
EarlyBird: Automating Application Signalling for Network
Application Integration in Datacenters

Seyed Hossein Mortazavi∗
Datacenter Networking Lab, Huawei

Technologies Canada

Ali Munir
Datacenter Networking Lab, Huawei

Technologies Canada

Mahmoud Mohamed Bahnasy
Datacenter Networking Lab, Huawei

Technologies Canada

Haiwei Dong
Datacenter Networking Lab, Huawei

Technologies Canada

Shimiao Wang
Datacenter Networking Lab, Huawei

Technologies Canada

Yashar Ganjali†
Datacenter Networking Lab, Huawei

Technologies Canada

ABSTRACT
Many recent studies in datacenter networking have proposed the
idea of using information from applications for optimizing and
resource planning. These Application-Aware Networks generally
assume that applications can provide an accurate view about their
requirements from the network and their traffic characteristics in
real time. However, relying on the applications and developers to
convey the traffic information is not realistic. We believe that au-
tomating the process of information extraction from applications
is a crucial step towards realizing the idea of Network-Application
Integration (NAI). In this paper, we investigate whether we can
automatically identify places in the application code that, when
executed, lead to predictable changes in the host’s network out-
put. By augmenting the application code at these execution places,
we can generate explicit signals that can be used to predict local
network events (such as changes in rate, bursts, etc.). This creates
a mechanism for automatic adjustment of the network based on
application signals.

We propose a combination of simple heuristics and learning
methods to minimize the burden of the application developer for
NAI. To the best of our knowledge, this is the first study that at-
tempts to automatically realize NAI on the application. Our ex-
perimental evaluation shows a high accuracy (over 87%) of our
prototype in predicting local network events such as micro-bursts.

CCS CONCEPTS
• Networks → Network design principles; Data center net-
works; Cross-layer protocols.

KEYWORDS
Network Tags, Datacenter Networks, Network Application Integra-
tion
∗Corresponding author: seyed.hossein.mortazavi@huawei.com
†Also with University of Toronto.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
NAI ’22, August 22, 2022, Amsterdam, Netherlands
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9395-9/22/08. . . $15.00
https://doi.org/10.1145/3538401.3546599

ACM Reference Format:
Seyed Hossein Mortazavi, Ali Munir, Mahmoud Mohamed Bahnasy, Haiwei
Dong, Shimiao Wang, and Yashar Ganjali. 2022. EarlyBird: Automating
Application Signalling for Network Application Integration in Datacenters.
In ACM SIGCOMM 2022 Workshop on Network-Application Integration (NAI
’22), August 22, 2022, Amsterdam, Netherlands. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3538401.3546599

1 INTRODUCTION
Advance knowledge of network events and their causes in a dat-
acenter can often be leveraged to improve resource utilization,
efficiency and performance of datacenter network and its appli-
cations [11, 18]. Examples of these network events include micro-
bursts, rate changes on flows, establishing/terminating flows and
changes in network topology or status of the network devices, etc.
While some of these events occur due to changes in the network, the
vast majority are originated because of changes in the application’s
communication patterns.

Legacy datacenters are not aware of application’s communica-
tion patterns or requirements and do not utilize this information.
They generally only rely on traditional traffic management tech-
niques (such as shortest path routing and QoS priority queues) that
are application agnostic because accurately calculating, analyzing
and obtaining such information is challenging.

Recently, there has been a new wave of studies proposing the
idea of Network-Application Integration (NAI) to share information
between the network and applications [8–10, 15, 17]. The collabo-
ration between the network and applications increases the overall
efficiency of both the network and the application. On the net-
work side for example, the earlier the network knows about the
traffic and its properties, the more time is available to plan and
mitigate network events. NAI, enables technologies such as clair-
voyant schedulers that leverage the flow size information from the
application to significantly improve network performance [5, 16].

