
Hierarchical Data Storage And Processing on the Edge of the Network

by

Seyed Hossein Mortazavi

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Graduate Department of Computer Science
University of Toronto

c© Copyright 2020 by Seyed Hossein Mortazavi

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Published by ProQuest LLC (

 ProQuest

). Copyright of the Dissertation is held by the Author.

All Rights Reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

28094850

28094850

2020

Abstract

Hierarchical Data Storage And Processing on the Edge of the Network

Seyed Hossein Mortazavi

Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto

2020

Current wireless mobile networks are not able to support next generation applications that

require low latency or produce large volumes of data that can overwhelm the network. Examples

include video analysis applications, wearable devices, safety critical applications and intelligent

smart city systems. The use of servers on the wide-area cloud, however, is also not an option

as these applications require low response times, or involve processing of large volumes of data

from many devices. To address these challenges, edge computing proposes the addition of

computation and storage capabilities to the edge of the network [30, 19]. This thesis generalizes

edge computing into a hierarchical cloud architecture deployed over the geographic span of a

network. The vision supports scalable processing by providing storage and computation along a

succession of datacenters positioned between the end device and the traditional wide area cloud

datacenter. I develop a new deployment and execution platform called CloudPath based on the

Function as a Service (FaaS) model that supports code and data mobility and distribution by

enforcing a clear separation between computation and state. In CloudPath applications will

be composed of a collection of light-weight stateless event handlers that can be implemented

using high level languages, such as Java. In this thesis, I also develop a shared database

abstraction called PathStore that enables transparent data access to the hierarchy of cloud and

edge datacenters. PathStore supports concurrent object reads and writes on all nodes of the

database hierarchy and its extension called SessionStore adds session consistency (read your own

writes, monotonic reads/writes) for mobile applications. Finally, I implement a geo-distributed

query engine that exploits the hierarchical structure of our eventually-consistent geo-distributed

database to trade temporal accuracy (freshness) for improved latency and reduced bandwidth.

ii

I dedicate this work to my parents, my wife, and my brother for their endless love, support and

encouragement. And, to my dear friend Mohammad Salehe, who is resting in a better place ...

iii

Acknowledgements

First, I would like to express my sincerest gratitude and most profound appreciation to my

advisor, professor Eyal de Lara who continuously supported and directed me during my Ph.D.

Eyal’s exceptional coherence, intuition, and understanding as well as his immense patience

and expert advise, are what any graduate student could wish for. Without his guidance and

persistent help, this dissertation would not have been possible.

I would also like to thank prof. Yashar Ganjali and prof. Angela Demke Brown, for serving as

my committee members and for their thoughtful and constructive comments and suggestions.

In addition, I express my gratitude to my collaborators in various projects, Mickey Gabel,

Iqbal Mohomed, Bharath Balasubramanian, and Shankaranarayanan Puzhavakath Narayanan,

for their expert knowledge and constant feedback. I would also like to thank professor Jorg

Liebeherr for his support while I was at the network research lab.

I thank my fellow labmates and friends at the University of Toronto: Daniyal Liaqat, James

Gleeson, Alexey Khrabrov, Pegah Abed, Caleb Phillips, Carolina Simões Gomes, Ali Ramezani,

Parsa Mirdehghan, Alireza Shekaramiz, Alborz Rezazadeh, Mehdi Zamani, Sadegh Davoudi,

Kaveh Aasaraai, Milad Eftekhar, Kianoosh Mokhtarian for stimulating discussions, for the

sleepless nights of work before deadlines, and for all the fun we have had in the past few years.

I would like to thank my family, my parents, my brother, and my lovely wife, Sana, who

have patiently supported me with their everlasting love and kindness as well as their invaluable

encouragement and trust. They have been my main primary for finishing this thesis, and

without them, I would have quit the Ph.D. program years ago. It is impossible to thank them

adequately for everything they have done for me. I am indebted to them forever.

Finally, I would like to express my profound appreciation to my life long friend, Mohammad

Salehe, who tragically died in the PS752 plane crash in January 2020. Mohammad was humble,

hard-working, and exceptionally intelligent. He was the most brilliant computer scientist I ever

knew and was a collaborator on all of the projects in this thesis. He is missed every single day.

iv

Contents

1 Introduction 1

1.1 Challenges . 5

1.2 Contributions . 6

2 Related Work 9

2.0.1 Edge Computing Architectures . 10

2.0.2 Distributed Storage and Session Consistency 12

2.0.3 Distributed Querying . 15

3 CloudPath: A Multi-Tier Cloud Computing Framework 19

3.1 Path Computing . 21

3.1.1 Opportunities and Challenges . 23

3.1.2 Practical Considerations . 24

3.2 CloudPath . 25

3.3 Design and Implementation . 27

3.3.1 PathExecute . 29

3.3.2 PathStore . 30

3.3.3 PathRoute . 37

3.3.4 PathDeploy . 38

3.3.5 PathMonitor . 39

3.3.6 PathInit . 39

3.4 Experimental Setup . 40

3.4.1 Test-Cases . 41

v

3.5 Results . 42

3.5.1 Deployment Latency . 42

3.5.2 Application Performance . 47

3.6 Chapter Summary . 49

4 SessionStore: A Session-Aware Datastore for the Edge 50

4.1 Use Cases . 53

4.2 Design Considerations . 55

4.3 SessionStore . 57

4.3.1 Eventual-Consistent Operation . 57

4.3.2 Session-Consistent Operation . 60

4.3.3 Failures . 65

4.4 Experimental Evaluation . 65

4.4.1 Platform . 65

4.4.2 Workloads . 66

4.4.3 Results . 66

4.5 Chapter Summary . 75

5 Feather: Hierarchical Query Processing on the Edge 76

5.1 Background . 79

5.2 Design . 81

5.2.1 Semantics of Global Queries with Guaranteed Freshness 81

5.2.2 High Level Design . 84

5.2.3 Answering Global Queries . 85

5.2.4 Reversed Semantics for Providing Latency Guarantees 87

5.2.5 Result Set Coverage . 87

5.2.6 Handling Failures . 88

5.2.7 Adding and Removing Nodes . 89

5.3 Implementation . 89

5.3.1 Architecture . 90

5.3.2 Writing and Replicating Data . 91

vi

5.3.3 Implementing Global Queries . 91

5.3.4 Merging Results . 93

5.3.5 Prototype Limitations . 93

5.4 Evaluation . 94

5.4.1 Experimental Setup for Controlled Experiments 95

5.4.2 Latency/Staleness Trade-off . 96

5.4.3 Bandwidth and Query Type . 99

5.4.4 Work at Edge Nodes . 100

5.4.5 Coverage Estimation . 101

5.4.6 Network Jitter . 102

5.4.7 Real World Experiment . 102

5.5 Chapter Summary . 105

6 Conclusion and Future Work 106

Bibliography 111

vii

Chapter 1

Introduction

1

Chapter 1. Introduction 2

For the past 15 years, cloud computing has transformed the means of computing and data

storage by providing scalable, efficient, flexible, and agile computing and storage services to

users, applications, and businesses. However, with the number of distributed devices and sensors

growing exponentially [41], centralized processing is becoming a bottleneck, as it begins to run

against the limits of network bandwidth and latency [162]. Requirements and restrictions on

user data privacy, as well as the cost of forwarding and processing data [137], are also limiting

the use of the cloud for some applications. Current cloud computing architectures are not

optimized for next-generation mobile or Internet of Things (IoT) applications that require low

latency, or that produce large volumes of data in a carrier network.

