon is responsible for repli-
cating updated data upstream, marking it
as dirty and sending it in batches sorted
by timestamp. The receive daemon is
responsible for receiving updates from the
push daemon and storing it in the persistent
storage. The query server is responsible for
executing global queries.

The global queries are processed hier-
archically, with each replica determining
the set of children needed to execute the
query and then recursively sending it to each
child. The querying algorithm is a recursive,
parallel tree traversal. The nodes execute
queries in parallel and determine if the data
they have is recent enough to answer the
query locally or if they need to visit a child.

The actual freshness time for the result is
defined by the minimum of the latest update
time for the current node and the freshness
returned by each of the sub-queries on sub-
trees. This depends on the push period and
depth of the hierarchical network.

The result sets are updated incrementally
by adding rows for non-aggregate queries
and updating values for aggregate and group
by queries (e.g. sum, maximum/minimum,
matching groups). The current implementa-
tion assumes rows sets are disjoint and
only updated by the same edge node. More
complicated aggregation algorithms are
required to handle disjoint data that is left
for future work. For aggregation queries
(MIN, MAX, SUM, COUNT), a single value is
retrieved as result, while for AVG, two values
are required. If there is a GROUP BY clause,
the results are computed for each group and
sent to the parent node for merging. WHERE
clause is applied locally and sent to parent
node, while DISTINCT, ORDER, LIMIT
clause is aggregated at the final layer.

Feather also offers analytical information
for each query result, including the number
of participating nodes, the number of includ-
ed data rows, and an estimate of excluded
data rows due to freshness constraints or

link errors. We implemented a prototype of
Feather as a Kotlin standalone application
that uses Cassandra as its persistent storage.

Results
Feather’s performance is evaluated through
controlled experiments and a real-world
deployment processing Twitter data across
multiple continents. It is able to provide
fresher answers than cloud-based execution
while reducing network bandwidth and load
on edge nodes.

We conduct controlled experiments to
assess the performance of Feather using the
New York taxi dataset [13]. The experiments
use one of three network topologies: wide,
deep, and medium, with varying depths and
splits as shown in Table 1.

Feather is designed to provide controlled
trade-off of answer latency and answer
staleness in global queries. This trade-off
depends on query laxity, network topology,
period of the push demon, and data update
distribution among the edges.

Figure 6 shows the performance across
different topologies and push daemon period f.
Each point depicts the answer staleness and
latency for that query, and the color indicates
the lowest tier involved in answering the query.

FIGURE 6. Staleness vs latency of the answer for each query. Colors/markers indicate the depth of most distant node,
which was involved in answering the query. For clarity, we only show a sample of the queries.

Topology 	 Depth 	 Split 	 Nodes per tier 	 Latency per tier

Wide 	 3 	 10 	 1-10-100 	 85, 45

Deep 	 5 	 3 	 1-3-9-27-81 	 70, 30, 20, 10

Medium 	 4 	 3 	 1-3-9-27 	 80, 85, 15

TABLE 1. Toplogies in Controlled Experiments

17June 2023 | Volume 27, Issue 2 GetMobile

[MOBILE PLATFORMS]

The most immediate observation is
that query performance is clustered based
on the depth of the lowest tier involved in
answering them. This is partly because our
controlled topologies have similar latency
for all nodes in a tier, and the key factor is
the round-trip time from cloud to the most
distant node. We also observe that frequent
pushes (top row) result in much fresher
answers, at the cost of increased load on
the network.

CONCLUSION AND
OPEN DIRECTIONS
Edge computing aims to provide highly
responsive service by moving data processing
and management resources closer to end-users
and devices. This requires new architectures
for running applications and storing/managing
their data. In this manuscript, we presented
PathStore, SessionStore, and Feather, which
are systems that take the first steps to make
the edge computing vision a reality by
providing a new model for structuring and
deploying applications and managing their
data. We believe that the systems presented
in this research can be improved in the
following terms:

• 	 Improved replication strategies:
Replicate and cache data and processes
on regional datacenters with data
consumption determining caching policy
as storage and process get cheaper.

REFERENCES
[1] New idc spending guide forecasts edge computing

investments will reach $208 billion in 2023.
February 2023. https://www.idc.com/getdoc.
jsp?containerId=prUS50386323

[2] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and
Sateesh Addepalli. 2012. Fog computing and its
role in the internet of things. Proceedings of the
First Edition of the MCC Workshop on Mobile
Cloud Computing, ACM, 13–16.

[3] Eyal de Lara, Carolina S. Gomes, Steve Langridge,
S. Hossein Mortazavi, and Meysam Roodi.
Poster: Hierarchical serverless computing for the
mobile edge. October 2016. Proceedings of the
First IEEE/ACM Symposium on Edge Computing,
Washington, DC.