However, there is a plausibility and feasibility question in how
network related information can be obtained from the application [3,
18, 20, 21]. In many instances, this information may not be available
to the application developer [1] or acquiring and transferring it
to the network may require significant changes to the application.
In other cases, the application developer may not know about the
details of underlying communication structures. For example, a
machine learning developer that is using Pytorch or TensorFlow in
a distributed setting is usually only interested in the performance
of the machine learning model. For many sophisticated applications

40

https://doi.org/10.1145/3538401.3546599
https://doi.org/10.1145/3538401.3546599
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3538401.3546599&domain=pdf&date_stamp=2022-08-25

NAI ’22, August 22, 2022, Amsterdam, Netherlands Mortazavi et al.

that are constantly evolving, extracting network related information
becomes particularly difficult.

In this paper, we investigate how the information about the appli-
cation state, that can help predict its communication patterns and
their relation with the network events, can be extracted automati-
cally and seamlessly without involving the application developer.
This aligns with the assessment that NAI should not be left to the
application developer [18].

To this end, we present EarlyBird a novel system that automates
the application information extraction process on the host. The key
idea of EarlyBird is to identify which parts of the application code,
when executed, lead to network events. Using this information,
EarlyBird then predicts local network events. EarlyBird works in
two phases. First, it profiles an application in an offline process, and
uses the timings between execution points in different parts of the
code as an indicator for application state. It uses simple heuristics
and correlation methods [2] to identify which of these applica-
tion states correlate with the network events. Next, it generates a
learning model based on these timings to predict network events.

The main contribution of this work is automating the process
of application information extraction without the involvement or
assistance of the application developer. EarlyBird is not limited
to certain applications and can be generalized for different types
of network events. This is a major benefit compared to other ap-
proaches that only focus on predicting specific metrics such as flow
sizes. To the best of our knowledge, this is the first study to assess
the feasibility of automating NAI on the applications.

Our initial evaluation with Distributed Machine Learning (DML)
applications shows that EarlyBird achieves over 90% accuracy in
predicting micro-bursts on the end-host. Our current prototype
predicts local network events on end-hosts which is limited to the
scope of an end-host but is lightweight and requires very little
processing. Furthermore, network events that are locally observ-
able (e.g. changes in rate, bursts, etc.) usually correlate with global
network events. For example, by predicting local rate changes, we
are able to predict in-cast happening remotely in the network. Simi-
larly, a micro-burst happening at a switch, is correlated with several
smaller bursts coming from various sources.

EarlyBird opens many venues for future research. By augment-
ing the application code at important execution places, we can
generate explicit signals that can be used to predict network events.
This creates a mechanism for automatic adjustment of the network
based on application signals that can help predict network events
several time units (order of ms) in advance, which can be employed
by the network to improve scheduling, routing and rate limiting
techniques to mitigate network events. Note that, as the network
latencies are getting smaller (order of 𝜇s), legacy in-network sched-
uling and routing algorithms have very limited time to detect and
react to network events. EarlyBird provides an automated way to
extend the capabilities of such solutions.

The rest of the paper is organized as follows; Section 2 presents
themotivation behind this work. The design of our proposedmethod
is discussed in Section 3. In Section 4, we present our experimen-
tal results. We discuss related works in Section 5 followed by the
conclusion in Section 6.

Parameter Server

Data
Shards

Workers

Figure 1: The parameter server architecture

2 CASE STUDY: DISTRIBUTED MACHINE
LEARNING

Integrating modern applications that commonly run in the data-
center such as DML systems, databases and big data processing
systems with the networks is a tedious task. Integrating these appli-
cationwith the network as NAI suggests [8], requires the developers
to have advanced knowledge about the expected network behav-
ior [18] which for many applications can be an enormous task. This
is due to the reason that such applications are composed of hun-
dreds of thousands lines of code and can be immensely sophisticated
in terms of logic.

In this section we use the example of Pytorch [14], a DML system
to illustrate how network related information about the application
state can be extracted automatically without overburdening the
application developer.

DML across multiple machines is commonly used to leverage
computational power over a cluster of machines in a datacenter. We
specifically focus on the RPC-Based distributed training model that
supports general training structures and assume a Parameter Server
data-parallel method. A parameter server training cluster consists
of workers and parameter servers. Each trains a local model based
on a subset of the training data. In each iteration of training, model
variables are pulled from the parameter servers, the gradients are
then computed by the workers and pushed back to the parame-
ter server. Workers read and update the variables independently
without synchronizing with each other and updates are sent to
the parameter server. At the end of each iteration the parameter
server aggregates all updated gradients. This process is depicted in
Figure 1.

