
SmartTags: Bridging Applications and Network
for Proactive Performance Management

Ali Munir, Seyed Hossein Mortazavi, Mahmoud Mohamed Bahnasy,
Amir Baniamerian, Shimiao Wang2 , Shichao Guan, Yashar Ganjali1,2

1Huawei Technologies Canada Co. Ltd., 2University of Toronto
ali.munir@huawei.com

ABSTRACT
Sudden changes in the applications and events in the network
are often related. Many of the datacenter applications go through
sudden state changes (such as a query-response in MemCached
application) that may result in an event in the network (such as
utilization, packet drops, etc.). Existing works do not fully leverage
the relationship between application state changes and network
events and as a result provide limited performance improvements.
An ideal application and network management system should be
able to automatically identify the sources of sudden changes in the
application, host or network and relate these changes to network
events to enable proactive network management. In this work, we
propose SmartTags, a system that automatically learns which of the
application state changes (Tags) are related to the network events,
and uses this information for proactive network management. At a
high level, smartTags is orthogonal to current NAI approaches. It
provides a systemic way for application developers and network
designers to automatically learn the relationship between applica-
tion behavior and network events. Through very simple small scale
real testbed based experiments, we demonstrate that smartTags
can improve the training time of a distributed machine learning
application by 27% while minimizing loss to zero. Similarly, it can
improve the query completion time of MemCached by 32% while
achieving near zero loss. We envision much more gains in large
scale distributed systems.

CCS CONCEPTS
• Networks → Network protocol design.

KEYWORDS
SmartTags, Datacenter Networks, NAI
ACM Reference Format:
Ali Munir, Seyed Hossein Mortazavi, Mahmoud Mohamed Bahnasy,, Amir
Baniamerian, ShimiaoWang2 , Shichao Guan, Yashar Ganjali1,2. 2022. Smart-
Tags: Bridging Applications and Network for Proactive Performance Man-
agement. In ACM SIGCOMM 2022 Workshop on Network-Application Integra-
tion (NAI ’22), August 22, 2022, Amsterdam, Netherlands. ACM, New York,
NY, USA, 7 pages. https://doi.org/10.1145/3538401.3546601

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
NAI ’22, August 22, 2022, Amsterdam, Netherlands
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9395-9/22/08. . . $15.00
https://doi.org/10.1145/3538401.3546601

Figure 1: Causal Relation between Application Changes and
Network Events. A request from the application can create
a simultaneous response from multiple servers resulting in
packet drops in the network.

1 INTRODUCTION
Sudden changes in the applications and events in the network are
often related. Datacenters have many distributed components work-
ing together to run applications and network. These components
often go through many sudden state changes (such as an appli-
cation switching from data processing to sending data over the
network) that result in various network events (such as congestion).
For example, when a worker in the distributed machine learning
(DML) [8] or a database application [6] finishes processing data
and switches to communication phase to transfer the processed
data over the network, it may start many flows simultaneously
sending data to the same destination. This sudden change in the
large amount of data may create congestion in the network and
hence may result in packet drops (Figure 1).

Many existing mechanisms have leveraged the information from
the applications for proactive network management to improve the
application and network performance. For example, an epoch start
time aware traffic management solution is proposed to proactively
handle network congestion caused by DML applications [7]. Simi-
larly, many scheduling mechanisms leverage flow size information
to improve the application performance [9, 13].

To the best of our knowledge, existingworks do not fully leverage
the relationship between application state (changes) and network
events and as a result the proposed solutions are limited to specific
use cases only. This is mainly due to two reasons.

First, the fundamental limitation of the prior art is the lack of
ability to “automatically” associate application state changes with
the network events. For example, applications can not inform the
network of the state changes, and as a result the network is unaware
of when, how much, or, to how many data will an application send.
Similarly, network is a black box for the application, and as a result
applications are unaware of how their communication patterns
affect the network state (e.g., if it creates congestion or not.). Hence,

https://doi.org/10.1145/3538401.3546601
https://doi.org/10.1145/3538401.3546601
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3538401.3546601&domain=pdf&date_stamp=2022-08-25

NAI ’22, August 22, 2022, Amsterdam, Netherlands Munir et al.

any new solution needs to learn what application state changes
impact the network and how.