Data is ever-increasingly generated at the edge of the network [1]. By Cisco’s estimates[41],

there would be 28.5 billion networked devices by 2022 and humans and machines will produce

a total of 850 zettabytes of data by 2021 [1]. To handle this amount of data, in recent years

Edge (also known as Fog) 1 computing has emerged as a new paradigm to process data and

deliver services. In edge computing, computation and storage resources are geo-distributed and

placed near the data source typically one-hop away, or at intermediate local datacenters [138].

These local datacenters are limited in resources, but their proximity to the data source allows

more bandwidth and less latency, which can be beneficial to a whole range of applications and

overcomes cloud computing limitations.

Topology

In this thesis, by edge networks we mean hierarchical networks comprised of a collection of

datacenters, as shown in Figure 1.1. Each node in the network is a datacenter where part of

the application is potentially deployed.

At the top of the network is the cloud datacenter, with high-performance computational

and storage resources that are easy to scale. As we go down the network hierarchy, datacenters

become increasingly resource-constrained, but also closer to the users and sensors that are the

source of the data. At the very edge of the network are edge nodes: these are small datacenters,

often comprised of a limited number of computationally-limited machines [133, 18]. We refer to

datacenters on the path from the cloud to an edge as core nodes. Note we do not consider user

1In this thesis, we use the terms edge and fog computing interchangeably.

Chapter 1. Introduction 3

Cloud

Core

Edge

Figure 1.1: Edge computing architecture: a succession of datacenters of increasing sizes, posi-
tioned between the client device and the traditional wide-area cloud datacenter.2

devices or sensors as part of the network itself. Edge computing applications are applications

deployed over edge networks that divide computation and storage tasks between edge, cloud,

and core nodes.

Figure 1.1 illustrates how edge computing extends the traditional cloud architecture. At the

top and bottom of the figure are the traditional wide-area cloud datacenter and the end-user

devices, respectively. The figure also shows the path that traffic between these two endpoints

follows over a collection of intermediate network links and routers.

Edge computing provides an opportunity to re-envision the way applications are created and

deployed. Whereas existing applications and services may be replicated across wide-area cloud

datacenters to improve scalability and fault tolerance, edge computing encourages partitioning

service functionality by placing components or functions at the datacenter layer that best meets

performance and security requirements. For example, a wearable smart assistant could execute

latency-sensitive and bandwidth-intensive functions, such as face recognition on a nearby edge

datacenter, while running infrequent and latency tolerant functions, such as user authentication

and preference editing, on a traditional wide-area cloud datacenter.

2Icons in the figure and this dissertation are by monkik, pause08 from flaticon.com

Chapter 1. Introduction 4

Applications

With more bandwidth, versatility, scalability and privacy as well as less latency, some applica-

tions that benefit from novel edge computing architecture include:

Video processing and analysis [76, 94, 156]: With more bandwidth and less latency

available through edge computing, video frames are processed nearby and only analytical data

is sent to the cloud resulting in faster applications. For example, counting the numbers of cars

that pass a certain inter-section does not require sending all video frames to the distant cloud.

IoT applications [132, 127]: With the ever-increasing use of IoT devices and sensors that

are geographically distributed and produce enormous amounts of data, edge computing has

emerged as a scalable middle layer between the cloud and the IoT sensors that aggregates data

and provides a platform to serve real-time applications. This middle layer can store the data

produced by these applications, and process queries on the data.

Healthcare and Wearable devices [35, 155, 22, 66]: As edge computing enables higher

quality interactive applications, healthcare applications and assistive devices can use local se-

cure datacenters to provide services that process data quickly and maintain the user privacy.

Applications that need fast real time data processing such as in cardiac arrest prediction [147]

can benefit most from this model.

Smart cities and transportation [109, 57, 163]: Due to the important issue of safety and

security, roads, railways and other infrastructure in smart cities are already operating on edge

computing platforms. Smart city applications require fast, reliable and secure access to data

processing units and the traditional cloud is not a scalable approach for the increasing number

of devices and sensors in a smart city.

Virtual and augmented reality (VR/AR) [165, 140]: Both these interactive real-time

applications require massive amount of graphical rendering processing that can only be achieved

in scale if there is a fast, cheap network between the rendering units and the devices. This

network can be achieved in edge computing.

Chapter 1. Introduction 5

1.1 Challenges

While Cloud computing generally centralizes computation and storage services at certain dat-

acenters while scaling horizontally within a datacenter, edge computing decentralizes resources

to get processing units closer to data sources. This decentralization brings about challenges on

how to effectively manage resources and how to provide reliable services to end-users. These

challenges include:

• Partitioning and Offloading: Now that the computing and storage resources are divided

onto different geo-distributed locations, how the application logic is split and provisioned

onto these distributed computing resources is an open question. Some applications may

benefit from aggregating data on core nodes, while some may need to split the logic/data

based on the geographical location.

• Application Deployment and Execution: Unlike most applications on the cloud, different

parts of edge applications can run on different datacenters. Partitioning the application

and moving the application code and data to datacenters that will execute the application

is a challenge the execution and deployment service has to handle. In addition, requests

have to be routed to the application appropriately.

• Data Storage: Most datacenters on the edge of the network can only store and process a

fraction of the data saved on the wide-area cloud nodes. At the same time, most reads

and writes should be executed locally; running code close to the edge of the network has

little benefit if most data accesses have to go to the cloud. In addition, data consistency

for mobile applications should also be considered.

• Scheduling and Management: Resources on edge datacenters are limited, so strategies

and policies on scheduling and managing these resources between competing applications

have to be developed.

• Reliability and Quality of Service: Applications only choose to use edge computing if

they can be offered improved services compared to the cloud. The challenge for edge

computing is to ensure that applications can reliably achieve high throughput and low

latency in different environments and situations.