Pytorch has different communication back-ends each with differ-
ent capabilities. So the question is how the system can be integrated
with the NAI frameworks without the developer having advanced
knowledge about PyTorch or the underlying systems. We argue
that if the application state and changes are known at anytime, the
application’s network behavior in the future can be predicted. An
inexpensive way to capture the application state, is by going di-
rectly to the application code and identifying and monitoring parts
of the application code that when executed can signal imminent
network events.

In Figure 2, we illustrate the distribution of time between the start
of execution of two functions and micro-burst events on a worker
machine in a DML application. As shown in Figure 2, network

41

EarlyBird: Automating Application Signalling for Network Application Integration in Datacenters NAI ’22, August 22, 2022, Amsterdam, Netherlands

(a) send_rpc_sync (b) run_batch

Figure 2: The distribution of time to event when the two
different functions are called in a DML application

User
App

Profiler

Network (Monitoring)

Model
Generation

Model
Database

Figure 3: EarlyBird’s offline modules in grey. Logs from the
networkmodule and profiler are passed formodel generation.
The result is saved in a local database.

events generally occur around 100𝑚𝑠 after the run_batch function
execution this timewas around 20𝑚𝑠 for the send_rpc_sync function.
If the network has a good estimation of when micro-bursts will
happen in the future, it can use various scheduling and rate control
techniques to mitigate the effects.

3 DESIGN AND IMPLEMENTATION
One of EarlyBird’s main goals is to identify places in the application
code that when executed, result in a local network event.We refer to
these places as interest points. Potentially each line of the application
code can be an interest point. Our objective is to find these interest
points for different types of network events. Signals from these
interest points will then be used to predict whether a local network
event will occur in a fixed time window or not.

The EarlyBird agent runs on each host and consists of an of-
fline profiling and online monitoring module and a driver module
containing the prediction model that is also responsible for com-
munication with a centralized controller.

3.1 Offline Profiler
The offline profiling module is responsible for gathering data and
correlating the local network events with function calls. This mod-
ule profiles and logs code placeholders such as function calls with
a timestamp while running the code in an offline setting. EarlyBird
can profile the application code line-by-line but because profiling

can be expensive in terms of resource usage, we provide filtering
tools to narrow down the scope of potential interest points. This in-
cludes only profiling the start of functions, limiting the stack depth
and limiting the profiling to certain classes or folders of the code.
The logs gathered from the profiling step is then correlated to local
network events. The overall architecture of the offline processing
is depicted in Figure 3

To identify the interest points we first construct the temporal
sequence of place holder calls (in our case function calls) 𝐹𝑖 (𝑡), and
the temporal sequence of local network events 𝐸𝑡 .

To find the correlations between the function calls and the local
network events, we use the Pearson correlation coefficient [2]:

𝜌 (𝐹𝑖 (𝑡), 𝐸 (𝑡)) =
𝑐𝑜𝑣 (𝐹𝑖 (𝑡), 𝐸 (𝑡))
𝜎 (𝐹𝑖 (𝑡))𝜎 (𝐸 (𝑡))

=
E[𝐹𝑖 (𝑡)𝐸 (𝑡)] − E[𝐹𝑖 (𝑡)]E[𝐹𝑖 (𝑡)]√︁

E[𝐹𝑖 (𝑡)2] − (E[𝐹𝑖 (𝑡)])2
√︁

E[𝐸 (𝑡)2] − (E[𝐸 (𝑡)])2

As the function executions and the local network events have
a time lag between them, we shift 𝐹𝑡 over time (Δ ∈ 𝑇) and find
Pearson’s correlation coefficient on different time lags to establish
a score vector for each 𝐹𝑖 over time:

𝑆𝑖 (𝑡)) = 𝜌 (𝐹𝑖 (𝑡 + Δ), 𝐸 (𝑡))

The higher the score in each window, the more likely that func-
tion calls will result in respective events. Using this score, we filter
out functions that don’t have a score point above a given thresh-
old for different time windows. We use the rest of the functions
as interest points. In our experiments, this filters out over 85% of
functions for the DML application.