Second, existing solutions have limited ability to detect and
adjust to the sudden changes. Sudden changes in application or
endhost require time to prepare and adjust network behavior. As
a result, many of the solutions are reactive in nature that detect
application changes when something has already happened in the
network. For example, congestion control depends on the network
events (loss in TCP [3] and delay in BBR [1]) to detect if there is
congestion in the network and then do preventive measures to
avoid congestion.

An ideal application and network management system should
be able to automatically identify the sources of sudden changes in
the application, host or network and relate these changes to net-
work events to enable proactive network management. Recently,
Socker [4] and socketIntent [10] have been designed to share infor-
mation between application and network. However, these frame-
works have very limited functionality and are not capable of ex-
changing state change information with the network. Even if these
interfaces enable information exchange, it is hard to identify which
of the application information is related to network events.

In this work, we propose SmartTags, a distributed system that
automatically learns which state changes (represented as Tags) are
related to the network-wide events (Events), and uses this informa-
tion for proactive network management. At a high level, SmartTags
is orthogonal to current NAI approaches. It provides a systemic way
for application developers and network designers to automatically
learn the relationship between application behavior and network
events and identify which state changes can indicate network state.

For SmartTags, Tags are informative, lightweight, and predictive
signals from the “application or endhost” that represent the “state”
or “changes in the state” of an “application, host, or network”. In this
work, we assume that Tags are generated by the application and are
provided as an input to SmartTags. For example, at the application
level, for a MemCached application “MultiGet” is a commonmethod
to collect response for multiple queries simultaneously. Whenever
the application wants to issue this function, it can trigger a signal
which acts as a Tag for the SmartTags system. SmartTags then
learns if this Tag is responsible for any event in the network.Whereas,
Events are the changes in the network such as bursts, packet drop,
utilization etc.

SmartTags is a scalable and generic system that operates in two
phases. First, it collects and learns the relationship between Tags
and Events in an offline manner. For this purpose, we propose a
SmartTags protocol that defines a generic definition (format) of the
Tags (or Events), and a compact and expressive SmartTags signature
that represents the relation between Tags and network events. Sec-
ond, it proactively adjusts the network configurations in real-time
based on the Tags. For this purpose, we propose a distributed archi-
tecture for Tags and Events collection and for proactive network
management in real-time.

Using two usecases, DML and MemCached, we demonstrate two
key features of the SmartTags system: First, it can very reliably
identify which of the sudden changes in application state (Tags)
are most responsible for the network-wide events. Second, it is pre-
dictive and proactive. SmartTags has the ability to predict network
events several time units (RTT) earlier even before they happen.

Figure 2: Predictiveness - Application state changes (Multiget
query (MG), and response (RS)) always happen before the
network events (E1 and E2) such as packet loss.

Therefore, it opens up possibilities to design solutions that can pre-
vent undesired events (such as packet drops) from even happening
in the network.

Through very simple small scale real testbed based experiments,
we demonstrate that SmartTags can improve the training time
of DML by 27% while minimizing loss to zero. Similarly, it can
improve the query completion time of MemCached by 32% while
achieving near zero loss. We envision much more gains in large
scale distributed systems.

2 MOTIVATION
Many applications, such as distributed machine learning (DML) [8]
or distributed databases, that are repetitive in nature exhibit a strong
correlation between the application state changes and the network
events.

2.1 Application state change impacts network
In a distributed MemCached application, first a client sends a re-
quest (e.g., "MultiGet") tomultiple servers. Next, the servers respond
to the query which can result in packet drops at the switch depend-
ing on how many servers respond to the queries simultaneously.
This request response process repeats for every single request. For
such repetitive applications, we observe the following properties.