Chapter 1. Introduction 6

This thesis focuses on providing solutions for the challenges above, specifically the first three

challenges by providing a new model for structuring and deploying applications and managing

their data. While prior studies [134, 30] only suggest frameworks to offload computation to

nearby edge nodes, they do not exploit the full potential of tiered geo-distributed datacenters

and generally do not manage how application data is stored, queried and processed. Our goal

in this thesis is to enable edge computing more comprehensively by proposing a framework

for application code deployment and execution as well as application data management. We

summarize our contributions as follows:

1.2 Contributions

In this thesis we suggest a new architecture for application deployment and execution on the

edge based on the serverless model. Through Path Computing, we generalize the edge com-

puting model into a multi-tier cloud architecture that supports processing and storage on a

progression of datacenters deployed over the geographic span of a network. This approach dif-

ferentiates from the legacy edge computing models that only provide limited process offloading

services to edge applications. By partitioning application data and functionality, Path Com-

puting envisions application deployment at locations that best meet quality of service and cost

requirements based on resource availability and geographic coverage. We implement the Path

Computing vision by presenting CloudPath [116, 49]. CloudPath leverages the Function as

a Service (FaaS) model to break applications into functions that are placed over distributed

datacenters. CloudPath supports code and data mobility and scalability by enforcing a clear

separation between computation and state. In CloudPath we develop a wide range of modules

required in edge computing, including execution, deployment, storage, monitoring, and routing

modules.

An essential aspect of the edge computing platform is data management and how it trans-

forms, aggregates, and consumes data. Edge applications benefit minimally if the edge dat-

acenters need to access a remote database to process a local request. In chapter 3, we also

present PathStore, which is an eventually consistent data storage layer for a multi-tier cloud

architecture. PathStore supports data storage on a progression of datacenters deployed from

Chapter 1. Introduction 7

the edge to the cloud. In PathStore, we develop a shared database abstraction that enables

transparent data access across the hierarchy of cloud and edge datacenters. This storage layer

supports concurrent object reads and writes on all nodes of the database hierarchy. PathStore

performs all read and write operations against the local database node with data replicated

dynamically between datacenters as needed. Pathstore makes possible different classes of ap-

plications, including workloads that aggregate data (such as IoT applications), or services that

cache data and process information at different layers. We explain Path Computing, CloudPath,

and PathStore in Chapter 3.

Many applications and devices that produce data on the edge are mobile. Their movement

between datacenters raises the question of what data consistency model should be delivered

to these applications. Web services and applications typically deployed on highly available

storage layers such as PathStore, commonly relax consistency between replicas. A common

approach for web services and applications in these scalable systems is to rely on eventual

consistency where the storage system guarantees that if no new updates are made to an object,

eventually all reads will return the last updated value [82]. To addresses issues with consistency

and to enhance our storage with stronger consistency models, we present SessionStore [114,

111, 112, 113] that ensures session consistency on a top of otherwise eventually consistent

replicas. SessionStore groups related data accesses of the database into a session and uses a

session-aware re-conciliation algorithm to reconcile only the data relevant to the session when

switching between replicas. We discuss SessionStore in more detail in Chapter 4.

In many edge computing scenarios, data is generated over a wide geographic area and is

stored near the edges, before being pushed upstream to a hierarchy of datacenters. A key

question is how to query this data and extract information. Querying such geo-distributed data

traditionally falls into two general approaches: push incoming queries down to the edge where

the data is, or run them locally in the cloud. Feather [115] is a hybrid querying scheme that

exploits the hierarchical structure of such geo-distributed systems to trade temporal accuracy

(freshness) for improved latency and reduced bandwidth. Rather than pushing queries to the

edge or executing them in the cloud, Feather selectively pushes queries towards the edge while

guaranteeing a user-supplied per-query freshness limit. Partial results are then aggregated

along the path to the cloud until a final result is provided with guaranteed freshness. Feather is

Chapter 1. Introduction 8

designed for ad-hoc queries and supports a broad set of queries, including grouping, aggregation,

and raw row retrieval.

In Chapter 5, we present Feather, and in Chapter 6, we conclude the thesis and suggest

avenues for future work.

Chapter 2

Related Work

9

Chapter 2. Related 10

In this Chapter we study the recent state of the art research in the areas of mobile edge

computing and data management and survey the evolution of these technologies.

2.0.1 Edge Computing Architectures

Early edge computing systems have relied on virtual machines (VM) as the unit of application

deployment [133, 61]. These systems rely on optimizations, such as VM synthesis [67] and uni-

kernels [105], to reduce the network traffic and deployment time. Satyanarayanan et al. [133]

where among the first who emphasized on the importance of having cloud resources close to

the mobile user. They argue that empirically, cloud resources can only be accessed through the

network with significant delay(currently close to hundreds of milliseconds [75]) and this latency

is unlikely to be reduced because of restrictions on the Wider Area Network (WAN) and prop-

agation delay. This restricts offloading computation on Cloud nodes in a timely manner and a

new model where computation is close to the mobile users is required. They present the idea

of using nearby (generally one hop away) resource-rich computers or clusters in Cloudlets to

increase the computational power of neighboring mobile devices. In their paper they use the

term Cloudlet to refer to a layer of trusted computers between mobile devices and cloud servers.

The devices used in Cloudlets have similar capabilities to a datacenter but on a lower scale and

are in the vicinity of the mobile user. On these workstations, a virtual machine (VM) will run

customized service software and some of the processing requirements of the mobile devices is

migrated to these virtual machines through Wi-Fi (using LTE is later suggested). The proposed

applications that could benefit from this framework include: Augmented reality, Optical Char-

acter Recognition (OCR), face recognition systems, Vehicle to Vehicle (V2V) communications

and crowd sourcing applications.

The drawbacks on developing the VM based Cloudlet model includes relying on carriers and

internet service providers to deploy this architecture in LAN networks over Wi-Fi. Furthermore,

VM’s are not versatile units of processing that can be deployed quickly and efficiently on smaller

cloudlets units as they can be resource intensive and slow. Studies such as [66], [40], [68], [134],

[150], [91] present implemented frameworks and applications based on the Cloudlet architecture,

and companies such as Akamai, Huawei and Dell have built micro-datacenters that are similar

to the cloudlets [134] model.

Chapter 2. Related 11

More recently, several research platforms have switched to operating system containers as

the unit of deployment [95, 25]. While operating system containers are smaller than VMs, they

can still require the transfer of hundreds of megabytes to instantiate a container.