At this stage, we also extract statistical information about the
intensity and duration of each local network event. With the in-
terest points identified, EarlyBird uses two mechanisms to create
signatures for live event detection.

3.2 Learning-based Signature Generation
Once the interest points for each local network event type are iden-
tified, we create a model that predicts these events based on interest
point execution. This model outputs a signature that represent the
event properties (such as size and duration) and when the event is
going to happen.

In the simplest setting, one can simply use the direct mapping
between a sole interest point to a local network event. Whenever
that certain interest point is executed, signal the network about the
probability of a network event occurrence based on the probability
distribution of the interest point causing that event (such as data
from Figure 2). However, this method will not capture many of the
events (low recall) as it does not capture the relations between the
execution of multiple interest points that lead to a network event.

Instead, we build a machine learning model that predicts event
occurrence in a fixed time period (Δ𝑇) seconds. As we want to find
the relationship between interest point executions and network
events, we use the correlation scores of function occurrences as
features to train our model. In this way, we enrich the probabil-
ity calculation by training the prediction module to identify the

42

NAI ’22, August 22, 2022, Amsterdam, Netherlands Mortazavi et al.

Figure 4: Predicting events Δ𝑇 seconds away using informa-
tion from interest point execution in a Δ𝑊 time window

relation, not one execution point to one event, but a sequence of ex-
ecution points and their corresponding network event. Data points
in our training data set contains the execution history of interest
points within a certain time window (Δ𝑊).

For example in Figure 4, 𝐹1, 𝐹2, 𝐹3 have been executed during
the blue time window with a length of Δ𝑊 . We lookup the interest
point’s correlation score vectors and calculate 𝑆1 (𝑇1) + 𝑆1 (𝑇3) for
𝐹1, 𝑆2 (𝑇2) for 𝐹2 and 𝑆3 (𝑇4) for 𝐹4. The corresponding datapoint
would be a vector:

[𝑆1 (𝑇1) + 𝑆1 (𝑇3) , 𝑆2 (𝑇2) , 𝑆3 (𝑇4) , 0 . . .]
These points are then fed to a learning algorithm that generates

the learning model. In our experiments we use a simple 3 layer
neural network and an Adaboost ensemble with 5000 estimators
and compare their performances.

3.3 Online Inference and Live Signalling
Once the classification model is generated, we save the model along
with the correlation score vectors on a local database on the host.
We also augment the application code by adding function calls to a
local driver module at the interest points.

During application execution, whenever a interest point is ex-
ecuted, a function call is made to EarlyBird’s driver. The driver
records interest point executions for the past Δ𝑊 seconds. The dri-
ver then looks up up correlation scores and generates data points
with the same method explained above. Note that without identi-
fying interest points, logging all possible point executions in the
code is impractical and has a huge overhead.

The data points are then given as an input to the classifier for
inference. The classifier along with the correlation scores is loaded
from a local database on EarlyBird’s driver at application startup.
If an event is predicted, the EarlyBird driver signals the network
about the imminent network event along with the network event’s
probability of occurrence, it’s intensity and duration.

This signal will then be used to inform the network about a
possible change in the application’s network behavior. Routing,
scheduling and rate adjustment techniques can then be used to
react to these signals. The sooner the controller receives these
signals, the more time it has to process and mitigate.

4 RESULTS
We evaluate EarlyBird on a DML (Pytorch) running on the param-
eter server setting. The goal of this experiment is to see whether

User
Application

EarlyBird Driver
(Online Inference)

Model
Database

Signal to
Network Controller

Figure 5: EarlyBird’s online modules shown in grey. The
driver loads appropriate models from the database and re-
ceives function signals from the application. It then runs the
inference model to predict events and signals the network
controller

EarlyBird and its learning models can correctly predict network
events just from application logs gathered by the profiler. We chose
the DML application as its one of the most common workloads
in the datacenter. We extract information by profiling one of the
worker machines and filter interest points by only profiling function
calls with a stack depth of less than 15.

For network events, we chose to identify micro-bursts by analyz-
ing Tcpdump logs. Micro-bursts are difficult to handle in datacenter
network and an early signalling mechanism can assist the network
with mitigation.