Prediction of network events. The application state changes
can hint about the network events ahead of time. For example, in
Figure 2, we can see that the application state change in the form of
Multiget request (MG) or the server response (RS) always happens
before the packet drop events (E1 and E2) in the network.

Accurate Relation. The application state changes can indicate
with a very high accuracy if an event is going to happen in the
network. To demonstrate this, we run a simple MemCached test
case with 200 MG requests to 5 different servers. We assume that
the data is stationary for the use-case. We compare the time to
packet drop after sending an MG request with a random sampling
based approach. We can see that there is a very high correlation
between the MG and packet drop event in the network. As a result,
in Figure 3, one can tell with a very high accuracy that there is going
to be a packet drop event within 200𝜇s. On the other hand, random
sampling based approach is unable to give any insights about the
packet drops in the network. In this experiment, we consider a
random sampling approach where we randomly sample the switch
to observe any packet drops. In this case as the time at which the
packet drop happen, with respect to the application state, is not
fixed. Hence it is very hard to relate packet drops in the network
with the application state.

SmartTags: Bridging Applications and Network NAI ’22, August 22, 2022, Amsterdam, Netherlands

Figure 3: Application state changes can hint with very high
accuracy if an event is going to happen within a certain du-
ration (left), compared to existing random sampling based
approach (right).

2.2 Why SmartTags?
For a true application network integration, it is essential to learn
the relationship between applications and network and how they
impact each other’s performance. SmartTags system aims to fill
this gap by automating the process of relating the application state
changes (represented as Tags) with the network events for proactive
networkmanagement. Note that the Tag is not limited to application
state changes only, it can be the socket level connection state as
well.

For example, the Tag MG in MemCached example can be ob-
tained when the query is generated and SmartTags can learn its
relation with the events (such as burst) in the network. Later this
Tag can be used to proactively prepare the network to handle in-
coming burst.

SmartTags enables many potential applications: it can be used
for building smart endhosts that do Tags aware flow control / sched-
uling (similar to [9]), smart switches that do Tags aware congestion
signaling, routing, load balancing etc., (similar to [7]), and smart
applications that do Tags aware dynamic application logic, DAG
scheduling.

3 SMARTTAGS
In this section, we share our vision of how a system like SmartTags
may be designed.

3.1 Tags and Events
Tags are lightweight signals generated at the application, endhost
or network that represent the state or changes in the state of an
application, a host, or network (like in any of the existing works).
Tags, in SmartTags, are generic and at the same time application
specific. SmartTags does not require any global agreement between
the Tags from different applications as compared to existing systems.
Moreover, Tags do not contain any information about how it is
related to other Tags or Events. Tags also do not require/contain any
detailed information about application content itself (to maximize
data privacy).

Events are the signals from the network that represent different
statistics about the network state, such as delay, queue build up or
packet drops etc.

Application level Tag examples are (not limited to) application
type (stream/bursty flow/map/reduce/. . .), application state (re-
sponse/request, number of repetition, Start/End time, direction)
etc. Host level Tag examples are App usage statistics (such as CPU

cycles used, Disk I/O, Memory I/O) or Socket level parameters (such
as Inter flow gap, start/end time, flow size, congestion window size
change, message buffer size, priority etc.) Similarly, examples of
network events are burst, packet drops, queue size, load etc.

3.2 SmartTags Protocol
SmartTags protocol defines what and how the Tags and Events
information needs to be collected. To make SmartTags generic
(i.e., represent a wide variety of applications) and have a uniform
representation format of Tags and Events, we propose a specific
format for collecting the Tags and Events in the network. Tags
and Events are collected in the following format – time, localeID,
Tag (or Event), value. The time represents the instant at which the
Tag was generated (or the Event was reported), localeID represents
the origin of the information, it could be an Application ID, the
Job ID, or a specific flow ID (+ 5-tuple), or the host/switch ID, or
a combination of these. The Tag can be a generic identifier that
represents the state change.