In contrast, ClodPath leverages a new cloud computing model known as Function as a

Service (FaaS) with Serverless Computing. In Serverless computing another layer of abstraction

is added to the virtualization hierarchy. Rather than sharing operating systems (containers)

or hardware (virtual machines), users share the language run-time environment. This model

reduces the resource footprint and response time compared to containers and virtual machines.

In addition, this model has the ability to automatically and quickly scale and increase the

number of workers when load increases using a orchestration service that is responsible for

resource allocation, fault-tolerance, monitoring, maintenance and scalability. However, the

user applications are more limited and can only operate in a limited set of pre-configured

environments.

Examples of FaaS systems include Amazon Lambda [151], OpenLambda [72], IBM Open-

Wisk [21], Microsoft Azure functions, Google Cloud functions and AppScale [39]. In Open-

Lambda [72] an open source serverless system is suggested where the goal is to implement an

elastic and scalable platform. OpenLambda consists of a series of subsystems that execute and

maintain applications handler. Handelers are sandboxed in containers which are controlled by

schedulers and load-balancers forward requests to containers.

All these systems target the wide-area cloud environment, and assume a flat replicated

environment with a relatively small number of large datacenters accessible over the Internet.

Our work differs in that it is the first application of FaaS to be running code on a hierarchy of

datacenters stretched from the network edge to the wide-area cloud.

Path computing has similarities to previous approaches that have infused networking nodes

with processing, such as active networks [32] and the intentional naming system [12]. These

previous efforts, however, focused on low-level network processing (e.g., encryption, routing,

load balancing), whereas CloudPath targets full server workloads.

Previous work has explored automatic application partitioning and migration [46, 40, 60].

In comparison, our approach requires application developers to explicitly partition their appli-

cations into clearly-defined functions. We argue that this approach is consistent with existing

Chapter 2. Related 12

best practices for web back-end design, which mandate the use of stateless REST functions for

scalability and fault tolerance.

A complete decentralized computing platform that distributes compute, storage, and net-

working services closer to the mobile devices called Fog Computing is proposed by Bonomi

et al. from Cisco systems in [30]. Fog servers are geographically distributed and close to the

mobile and ubiquitous devices. Fog computing distinguishes itself from cloudlets by putting

more emphasis on requirements for Internet of Things(IoT) devices. Bonomi et al. argue that

clouds have difficulty achieving IoT requirements such as low latency, mobility and location

awareness. Similar to Cloudlets, fog computing extends the paradigm of the Cloud to the edge

networks for the Internet of Things (IoT) devices. Similar to how the fog is closer the earth

than the clouds, fog servers are also closer to edge devices than cloud servers. Their solution

is the Fog architecture which is composed of a number of geo-distributed heterogeneous fog

nodes placed between the end devices and the cloud in different tiers. Each fog node can be

composed of different devices such as routers, IoT gateways, access points as well as any com-

puting devices which makes the edge, part of the fog system. A service orchestration layer is

proposed for dynamic, policy-based life-cycle management and an abstraction layer hides the

complexity of each heterogeneous node and “provides generic APIs for monitoring, provisioning

and controlling physical resources” [29]. Applications of such an architecture include smart

traffic light systems, and sensors controlling a wind fire. Alternative types of fog nodes have

also been proposed including using networking devices (such as home routers) [96] and moving

or parked vehicles[74] for computational processes.

2.0.2 Distributed Storage and Session Consistency

A large body of research exists about replicated databases for geographically distributed dat-

acenters both in industry and academia [157, 136, 63, 99]. These systems offer stronger con-

sistency models, but assume a flat overlay structure. In this project, we use Cassandra as an

existing widely used system and use it as the basis for our hierarchical storage system.

Session consistency can in principle be provided by solutions that provide stronger consis-

tency such as in [92] where all transactions are always executed at the local replica through snap-

shot isolation, or by geo-distributed transactional databases like Spanner [44], CockRoachDB [2]

Chapter 2. Related 13

or by systems that use mixed consistency [89] and workload management [158] to provide strong

consistency only where required. Unfortunately, these solutions use variants of distributed con-

sensus that are very expensive across the wide-area-network [13, 88] and makes them impractical

for the edge. As we show in our experiments in Section 4.4, enforcing strong consistency even

for a moderate number of replicas incurs large latency costs.

A better approach is to use causally consistent systems like Bayou [143], COPS [98]. In

practice, however, these approaches are also not applicable to edge deployments for three rea-

sons: (i) these approaches assume a low and fixed number of replicas, whereas popular edge

services may have hundreds or thousands of replicas. Many of these systems make use of vector

time stamps where the overhead grows linearly with as the replication factor increases. While

there are methods to trim the vector [123, 122], a compact vector clock that implicitly assigns

vector positions to nodes requires centralized arbitration (or some other method of distributed

consensus). Alternatively, the vector may include a unique node identifier like an IP address.

In the latter case, however, significant additional storage is required, which makes using these

systems on the edge unfeasible; (ii), these approaches assume full data replication (i.e., a com-

plete copy of the database is stored at each site). Unfortunately, the resource-limited nature of

edge datacenters dictates that they are only able to store a small fraction of the total state of a

service or application. These limitations require the use of on-demand partial replication where

only the state that is relevant to the current users of the edge datacenter is presently repli-

cated on the edge datacenter; and (iii), data reconciliation is not fine-grained based on client or

function data, rather reconciliation is done on table granularity. This approach results in high

reconciliation latency and high bandwidth consumption for the transfer. This is particularly

the case when only a fraction of the data is relevant to a given client.

Providing causal consistency on top of eventual consistency has been studied in [24] and [20].

In these studies a layer between the client and the data storage layer provides causal consistency

for the client using vector clocks. In addition to the discussion on causally consistent systems

presented above, we note that these works do not focus on session-aware reconciliation, which

is crucial for our edge scenarios.

Other solutions to session consistency in the literature [152, 7] use a combination of the

following basic techniques: (i) sticky sessions can ensure that all reads and writes within a

Chapter 2. Related 14

session maintained by a client always communicate with a single replica, (ii) maintain state at

the client so that when a session does change replicas, the client can service requests from its

cache until the new replica is up to date, and (iii) use vector time stamps for the requests and

ensure that each read or write is served or accepted at a replica in such a manner as to satisfy

the session guarantees. The first approach is not applicable to edge computing scenarios where

the clients switch replicas over time due to client mobility or to access functionality deployed

on different datacenters. The second approach is only applicable when the client is fully trusted

and has enough resources to store data. It is not practical for multi-user applications where

raw data is kept at the server and is made available to clients in mediated form in response to

explicit application requests. Finally, approaches that require vector time stamp break down

when the number of replicas is large and dynamic as the overhead grows linearly with the

replication factor. While there are methods to trim the vector [123, 122], they come at the cost

of significant complexity and require strong coordination between replicas, which makes using

these systems on the edge unfeasible.