In our experiments, we assume that the list of potential interest
points has been limited by the application developer to the first
line of every function and we limit logging functions with a depth
of less than 15 on the stack. We predict network events on two
different time resolutions (1𝑚𝑠, 10𝑚𝑠 in our experiments). We run
our experiments for 10 minutes and gather over 900, 000 function
calls from 526 different functions.

4.1 Correlation Scores
We obtain the correlation score vectors for each function by cal-
culating Pearson’s correlation for different time lags. In Figure 6,
the heat map of the correlation scores of different functions for
different time windows is depicted. We only select 12 functions out
of a total 564 due to space limitation. The x-axis depicts the time lag
and the y-axis contains the function calls. This Figure also shows
the underlying relation between function calls and micro-bursts.
For example calls to the send_data_rpc method, generally result in
micro-bursts after 20 milliseconds. From the Figure, one can also
deduce the computation time between learning iterations.

From this Figure, any application developer can understand the
relation between interest point execution and local network event
occurrence and even without building a learning model for event
prediction, the application developer is able to identify important
placeholders.

4.2 Learning Model Accuracy
Using the correlation scores from the previous section, and using
the logs of over 900, 000 function calls, we train two machine learn-
ing models, a 3 layer neural network and an AdaBoost Ensemble. As

43

EarlyBird: Automating Application Signalling for Network Application Integration in Datacenters NAI ’22, August 22, 2022, Amsterdam, Netherlands

10 ms window resolution 1ms window resolution
Neural Network AdaBoost Ensemble Neural Network Adaboost Ensamble

Event Precision 88% 87% 89% 87%
Recall 87% 87% 82% 79%

Non Event Precision 99% 98% 99% 99%
Recall 98% 98% 98% 99%

ROC AUC score 0.94 0.9 0.9 0 .87
Accuracy 98% 97% 96% 95%

Table 1: The performance of EarlyBird’s learning algorithm.

Figure 6: The correlation between selected function calls and
micro-bursts for a DML app.

the ratio of non-events to events is small in our data set we use ma-
chine learning techniques such as undersampling used in anomaly
detection to increase the precision and recall of our models.

The performance results of our model in Table 1. We run two sets
of experiments, one with a time window resolution of 1𝑚𝑠 where
we keep a history time window (Δ𝑊) of 40𝑚𝑠 one with a time
window resolution of 10𝑚𝑠 where we keep a history time window
of 100𝑚𝑠 . For both experiments we predict the time window 20𝑚𝑠

in the future (Δ𝑇).
As shown in the Figure EarlyBird achieves high precision & re-

call for both time resolutions using both learning models. While
the neural network performs slightly better, we suggest using the
AdaBoost Ensemble as it does not require much hyper-parameter
tuning and is ideal for EarlyBird that targets to automate the whole
process of signal generation for the application with minimal devel-
oper involvement. While the training time depends on the amount
of input data, the whole classification time only takes a few mi-
croseconds. Our predictions come with a confidence score that can
be sent as part of the signal to the network controller.

4.3 Discussion
Network input and output is generated as a result of changes in the
application state. Approaches that use periodic passive monitoring
techniques (CPU, memory, system calls, etc) to predict flow sizes,
are by some means indirectly inferring the application state. How-
ever, the live monitoring process can be expensive on the host as it
requires frequent operations to gather time sensitive information
from multiple components. Placing function calls in the application
code as trigger points to EarlyBird’s driver is much faster compared
to other systems that predict events based on more complicated ma-
chine learning models such as in [18, 20] as there is less computing
required in the live phase. The few hundred millisecond processing

requirements on these systems also impact the time resolution of
predictions. While EarlyBird operates in a different domain than
these approaches, it can also complement them by (i) Improving the
prediction accuracy by providing information from the application
and (ii) reducing the online inference overhead by only triggering
monitoring when certain functions are called.

Predicting network wide events (such as detecting congestion
on switches) requires centralized monitoring. EarlyBird will be a
signalling mechanism for the centralized control module of those
systems, warning about incoming traffic from the endhosts while a
centralized correlation system such as SmartTags [12] can identify
the causal relationship between signals and network wide events.