Note: It is the precise information Time, localeID, Tag, Value
along with the Tag that helps make it smart. In SmartTags, Time
(when), Location (where), Tag (or Event) (what) are the must-haves
information. Time and LocaleID identifier are the key elements that
help in identifying the related state changes and events, and make
Tags smarter. Optional info such as extent (value) can further help
enhance/improve the system and make Tags smarter. For example,
In MemCached, for a Multiget request if we don’t know the query
size, we can still use SmartTags system, but additional info helps in
building better solutions.

3.3 SmartTags Signature
The SmartTags signature represents the stochastic relation between
the Tags and Events, and it accurately captures when and where
an Event is going to happen if a specific Tag is seen. The key
requirements in designing a signature are that it should be compact
and provide an expressive representation of Tags and related Events.
Moreover, the signature should be usable in fast and online manner
in data plane at line rate.

To generate a signature, the SmartTags requires the Tags, Events,
and the network graph showing relationship between components
(such as switches, hosts, application) as an input. The output is
the signature that gives the probability of an Event happening at a
location within certain time (𝑡𝑑), given a Tag i.e., Prob(td, localID,
Event | Tag).

For signature generation, First, SmartTags groups the Events
and Tags based on the location (and relationship) information, and
then it segregates them based on the Events and Tags happening
within a certain time window. Next, for each cluster it estimates the
probabilities of the Tags and their relationship. Note that this is just
one potential way to generate signatures. SmartTags can use any of
the existing machine learning or statistical approaches [14, 15] to
find these signatures. The goal of this work is to present a proof-of-
concept and we leave optimizing the design of an efficient signature
generation mechanism to future work.

SmartTags signature can capture the relationship between Tags
and Events even if Tags from only a subset of the applications are

NAI ’22, August 22, 2022, Amsterdam, Netherlands Munir et al.

Figure 4: SmartTags uses the Tags and Events to generate a
signature with the information of when and where an Event
is going to happen after seeing a Tag. This is then used for
proactive network management.This is an offline process
that happens at the start (and updated periodically) while
the application is running.

available. The probability captures the effect that if an Event is
happening due to the Tag or the background applications.

3.4 SmartTags Design & Implementation
SmartTags is an end-to-end system for proactive network manage-
ment based on Tags that works in two phases:

Identification Phase. In this phase, the SmartTags system col-
lects and correlates Tags (and Events) from the network and ap-
plications, as shown in the Figure 4. The input to this phase are
the Tags and Events and output is the SmartTags signature, that
represents the relationship between the Tags and Events, for the
network controller.

Action Phase. In this phase, the SmartTags system monitors
Tags and takes real-time actions in the data path to achieve desired
performance objective. The smart network controller uses the signa-
ture to create rules and actions for the datapath that are proactively
installed by the control plane. For example, a SmartTags enabled
network controller can proactively update the forwarding tables
at the switches to reroute flows based on the SmartTags signature
and avoid congestion in the network.

SmartTags is an iterative system that keeps on updating the
signature to capture accurate correlation (C) between Tags and
Events based on the current network conditions. The identification
phase runs in an offline phase, that is repeated periodically to update
the learned relationship based on changing network behaviors.
Action phase on the other hand runs in real-time and leverages the
Tags and the learnt signatures for proactive network management.

Two phase design makes SmartTags suitable for applications
that are iterative and repetitive in nature. During the initial runs,
SmartTags can learn the application behavior and its impact on
the network, without affecting the application performance, and
later it can proactively manage application and network behavior.
Moreover, this design eliminates the need for the SmartTags engine
to operate at the RTT granularity, thus improving its ability to be
used in real-time.

To realize SmartTags in a large scale distributed datacenters, this
work implements following components, Figure 5.

3.4.1 SmartTags Drivers (S.D.). S.D. are the muscles that collect
and forward Tags to the SmartTags engine for generating signa-
tures or the smart network controller to take real-time actions to
achieve desired performance objective. S.D. is a distributed ele-
ment that runs on hosts and/or switches. Switches may use existing
controllers/monitoring systems to report Events to the S.D.