In addition, various approaches have been proposed for application and service migration

on the edge [118, 141, 102], however these approaches commonly depend on VM/Container

migration methods or full application state synchronization. Our approach provides applica-

tions with flexible, fine grained data reconciliation through sessions. Our approach is especially

advantageous for multi-user services that use the same replica to handle requests on behalf of

multiple clients, where only a fraction of the replicated state is relevant to a given client.

There have been several works on data/state reconciliation in transactional databases [47,

53] and most key-value stores support some form of data reconciliation across replicas [34,

43]. However, in the former case, these solutions are heavy-weight, as necessary to guarantee

ACID transactionality. The reconciliation function in common key-value stores are typically

implemented as generic “stop-and-migrate” techniques that do not carefully track subsets of

client data. This results in significant down times for the client. SessionStore, on the other

hand, is much more light-weight since it guarantees session consistency as opposed to ACID

transactionality.

Chapter 2. Related 15

2.0.3 Distributed Querying

There exist several general approaches for querying in geo-distributed settings: querying the

edge nodes directly, distributed engines for query planning and execution, and stream process-

ing. We also review existing approaches to providing and characterizing freshness guarantees.

Querying Edge Nodes

Respawn [31] is a distributed time series database that provides low latency range queries on

a multi-resolution time series from edge devices. In Respawn, sensors send data to nearby

edge nodes which store the data and compute aggregates at different time resolutions. Lower

resolution aggregated data are periodically sent to a cloud node, and a query dispatcher on

the cloud node decides on whether to send the query to the edge nodes or process it on the

cloud node based on the requested resolution. Similarly, EdgeDB [159] is a time-series database

for edge computing that proposes a multi-stream merging mechanism to aggregate correlated

streams together at runtime.

Other approaches aggregate data closer to the devices [138, 80] or reduce bandwidth using

lossy data transformations such as resampling [101]. Unlike Feather, these approaches do not

provide a flexible guarantee on data freshness. Moreover, they limit the complexity of queries

that can be executed, as they are limited to time series data and to queries that allow error

due to the aggregation.

Distributed Query Engines

Distributed query engines such as Apache Spark SQL: [17], Apache Impala [28] or Facebook’s

Presto [135] process queries on top of heterogeneous data stores such as Hive [144], PostgreSQL,

Hadoop, MySQL and Apache Kafka [83] among others. Presto is an open source distributed

SQL query engine that receives SQL queries and enables analytic querying against data in

different sources of varying size. Similarly, Spark SQL provides support querying for structured

and semi-structured data. However such systems are not designed for geo-distributed and

edge computing settings: they assume data is co-located or is distributed over a flat topology

comprised of few cloud datacenters. In addition they do not enable querying based on freshness

Chapter 2. Related 16

requirements.

Stream Processing

In the stream processing paradigm continuous queries are described as directed acyclic graphs

(DAG) of operators, which are then instantiated across the datacenters in the network. Data is

processed and aggregated as it is flows from the edge towards the cloud. However, while well-

established in the cloud setting, existing frameworks [148, 33, 164] have not been designed for

geo-distributed settings where communication is unreliable, datacenter resources are limited,

and latency between datacenters limits performance and creates flow control issues [145, 51].

Recent research extends the stream process paradigm to the edge computing settings, as generic

stream processing frameworks or bespoke applications [145, 129, 48, 128, 166, 161, 168, 117].

Despite progress, stream processing is better suited for processing a small set of continuous,

recurrent global queries, rather than ad-hoc queries. This is because queries must be broken

down into operators in advance, and then deployed, coordinated, and executed on various

datacenters across the networks – all of which have costs. Additionally, stream processing

frameworks do not support create, read, update, and delete (CRUD) operations or local queries

at arbitrary nodes.

Wireless Sensor Networks

Many studies have discussed the idea of storing and querying data in a set of distributed

sensor node networks [62, 78, 90, 104, 160, 103]. In these studies, the network itself is the

database [62] and to extract information from the network, various methods [104, 103] are

proposed to aggregate and propagate data resulting from a query to a single base station.

TAG [103] and TinyDB [104] provide SQL-like APIs to express declarative queries over the

network and the system aggregates queries over values while considering communication and

storage requirements. Feather flexible freshness guarantee can be extended to this setting, since

wireless sensor networks can be organized in a communication tree.

Chapter 2. Related 17

Freshness Threshold

Google Cloud Spanner [44] and Microsoft Cosmos DB [108] also allow users to specify bounded

staleness to boost performance as a feature for read queries. Spanner is not a suitable choice

for edge computing, however, since it is designed for a collection of resource-rich datacenters

connected by high quality links, and because it aims to provide strong consistency. When edges

are disconnected, for example, local writes cannot proceed. Moreover, when links between

nodes have high latency writes are prohibitively expensive since they involve writing to multiple

nodes. Spanner’s freshness guarantee mechanism is much simpler than Feather’s: it chooses a

single replica that satisfies the freshness threshold to execute the query on, relying on strong

consistency. It is therefore more equivalent to executing a query on the cloud in our setting. In

contrast, Feather allows local queries to proceed unhindered even when edges are not connected,

and for global queries it can combine results from multiple nodes, which allows fresher answers

than available on any single replica. Cosmos DB similarly executes global queries in a single

replica, and does not aggregate results from multiple datacenters. As with Spanner, it is

designed for resource-rich datacenters.

The trade-off between freshness, accuracy, and performance in continuous (streaming) queries

was investigated by Heintz et al. [70, 69]. They propose an online algorithm that determines

how much data aggregation should be performed at the edge versus the center, where windowed

grouped aggregation is used to minimize both staleness and bandwidth. Conversely, Feather is

designed for ad-hoc queries and supports a larger set of queries including grouping, aggregation,

and raw row retrieval.

Formal Consistency Properties

Golab et al. [59] propose the ∆-atomicity property for quantifying staleness, and describe

algorithms for formally verifying and quantifying it. Our freshness guarantee is similar to ∆-

atomicity, and Feather can be viewed as an implementation of it for tabular data in the edge

computing setting. Rahman et al. [125] propose the t-freshness property which considers when

operations begin rather than end, and use it to derive CAP-style impossibility results for the

trade-off of partitioning, latency, and freshness. They also describe GeoPCAP, a distributed

Chapter 2. Related 18

key-value store with probabilistic guarantees. Unlike Feather, GeoPCAP assumes a flat struc-

ture where replicas contact each other directly, which may be infeasible in large hierarchical

edge networks with high latency links. Moreover, Feather is a tabular store that supports

querying multiple rows, and must therefore compose results from multiple data sources.