EarlyBird currently targets open source applications (such as
DML or distributed streaming platforms) where the code can be
shared with the network. However, EarlyBird’s profiler as a tool
can assist application developers with finding interest points in the
application code and providing signals manually.

While we expect the interest points to be the same for differ-
ent application workloads, the timing between execution points
can differ meaning that in our current implementation, a different
learning model should be generated for each application workload,
however we plan to extend EarlyBird to automatically adjust the
learning models in real-time using online learning techniques.

5 RELATEDWORK
With the evolution of network controllers with more processing
capabilities, several scheduling techniques have been proposed
that rely on a priori information about flow sizes [4, 5, 16]. Some
methods propose passive monitoring or indirect anticipation of
application behavior without the applications direct involvement,
these include (i) flow size prediction based on machine learning
techniques using data from various system components such as
CPU, memory, etc. [18, 20], (ii) Monitoring TCP send buffer occu-
pancy for estimations on flow sizes [13], (iii) Estimating remaining
flow sizes based on data already sent [1], (iv) Predicting flow sizes
based on previous traces [6]. These approaches, however, have
their own shortcomings. First, they do not exploit information on
the application level. Second, they require more processing power
effecting the application’s runtime and third, they are limited to
certain applications and workloads. Until recently, researchers have
mainly overlooked Network Application Integration in datacen-
ters [8].

Multiple studies [7, 11, 19], demonstrate how application-aware
networks in the context of NAI can potentially benefit from direct
communication between the application and the network. These

44

NAI ’22, August 22, 2022, Amsterdam, Netherlands Mortazavi et al.

approaches propose new communication interfaces and suggest
Directed acyclic graph (DAG) like graphs for application tasks to be
transferred to the network. However, modern applications that com-
monly run in the datacenter such as distributed machine learning
systems, databases and big data processing systems are composed
of hundreds of thousands lines of code and can be immensely so-
phisticated in terms of logic. Integrating these applications with
the network is an arduous task and requires the application devel-
opers to have advanced knowledge about the expected network
behavior [18]. A system like EarlyBird that automatically enables
NAI for these systems is required.

6 CONCLUSION
In this paper, we presented EarlyBird, a novel automated system
for finding points in the application code that lead to changes in
the application’s network output and predicting network events
on the end-host. Our argument was based on the observation that
changes in the application state can lead to network events. Early-
Bird provides the tools and means for the developer to integrate
its application with the network. Our prototype achieves high ac-
curacy in predicting micro-bursts on end-hosts for a distributed
learning application without any assistance or intervention from
the application developer.

While in this work we focused on using the information from the
application to predict local network events, this information can
also be used to predict network wide events [12]. Furthermore, we
can envision this information being used for processing and storage
management in addition to the network within a datacenter.

As for future work, we plan to test EarlyBird on more generic
applications such as databases and also expand our implementation
to gather information about method parameters and application
variables to make our predictions more accurate. We will also test
our system with other type of network events such as changes in
rates or the initiation of flows. We will integrate passive monitoring
techniques on the host to complement EarlyBird’s prediction meth-
ods. Finally, we plan to extend the profiling platforms to include
other programming languages such as Java and C++.

REFERENCES
[1] Wei Bai, Li Chen, Kai Chen, et al. 2015. {Information-Agnostic} Flow Scheduling

for Commodity Data Centers. In 12th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 15). 455–468.

[2] Jacob Benesty, Jingdong Chen, Yiteng Huang, et al. 2009. Pearson correlation
coefficient. In Noise reduction in speech processing. Springer.

[3] Mosharaf Chowdhury and Ion Stoica. 2015. Efficient coflow scheduling without
prior knowledge. ACM SIGCOMM Computer Communication Review 45, 4 (2015),
393–406.

[4] Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica. 2014. Efficient coflow schedul-
ing with varys. In Proceedings of the 2014 ACM conference on SIGCOMM. 443–454.

[5] Peter X Gao, Akshay Narayan, Gautam Kumar, et al. 2015. phost: Distributed
near-optimal datacenter transport over commodity network fabric. In Proceedings
of the 11th ACMConference on Emerging Networking Experiments and Technologies.
1–12.