Figure 5: SmartTags Distributed Components (in red).

Figure 6: Smart Drivers at the host collect Tags from appli-
cations/hosts and share it with the SmartTags engine and
network controller.

SmartTags Driver at the host: Figure 6 shows the key elements
of the S.D. on a host machine. The S.D. is implemented as a driver
that interacts with the application, host and the network controller.
It collects Tags from the application or the host using the process
called “Tag Monitor” and checks in the local database if a signature
for this Tag exists locally. If the signature exists, the Tag is for-
warded to the smart network controller, which takes certain actions
based on the signature (action phase). If the signature does not
exist, the Tag is forwarded to the SmartTags agent (identification
phase). The SmartTags agent supports correlation of the local Tags
and local Events and forwards the Tags to the SmartTags engine
for correlation with the global network events. We implement S.D.
drivers as python module at the endhost.

SmartTags Driver in the network: The S.D. interacts with the
switch’s flow and event monitors. It collects Tags and events from
these entities using ’Tags Monitor’ and checks in the local database
if a signature for this Tag exists locally. If the signature does not
exist then the Tag is forwarded to the S.E. via SmartTag agent. If
the signature exists, the Tag is forwarded to the switch controller,
which takes certain actions based on the signature, such as reroute
packets or change queue thresholds.

SmartTags: Bridging Applications and Network NAI ’22, August 22, 2022, Amsterdam, Netherlands

Figure 7: SmartTags collects 1) Tag, and 2) Event. Next, it
learns the relationship between Tags and Events and gener-
ates signatures for the network controllers.

3.4.2 SmartTags Engine (S.E.). S.E. is the brain that enables identi-
fying the relationship between Tags and Events. It is a centralized
(logically) entity that collects Tags (and Events) from the SmartTags
agents at the hosts and switches during the identification phase. It
correlates Tags (and Events) and generates signatures to help define
rules and policies. The signatures are added in the S.D. database for
use by the smart Network controllers, during the actioon phase.

3.4.3 Smart Network Controller. It enables proactive solutions to
address various network challenges (such as taking early actions to
avoid burst of data or packet drops) using SmartTags signatures. It
takes the SmartTags signature as an input and produces rules and
action policies for proactive network management in the format of
rule, action, expiration. The expiration tells the duration for which
a rule should be active in the network. If a Tag is seen, the smart
network controller generates and installs a rule action and sets it
to delete after the “expiration” time.

3.4.4 Implementation. Implementing SmartTags requires changes
in both the hosts and the network switches. We envision SmartTags
to run as a service that can work with the applications and network
controllers to achieve its objectives. For example, the SmartTags
driver at the host can interact with the applications through socket
interfaces such as Socker [4], or it can be a dedicated service with
which the application can register and share its state. Another
option might be adding placeholders in the application code that
can generate Tags when executed. More details on this can be found
in our related work [11]. In this work, we adopt this approach for
design simplicity and ease of developing a proof of concept.

Similarly, the controller implementation is very usecase specific
and can be done using existing SDN controllers or other technolo-
gies. In this work, we implement a simple controller at the endhost
that reroutes traffic (using linuxipTables) or adds delay (using native
linux traffic control utility like tc) to the packets upon observing
specific Tags.

This distributed design makes SmartTags scalable as it avoids
contacting the centralized S.E. every time a Tag is observed. S.D.
can generate a rule action locally once it sees a Tag. SmartTag
drivers and engine communicate over any message communication
protocol (such as ZMQ).

Lastly, the SmartTags driver at the switches can be implemented
through programmable switches and software defined networking.
We discuss one such design in the following work [5]. Moreover,
many switches provide telemetry services that can be configured
to collect network events, similar to NetHint [2].

4 CASE STUDIES
We demonstrate SmartTags benefits using two applications repre-
senting machine learning and database systems.