Chapter 3

CloudPath: A Multi-Tier Cloud

Computing Framework

19

Chapter 3. CloudPath 20

This chapter introduces path computing, a generalization of edge computing into a multi-tier

cloud paradigm that supports processing and storage on a progression of datacenters deployed

over the geographic span of a network. Figure 3.1 illustrates how path computing extends

the traditional cloud architecture. At the top and bottom of the figure are the traditional

wide-area cloud datacenter and the end-user devices, respectively. Path computing enables

the deployment of a multi-level hierarchy of datacenters along the path that traffic follows

between these two end points. Path computing makes possible different classes of applications,

including workloads that aggregate data (such as IoT applications), or services that cache data

and process information at different layers. Path computing provides application developers

the flexibility to place their server functionality at the locale that best meets their requirements

in terms of cost, latency, resource availability and geographic coverage.

We also describe CloudPath, a new platform that implements the path computing paradigm

and supports the execution of third-party applications along a progression of datacenters posi-

tioned along the network path between the end device (e.g., smartphone, IoT appliance) and

the traditional wide-area cloud datacenter. CloudPath minimizes the complexity of developing

and deploying path computing applications by preserving the familiar RESTful development

model that has made cloud applications so successful. CloudPath is based on the key obser-

vation that RESTful stateless functionality decomposition is made possible by the existence of

a common storage layer. CloudPath simplifies the development and deployment of path com-

puting applications by extending the common storage abstraction to a hierarchy of datacenters

deployed over the geographical span of the network.

CloudPath applications consist of a collection of short-lived and stateless functions that can

be rapidly instantiated on-demand on any datacenter that runs the CloudPath framework. De-

velopers determine where their code will run by tagging their application’s functions with labels

that reflect the topology of the network (e.g. edge, core, cloud) or performance requirements,

such as latency bounds (e.g. place handler within 10ms of mobile users). CloudPath provides

a distributed eventually consistent storage service that functions use to read and store state

through well-defined interfaces. CloudPath’s storage service automatically replicates applica-

tion state on-demand across the multiple datacenter tiers to optimize access latency and reduce

bandwidth consumption.

Chapter 3. CloudPath 21

We evaluated the performance of CloudPath on an emulated multi-tier deployment. Our

results show that CloudPath can deploy applications in less than 4.1 seconds, has routing

overhead below 1ms, and has negligible read and write overhead for locally replicated data.

Moreover, our test applications experienced reductions in response time of up to 10X when

running on CloudPath compared to alternative implementations running on a wide-area cloud

datacenter.

The rest of this chapter is organized as follows. Section 3.1 introduces path computing. Sec-

tion 3.2 introduces CloudPath, a new platform that implements the path computing paradigm.

Section 3.3 describes the design and implementation of our CloudPath prototype. Sections 3.4

and 3.5 present our experimental setup and the results from our evaluation. Finally, Section 3.6

concludes the chapter and discusses future work.

3.1 Path Computing

Edge computing expands the traditional flat cloud architecture into a two-tier topology that

enables computation and storage at a locale close to the end user or client device. We introduce

path computing, a generalization of this design into a multi-tier cloud architecture that supports

processing and storage on a progression of datacenters deployed over the geographic span of a

network.

Figure 3.1 illustrates how path computing extends the traditional cloud architecture. At the

top and bottom of the figure are the traditional wide-area cloud datacenter and the end-user

devices, respectively. The figure also shows the path that traffic between these two end points

follows over a collection of intermediate network links and routers. Path computing enables

the deployment of a multi-level hierarchy of datacenters along this path, with the traditional

wide-area datacenters at the root of the hierarchy.

We refer to a datacenter that is part of the hierarchy as a node. Nodes along the hierarchy

can differ vastly in the amount of resources at their disposal, with storage and execution capacity

expected to decrease as we descend levels in the hierarchy and move closer to the end-user

device. Wide-area nodes are assumed to have access to virtually limitless computation and

storage; in contrast, nodes close to the edge of the network may have just a handful of servers

Chapter 3. CloudPath 22

Figure 3.1: Path Computing Architecture: Path computing provides storage and compu-
tation along a succession of datacenters of increasing sizes, positioned between the client device
and the traditional wide-area cloud datacenter.

at their disposal. The number of nodes at any given level of the hierarchy is expected to grow

dramatically as we get further away from the root. For example, a path computing deployment

may consist of a handful of wide-area nodes, tens of nodes running at the network-core of

various mobile carriers, hundred of nodes running on region-level aggregation switches, and

tens of thousands of nodes running on the edge of the network.

Path computing can be materialized in a variety of different topologies and networking

technologies. For example, a simple two-tier topology that is the focus of most edge computing

research, could consist of a layer of nodes running on or close to WiFi access points and a cloud

layer. This simple topology could be expanded to include additional tiers inside the Internet

Service Provider’s network at convenient aggregation points, at the city and regional levels.

Similarly, the architecture could be incorporated into mobile cellular networks. LTE networks

by default encapsulate packets and send them to the network’s core for processing; however, a

growing number of product offerings, such as Nokia RACS gateway [75] and Huawei’s Service

Anchor [5], have the potential to enable in-network processing by selectively diverting packets

for processing. Looking ahead, 5G, which is currently in the process of being standardized,

opens the possibility for packet processing at the edge. CloudPath nodes could be incorporated

Chapter 3. CloudPath 23

on the base station (EnodeB) or the Centralized Radio Access Network (C-RAN) 1, as well as

at aggregation switches along the path to the network core and at the core itself.

3.1.1 Opportunities and Challenges

Path computing creates new opportunities for application developers. Today, mobile and IoT

applications are typically developed based on the client-server model, which requires developers

to partition application logic and state between a client running on the end-user device and

a server located on the wide-area cloud. In contrast, path computing provides developers the

opportunity to run their server-side functionality on a number of different locations making

possible different classes of applications, including workloads that aggregate data (such as IoT

applications), or services that cache data and process information at different layers. Path

computing provides applications developers the flexibility to control the placement of their

application components or tasks at the locations that best meet their requirements in terms of

cost, latency, resource availability and geographic coverage.