[4] Avinash Lakshman and Prashant Malik. 2010.
Cassandra: a decentralized structured storage
system. ACM SIGOPS Operating Systems Review,
44(2):35–40.

[5] Seyed Hossein Mortazavi, Bharath Balasubra-
manian, Eyal de Lara, and Shankaranarayanan
Puzhavakath Narayanan. Toward session consis-
tency for the edge. 2018. {USENIX} Workshop on

Hot Topics in Edge Computing (HotEdge 18).
[6] Seyed Hossein Mortazavi, Bharath Balasubra-

manian, Eyal de Lara, and Shankaranarayanan
Puzhavakath Narayanan. Toward session consis-
tency for the edge. 2018. {USENIX} Workshop
on Hot Topics in Edge Computing (HotEdge 18).

[7] Seyed Hossein Mortazavi, Mohammad Salehe,
Bharath Balasubramanian, Eyal de Lara, and
Shankaranarayanan Puzhavakath Narayanan.
2020. Sessionstore: A session-aware datastore for
the edge. IEEE 4th International Conference on Fog
and Edge Computing (ICFEC), 59–68.

[8] Seyed Hossein Mortazavi, Mohammad Salehe,
Moshe Gabel, and Eyal de Lara. 2020. Feather:
Hierarchical querying for the edge. Proceedings
of the Fifth ACM/IEEE Symposium on Edge
Computing (SEC). IEEE.

[9] Seyed Hossein Mortazavi, Mohammad Salehe,
Carolina Simoes Gomes, Caleb Phillips, and
Eyal de Lara. 2017. Cloudpath: A multi-tier
cloud computing framework. Proceedings of
the Second ACM/IEEE Symposium on Edge
Computing, 1–13.

[10] David Reinsel, John Gantz, John Rydning.
The digitization of the world from edge to core.
Framingham: International Data Corporation,
2018, 16.

[11] Mahadev Satyanarayanan, Paramvir Bahl,
Ramón Caceres, and Nigel Davies. 2009. The case
for vm-based cloudlets in mobile computing.
IEEE Pervasive Computing, 8(4):14–23.

[12] Mahadev Satyanarayanan, Zhuo Chen,
Kiryong Ha, Wenlu Hu, Wolfgang Richter,
and Padmanabhan Pillai. 2014. Cloudlets: at
the leading edge of mobile-cloud convergence.
Mobile Computing, Applications and Services
(MobiCASE), 2014 6th International Conference,
1–9.

[13] NYC Taxi and Limousine Commission. 2020.
New york City trip record data. https://www1.nyc.
gov/site/tlc/about/tlc-trip-record-data.page

[14] Liang Tong, Yong Li, and Wei Gao. 2016. A
hierarchical edge cloud architecture for mobile
computing. IEEE INFOCOM 2016 —The 35th
Annual IEEE International Conference on
Computer Communications, 1–9.

• 	 Privacy: Benefit of edge computing is
local storage and processing, with only
some analytical data sent to the cloud,
protecting end-user data in healthcare
and other applications.

• 	 Resource allocation: Need global strategies
to manage limited processing, storage, and
bandwidth resources in edge datacenters
to ensure performance and reliability.

• 	 Service level agreements (SLAs):
Research direction to identify SLAs for
databases and processes on the edge that
guarantee throughput, data availability,
and performance.

• 	 Billing: How to define billing mechan-
isms for edge computing, considering
parameters such as resources used,
service guarantees, etc.

• 	 Fail-over capabilities: Balance between
reliability and performance in maintain-
ing uninterrupted data delivery services
when networks on the edge of the network
experience failures.

This paper focused on bridging the gap
between the limited real-world implementa-
tions of data management on the edge and
the many theoretical ideas for its use. By
implementing systems that fit current real-
world networks and address challenges,
edge computing can evolve into a disruptive
technology that offers significant benefits
to organizations, businesses, and users for
years to come. n

Seyed Hossein Mortazavi is a senior researcher
at Huawei Canada in Toronto. He received his
PhD in Computer Science at the University of
Toronto. His interests include designing next
generation edge computing systems, as well as
improving networks for the Data Center.

Mohammad Salehe was a PhD student at the
University of Toronto. His interests included
Distributed Cloud Systems. Salehe passed away
in the PS752 flight crash.

Moshe Gabel is an assistant professor in the
Department of Electrical Engineering and
Computer Science at York University. His research
lies in the intersection of distributed algorithms,
systems, and machine learning as well as edge
computing, specifically making geo-distributed
data analysis more practical and accessible to
typical software developers.

Eyal de Lara is a professor in the Department of
Computer Science at the University of Toronto.
His focus is on experimental research on mobile
and pervasive computing systems. His research
has been recognized with an IBM Faculty Award,
an NSERC Discovery Accelerator Award, the 2012
CACS/AIC Outstanding Young Computer Science
Researcher Prize, and two Best Paper awards.