4.1 SmartTags for MemCached
For a MemCached system, as shown in Figure 7, during the identi-
fication phase: First, the receiver sends a Multiget (MG) request to
two senders at time t1 – application generates a Tag (MG) showing
the request. Second, the sender response (RS) results in packet drops
at time t2 – which is logged as an Event at the switch. Lastly, the
SmartTag engine collects and correlates Tags and Event to generate
a signature for the smart network controller. The controller then
installs the delay rules in the S.D. to mitigate packet drops in the
future.

During the action phase: First, the receiver sends a request to
two senders at t1 and application generates a Tag showing the
request. Second, the SmartTags driver at the host sees the Tag and
adds random delay to the flows going out of the sender. As a result
packets from different senders are desynchronized and hence the
network avoids packet drop.

In our testbed, we modify the MemCached application to gen-
erate a Tag whenever, it issues an MG request or generates RS.
Furthermore, we add a delay to the response using the linux utility
’tc’ to proactively manage congestion based on the Tag.

4.2 SmartTags for DML
For a DML application, we consider a synchronized parameter
server [8] architecture. Similar to MemCached, during the identi-
fication phase: First, the parameter server (PS) runs an “rpc_sync”
function at t1 which pulls the updated parameters from the worker
nodes, application generates a Tag showing the request. Next, the
worker nodes send parameters to the PS that may result in packet
drops at t2 – which is logged as an Event at the switch. Lastly, the
SmartTags engine generates a signature. For our study we consider
rerouting the flows of the worker nodes, when a Tag is seen for a
flow. For this we configure two paths between the parameter server
and each worker. Upon seeing the “rpc_sync”, the worker nodes
select one of the two paths for the outgoing flows.

In our testbed, we modify the pytorch application code to gener-
ate a Tag whenever an ’rpc_sync’ command is executed. Further-
more, we add a re-route rule using the linux utility ’iptables’ to
proactively manage congestion based on the ’rpc_sync’ Tag.

4.3 Technical Benefits Demo
We run above two applications. First, we run a simple MemCached
test case with 200 MultiGet (MG) requests to 5 different servers.
Second, we test with a parameter server based distributed machine
learning application, with one server and 6 workers using ResNet-
18 model.

SmartTags is Generic. SmartTags captures any Tags from the
application and Events. For example, Tags from the DML Applica-
tion 𝑡1, 𝐷𝑀𝐿, 𝑆2𝑊, 4 represent flow of data from server to 4 workers
at 𝑡1. Tags from theMemCached 𝑡2, 𝑀𝐶,𝑀𝐺, 80 represent the multi-
get request from 80 values at 𝑡2. And, Events (burst) from the switch
𝑡3, 𝑆𝑊 1, 𝑃𝐷, 10 shows 10 packet drops at switch1 at 𝑡3.

NAI ’22, August 22, 2022, Amsterdam, Netherlands Munir et al.

(a) Packet Drops DML (b) FCT / Drops MemCached

Figure 8: SmartTags improves the performance by proactively
managing congestion in the network. b) impact of different
actions (varying delay) on application performance. Smart-
Tags can help predict the desired amount of delay. For exam-
ple, in this experiment delay of 300ms can mitgate packet
drops and improve FCT. Adding any more delay degrades the
application performance.

SmartTags captures Relation. SmartTags can capture relation
between Tags and Events. For example, for the DML application
we can see that as the number of servers (a unique Tag for each)
increase we observe an increase in the packet drops, Figure 8a.
Similarly, for the Memcached Multiget of different sizes show a
relation with the loss rate. Thus, SmartTags can tell how the Tags
are related to Events in the network. This is further highlighted in
Figure 3, as discussed in § 2.1.

SmartTags is Predictive. As demonstrated in Figure 3 (§ 2.1),
SmartTags can predict an event much earlier as compared to in-
network solutions that are unaware of application state changes. For
example, in MemCached, a burst can be predicted 200msec earlier,
which is significantly larger (1000x) than the latencies of current
datacenter networks. Similarly, in DML depending on the model
these gains could be even higher. This allows sufficient time for the
controller to reconfigure network to handle undesired events.