It is generally accepted that the cost of computation and storage is inversely proportional

to datacenter size [16]; therefore, it is reasonable to assume that the unit cost of deploying and

managing computation and storage increases as we get closer to the edge and nodes become

smaller and more numerous. Conversely, the network cost of serving a request goes down as

we move closer to the edge and fewer links need to be traversed. To a first approximation, the

cost of running a compute intensive task can be optimized by placing it on the datacenter node

that is farthest away from the edge, but still meets the latency and hardware requirements of

the task. On the other hand, the cost of a network intensive task can be optimized by running

it on the datacenter node that is closest to the edge, while still meeting the task’s hardware

requirements (i.e., availability of a particular accelerator).

Optimal task placement may also depend on other factors such as the geographic coverage

provided by a datacenter node, the size of the population it serves, and user mobility patterns.

For example, the effectiveness of data reduction tasks, such as computing an average over

streams of sensor data produced by a farm of IoT devices, is a complex product of the number

1C-RAN is a proposed architecture for future cellular networks that connects a large number of distributed
low cost remote radio heads (RRH) to a centralized pool of baseband units (BBU) over optical fiber links [119].

Chapter 3. CloudPath 24

of available incoming streams, the aggregation factor, and the cost of the computation and

network bandwidth. On one hand, the network benefits of aggregation decrease as we get

father away from the edge. On the other, the geographic coverage area served by a datacenter

node grows as we get away from the edge creating more opportunities for data aggregation

(i.e., there are more streams). Similarly, task placement affects how an application component

experiences user mobility. For example, an application component running on a city-level node

will experience a much lower level of user handover than one deployed on a node closer to the

edge, such as WiFi access point.

Unfortunately, taking advantage of the added flexibility introduced by path computing is

not easy. It requires developers to partition their server-side functionality, and manage the

placement of code and data based on complex calculations that trade off proximity to the user

with resource availability and cost. In addition, the limited capacity of the datacenters on the

lower levels of the hierarchy puts a hard bound on the number of applications and datasets that

can be hosted simultaneously requiring application code and data to be dynamically provisioned.

Section 3.2 introduces CloudPath, a new platform designed to address these challenges.

3.1.2 Practical Considerations

Path computing datacenters need to be in or near the network of different ISPs or mobile

network providers, so it is likely that they will be owned by the different network providers.

In contrast, application developers are used to a deployment model where their application

is globally available independently of the carrier used by an individual user 2. Rather than

having individual application developers negotiate service agreements with a myriad of network

providers, it is likely that cloud providers (existing or new) will offer a one-stop shop that lets

application developers run their code across datacenters managed by different carriers. This

model follows the approach taken by content delivery network companies, such as Akamai,

which let applications owners serve their content to users across different ISPs.

2Some carriers deploy applications that are only available to their customers on their own network, but this
is a much less attractive deployment model for third-party applications.

Chapter 3. CloudPath 25

face_detection_and_recognition_service {

login(credential)->token : any

detect_faces(image)->coordinates[] : 10 ms

recognize_face(image)->label : 50 ms

}

Figure 3.2: Server API with application entry points labeled with latency requirements.

3.2 CloudPath

CloudPath is a platform that implements the path computing paradigm, and supports the

development and deployment of applications that run on a set of datacenters embedded over

the geographical span of the network. CloudPath assumes a subscription model similar to that

of existing wide-area network cloud platforms where anyone with an account on the system can

deploy and run applications. In this scenario, the available applications and their data vastly

outnumber the resources available at the smaller datacenters, which only have enough resources

to run a limited number of applications at any time and can store only a fraction of the data.

As a result, CloudPath deploys applications and replicates data on-demand.

CloudPath minimizes the complexity for developing path computing applications by pre-

serving, as much as possible, the familiar development model that has made traditional cloud

applications so successful. CloudPath builds on the observation that it is accepted practice

for cloud applications to implement server-side functionality as services that are exposed to

the client over an API consisting of stateless entry points, or functions, that are exposed as

unique URIs. For example, Figure 3.2 shows a simplified server-side API for an application

that performs face detection and recognition. The API includes three entry points that let the

client device login and authenticate, upload an image on which to perform face detection, and

upload an image of a face for recognition. The stateless nature of the entry points improves

application modularity, makes it possible to dynamically scale each function independently, and

increases fault tolerance.

Our key observation is that this functionality decomposition is made possible by the ex-

istence of a common storage layer. CloudPath simplifies the development and deployment of

path computing applications by enforcing a clear separation between computation and state,

Chapter 3. CloudPath 26

and expanding the common storage abstraction to a hierarchy of datacenters deployed over the

geographical span of the network.

CloudPath applications consist of a collection of short-lived and stateless functions that

leverage a distributed storage service that provides transparent access to application data.

CloudPath functions are implemented using high level languages, such as Java or Python. Since

CloudPath functions are small and stateless, they can be rapidly instantiated on-demand on

any datacenter that runs the CloudPath framework. CloudPath provides a distributed eventual

consistent storage service that functions can use to read and store state through well-defined

interfaces. CloudPath automatically migrates application state across the multiple datacenter

tiers to optimize access latency and reduce bandwidth consumption.

Developers determine where their code will run by tagging their application’s entry points

(i.e., functions) with labels that reflect the topology of the network (e.g. edge, core, cloud) or

performance requirements, such as latency bounds (e.g. place handler within 10ms of mobile

users). For example, Figure 3.2 shows annotations that indicate that the authentication can

run on any datacenter, whereas face detection and recognition need to run in a datacenter that

can be reached within 10ms and 50ms of the mobile client, respectively.

CloudPath does not migrate a running function between datacenters. Instead, CloudPath

supports code mobility by terminating an existing instance (optionally waiting for the current

request to finish) and starting a new instance at the desired location. Similarly, for mobile

users, network hand-off between cells may result in a change in the network path with traffic

flowing through a different set of CloudPath datacenters. CloudPath does not migrate network

connections between datacenters. Instead, it terminates existing connections and leaves it to

the application to establish a new connection with the new datacenter. While this approach

requires application modifications, CloudPath provides a client library that automates the re-

connection process.

The next section describes the design and implementation of CloudPath in detail.

Chapter 3. CloudPath 27

PathExecute

HTTP
Proxy

Path
Deploy

PathRoute

Nomad

Consul

PathStore
Path
Init

Network
Router

Path
Monitor

Figure 3.3: CloudPath Node Architecture. The dotted modules only belong to the cloud node.
The dashed lines indicate the control path and the green line shows the data path

3.3 Design and Implementation

CloudPath organizes datacenters into a simple tree topology overlaid over a collection of un-

derlying mobile networks and the public Internet. We refer to a datacenter that is part of the

CloudPath deployment as a node. The CloudPath tree can have arbitrary depth, and does not

have to be balanced; different branches of a CloudPath network can have different height. New

nodes can be attached to any layer of the existing tree.