[6] Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache, et al. 2016. Morpheus:
Towards Automated {SLOs} for Enterprise Clusters. In 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16). 117–134.

[7] Sangeetha Abdu Jyothi, Sayed Hadi Hashemi, Roy Campbell, et al. 2020. Towards
an application objective-aware network interface. In Proceedings of the 12th
USENIX Conference on Hot Topics in Cloud Computing. 16–16.

[8] Danny Lachos, Qiao Xiang, Christian Rothenberg, et al. 2020. Towards deep net-
work & application integration: Possibilities, challenges, and research directions.
In Proceedings of the Workshop on Network Application Integration/CoDesign. 1–7.

[9] HE Lin, Peng KUANG, WANG Shicheng, et al. 2019. Application-aware IPv6
networking. Telecommunications Science 36, 8 (2019), 36.

[10] Takuya Miyasaka, Yuichiro Hei, and Takeshi Kitahara. 2020. NetworkAPI: An In-
band Signalling Application-aware Traffic Engineering using SRv6 and IP anycast.
In Proceedings of theWorkshop on Network Application Integration/CoDesign. 8–13.

[11] Seyed Hossein Mortazavi, Hossein Shafieirad, Mahmoud Bahnasy, et al. 2021.
Accord: Application-Driven Networking in the Datacenter. In Proceedings of the
14th IEEE/ACM International Conference on Utility and Cloud Computing (UCC
’21). Article 13, 10 pages.

[12] Ali Munir, Seyed Hossein Mortazavi, Mahmoud Mohamed Bahnasy, et al. 2022.
Toward Stable Interdomain Network-Application Integration and. In Proceedings
of the ACM SIGCOMM 2022 Workshop on Network-Application Integration.

[13] Aisha Mushtaq, Radhika Mittal, James McCauley, et al. 2019. Datacenter con-
gestion control: Identifying what is essential and making it practical. ACM
SIGCOMM Computer Communication Review 49, 3 (2019), 32–38.

[14] Adam Paszke, Sam Gross, Francisco Massa, et al. 2019. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information
processing systems 32 (2019).

[15] Danny Alex Lachos Perez, Christian Esteve Rothenberg, Mateus Santos, et al.
2020. Ani: Abstracted network inventory for streamlined service placement
in distributed clouds. In 2020 6th IEEE Conference on Network Softwarization
(NetSoft). IEEE, 319–325.

[16] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, et al. 2014. Fastpass: A
centralized" zero-queue" datacenter network. In Proceedings of the 2014 ACM
conference on SIGCOMM. 307–318.

[17] Philipp S Schmidt, Theresa Enghardt, Ramin Khalili, et al. 2013. Socket intents:
Leveraging application awareness for multi-access connectivity. In Proceedings of
the ninth ACM conference on Emerging networking experiments and technologies.
295–300.

[18] Vojislav Ðukić, Sangeetha Abdu Jyothi, Bojan Karlaš, et al. 2019. Is advance
knowledge of flow sizes a plausible assumption?. In 16th {USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI} 19). 565–580.

[19] Weitao Wang, Sushovan Das, Xinyu Crystal Wu, et al. 2021. MXDAG: A Hybrid
Abstraction for Emerging Applications. In Proceedings of the Twentieth ACM
Workshop on Hot Topics in Networks. 221–228.

[20] Renhai Xu, Wenxin Li, Keqiu Li, et al. 2021. DarkTE: Towards Dark Traffic
Engineering in Data Center Networks with Ensemble Learning. In 2021 IEEE/ACM
29th International Symposium on Quality of Service (IWQOS). IEEE, 1–10.

[21] Hong Zhang, Li Chen, Bairen Yi, et al. 2016. Coda: Toward automatically identify-
ing and scheduling coflows in the dark. In Proceedings of the 2016 ACM SIGCOMM
Conference. 160–173.

45

	Abstract
	1 Introduction
	2 Case Study: Distributed Machine Learning
	3 Design and Implementation
	3.1 Offline Profiler
	3.2 Learning-based Signature Generation
	3.3 Online Inference and Live Signalling

	4 Results
	4.1 Correlation Scores
	4.2 Learning Model Accuracy
	4.3 Discussion

	5 Related work
	6 conclusion
	References