SmartTags is Proactive. SmartTags enables proactive network
management. To test this we installed two different solutions. First,
for the DML application, we observe that rerouting (physically
distinct paths) flows can mitigate packet drops caused by the bursts
and improve training time (Figure 8a). Similarly, for the Memcached
application, flows are delayed if a Tag is seen. We can observe from
the Figure 8b that as we increase the amount of delay, the number
or packet drops reduce significantly. Zero delay here represents the
state-of-art.

5 DISCUSSION AND CONCLUSION
5.1 Differences from Prior Art
SmartTags has following key differences from the prior art. First,
existing solutions use a predefined set of Tags that provide limited
use in specific cases only [9]. Second, some works are reactive by
design, i.e., they react based on the network events e.g., multiplica-
tive decrease upon loss in TCP. Third, some works find relation
between Tags but do not consider effect on the network, e.g., flow
size estimation [13]. Fourth, they find relation between Events, do
not consider effect of the Tags on these Events [15]. Lastly, some
works use the Tags from the applications for proactive network
management [7].

SmartTags extends the capabilities of these systems as follows:
First, Tags are generic and at the same time application specific.
SmartTags does not require any global agreement between the Tags
from different applications as compared to existing systems. Second,
it automatically identifies the chance (probability) and degree of
relationship of a Tag with the network event. It is not limited to a
fixed set of Tags or Events. It creates a signature that can be used to
define any rule/action on the fly. Third, SmartTags is proactive as it
provides a prediction on network state (couple of RTT ahead) that
gives the network enough room to define new rules and measures
to avoid congestion. Lastly, SmartTags finds the relation between
Tags and Events. Although it is capable of doing between only Tags
or only Events too.

5.2 Potential Future Directions
Signalling between Applications and SmartTags. A key design
question for smartTags realization is how to share the information
between applications and the SmartTags system. In this work, we
follow a simplistic approach of modifying the application code to
add potential signals. However, such a solution is impractical to
implement. A potential direction could be to automate the place-
holder selection process, as in EarlyBird [11] or using distributed
application tracing, as in Dapper [12].

We demonstrate (EarlyBird [11]) a potential way to automate
the placeholder selection in the application code. EarlyBird helps
application developers identify what can be the potential locations
to add Tags in their code.

SmartTags Prediction Accuracy. Another key design question
for SmartTags is how accurately can SmartTags capture the causal
relationships between Tags and Events. In this paper, we demon-
strate that in isolated environment where only a single application
is running, this could be done very efficiently and accurately. How-
ever, larger datacenters have complex environment where multiple
applications co-exist. In such settings, one single event may be the
result of multiple application state changes or the combination of
the behavior of different applications. We would like to highlight
that SmartTags systems captures the probabilistic relation between
Tags and Events, which looks at the long term behavior of the ap-
plication and network. Therefore, it can easily detect if an event is
persistently being caused due to the changes in application state.
We leave detailed evaluation of this as a future work.

We demonstrate (in [11]) that the SmartTags system can identify
the true causal relationship between Tags and local Events at the
host with a very high accuracy.We also highlight the imapct of 𝑡𝑑 on
the correlation probability for the SmartTags signature. Smaller 𝑡𝑑
can lead to false negatives, failing to capture the relationship while
larger 𝑡𝑑 can lead to false positives. We leave detailed evaluation of
this as a future work.

SmartTags opens doors for much richer coordination between
the applications and network. To the best of our knowledge, none
of the previous works consider Tags from the application state
changes and their effect on network events. SmartTags is defining a
way for intelligence sharing between the applications and network.
This opens up many possibilities for proactive solutions. In this
work, we propose a general system architecture to support our
vision.

SmartTags: Bridging Applications and Network NAI ’22, August 22, 2022, Amsterdam, Netherlands

REFERENCES
[1] Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas Yeganeh, and

Van Jacobson. 2017. BBR: congestion-based congestion control. Comm. ACM
2017 60, 2 (2017), 58–66.

[2] Jingrong Chen, Hong Zhang, Wei Zhang, Liang Luo, Jeffrey Chase, Ion Stoica,
and Danyang Zhuo. 2022. NetHint: White-Box Networking for Multi-Tenant
Data Centers. In 19th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22). 1327–1343.

[3] Sally Floyd and Van Jacobson. 1993. Random early detection gateways for
congestion avoidance. IEEE/ACM ToN 1993 1, 4 (1993), 397–413.

[4] Dong Guo, Shuhe Wang, and Y Richard Yang. 2021. Socker: Network-application
Co-programming with Socket Tracing. In ACM SIGCOMM NAI 2021. 14–19.

[5] Dong Guo, Shuhe Wang, and Y Richard Yang. 2022. NCE: An ECN Dual Mecha-
nism to Mitigate Micro-bursts. In ACM SIGCOMM NAI 2022. 14–19.

[6] Jithin Jose, Hari Subramoni, Miao Luo, Minjia Zhang, Jian Huang, Md Wasi-ur
Rahman, Nusrat S Islam, Xiangyong Ouyang, Hao Wang, Sayantan Sur, et al.
2011. Memcached design on high performance rdma capable interconnects. In
ICPP 2011. IEEE, 743–752.

[7] Minkoo Kang, Gyeongsik Yang, Yeonho Yoo, and Chuck Yoo. 2020. Proactive
congestion avoidance for distributed deep learning. Sensors 2020 21, 1 (2020),
174.

[8] Mu Li, Li Zhou, Zichao Yang, Aaron Li, Fei Xia, David G Andersen, and Alexander
Smola. 2013. Parameter server for distributed machine learning. In NIPS 2013,
Vol. 6. 2.

[9] Ali Munir, Ghufran Baig, Syed M Irteza, Ihsan A Qazi, Alex X Liu, and Fahad R
Dogar. 2014. Friends, not foes: synthesizing existing transport strategies for data
center networks. In ACM SIGCOMM 2014. 491–502.

[10] Philipp S Schmidt, Theresa Enghardt, Ramin Khalili, and Anja Feldmann. 2013.
Socket intents: Leveraging application awareness for multi-access connectivity.
In CoNext 2013. 295–300.

[11] Mahmoud Mohamed Bahnsay et. al. Seyed Hossein Mortazavi, Ali Munir. 2022.
EarlyBird: Automating Application Signalling for Network Application Integra-
tion. In ACM SIGCOMM NAI 2022.

[12] Benjamin H Sigelman, Luiz Andre Barroso, Mike Burrows, Pat Stephenson, Manoj
Plakal, Donald Beaver, Saul Jaspan, and Chandan Shanbhag. 2010. Dapper, a
large-scale distributed systems tracing infrastructure. (2010).

[13] Vojislav Ðukić, Sangeetha Abdu Jyothi, Bojan Karlaš, Muhsen Owaida, Ce Zhang,
and Ankit Singla. 2019. Is advance knowledge of flow sizes a plausible assump-
tion?. In USENIX NSDI 2019). 565–580.

[14] Ting Wang, Mudhakar Srivatsa, Dakshi Agrawal, and Ling Liu. 2009. Learning,
indexing, and diagnosing network faults. In ACM SIGKDD 2009. 857–866.

[15] Ting Wang, Mudhakar Srivatsa, Dakshi Agrawal, and Ling Liu. 2010. Spatio-
temporal patterns in network events. In CoNEXT 2010. 1–12.

	Abstract
	1 Introduction
	2 Motivation
	2.1 Application state change impacts network
	2.2 Why SmartTags?

	3 SmartTags
	3.1 Tags and Events
	3.2 SmartTags Protocol
	3.3 SmartTags Signature
	3.4 SmartTags Design & Implementation

	4 Case Studies
	4.1 SmartTags for MemCached
	4.2 SmartTags for DML
	4.3 Technical Benefits Demo

	5 Discussion and Conclusion
	5.1 Differences from Prior Art
	5.2 Potential Future Directions

	References