While simple, this structure can accommodate different classes of applications, including

workloads that aggregate data (such as IoT applications), or content delivery applications that

cache data at different layers. This simple topology is a natural fit to the way mobile networks

are currently organized in the physical substrate, and it also simplifies routing and configuration,

as a node only needs to know its parent to join the network. However, other topologies may

improve fault tolerance, are more robust to failures and allow for optimizations (e.g., direct

data transfer between siblings, or load-balancing between siblings). We leave the exploration

of alternative designs for future work.

CloudPath nodes are expected to differ widely in the amount of resources at their disposal,

with storage and execution capacity expected to decrease as we descend levels in the hierarchy

and move closer to the end-user device. Irrespective of size, each CloudPath node is comprised

of the following modules:

• PathExecute: Implements a serverless cloud container framework that supports the

execution of lightweight stateless application functions.

• PathStore: Provides a distributed eventual consistent storage system that manages

Chapter 3. CloudPath 28

application data across CloudPath nodes transparently. PathStore is also used internally

by PathDeploy and PathRoute to fetch application code and routing information.

• PathRoute: This module routes requests to the appropriate CloudPath node. The

user’s location in the network, application preferences, and system state (e.g., application

availability, load) are considered when making routing decisions.

• PathDeploy: Dynamically deploys and removes applications from CloudPath nodes,

according to application preferences and system policies.

• PathMonitor: Provides live monitoring and historical analytics on deployed applica-

tions and the CloudPath nodes they are running on. Aggregates metrics from other

CloudPath modules in each node, collects them using PathStore, and presents the results

in a simplistic web interface.

In addition to the modules above, the root node located in the wide-area cloud also contains

a module called PathInit. Developers upload their application to CloudPath through this

module.

public class ClockService extends Action {

public String getTimeZone() {

Select s = QueryBuilder

.select().all().from("clock");

s.where(QueryBuilder

.eq("userId", CurrentUserID));

ResultSet results = pathstore.execute(s);

Row row = rowList.results.one();

int tzOffSet = row.getInt("tzOffset");

return "<p>The zone is:" + tzOffSet + "</p>";

}

public String getPrefs() {

......

......

}

}

(a) Function definition

<CloudPath_app>

<mapping>

<uri_pattern>/timeZone</uri_pattern>

<function>ClockService.getTimeZone</function>

<loc_pref>edge</loc_pref>

</mapping>

<mapping>

<uri_pattern>/prefs</uri_pattern>

<function>ClockService.getPrefs</function>

<loc_pref>core</loc_pref>

</mapping>

<sub-domain>clockapp</sub-domain>

</CloudPath_app>

(b) Function registration

Figure 3.4: CloudPath application example. The application consists of two func-
tions: getTimeZone() and getPrefs(). These functions are registered as CloudPath en-
try points(/timeZone and /prefs) by mapping the function to a URI using the web.xml

file shown in part (b). The location where each function needs to run is also specified
in this file. The full URI will include the application name and cloudpath.com, e.g.,
clockapp.cloudpath.com/prefs.

Chapter 3. CloudPath 29

3.3.1 PathExecute

PathExecute implements a serverless cloud container framework that supports the execution

of lightweight stateless application functions in each CloudPath node. Function as a Service

(FaaS), also known as Serverless Computing, is a cloud computing approach in which the cloud

provider fully manages the infrastructure used to serve requests, including the underlying virtual

machines or containers, the host operating system, and the application run-time. Despite the

Serverless moniker, FaaS applications do require a server to run. Serverless reflects the fact

that the application owner does not need to provision servers or virtual machines for their code

to run on. FaaS applications are composed of a collection of light-weight stateless functions

that run on ephemeral isolated environments. We argue that the small size and stateless nature

of FaaS functions make them ideal candidates for our multi-tier path computing deployment.

One of the main benefits of using the serverless architecture for edge computing is that it has

a small footprint as functions rather than the full applications are executed. In addition, it

has provides us with the flexibility of breaking down applications into functions and deploying

them on various datacenters.

Our current prototype requires functions to be implemented as Java Servlets and requests for

these servlets arrive using HTTP. For each application running on a node, we spawn a separate

Docker [107] Ubuntu container running Jetty web server [10]. Functions of the same application

can share the same container, and the same container is reused across multiple requests; how-

ever, a container may be terminated by the framework without notice and developers should

not make any assumption about the local availability of state generated by previous function

invocations. Our applications can scale horizontally in a datacenter by adding a load balancer

for the application.

We implement PathExecute based on Nomad [9], a cluster manager and task scheduler that

provides us with a common workflow to deploy applications across each of our CloudPath nodes.

Nomad interacts with Consul [8], a highly available service registry and monitoring system inside

each node to spawn containers and run applications inside of them. Information about running

applications required for running Nomad is stored in Consul and other CloudPath modules use

the information stored in Consul for deployment, monitoring and routing.

Chapter 3. CloudPath 30

While we anticipate that most CloudPath applications will be written from scratch to take

advantage of the unique execution environment afforded by the platform, PathExecute lets

application developers leverage existing code and libraries by including them in their deployment

package as statically linked binaries. In addition, PathExecute containers can be configured by

the CloudPath administrator to include popular binary libraries, such as OpenCV [79].

Cloudpath uses URIs (Uniform Resource Identifier) to identify individual functions. These

URIs consist of the application’s name concatenated with the suffix cloudpath.com followed

by the name of the function. Developers determine how URIs are mapped to functions using

a deployment descriptor file that should be included in the application package. In addition,

developers also specify their preferences for where functions should be deployed in CloudPath

hierarchy using the deployment descriptor file. In our current implementation, the standard

Java deployment descriptor for web applications (the web.xml file) is used to describe how and

where the application and its functions should be deployed. Figure 3.4 illustrates how two URIs

are mapped to functions and their preferred location to run (edge for /timeZone, and core for

/prefs).

3.3.2 PathStore

PathStore provides a hierarchical eventual consistent database that makes it possible for Cloud-

Path functions running in PathExecute containers to remain stateless by automatically repli-

cating application state close to the CloudPath node where the function executes.

PathStore’s target environment poses three interesting challenges. First, most nodes can

only store a small fraction of the data stored on the wide area cloud nodes that are at the

root of the hierarchy. Nevertheless, most reads and writes executed by a CloudPath function

should be executed locally; running code close to the edge of the network has little benefit if

most data accesses have to go to the cloud. Second, the large number of nodes in the system

requires keeping to a minimum the amount of meta-data regarding the current location of data

replicas. Third, the geographic distribution of nodes, and the high network latency typical of

many paths between nodes requires minimizing coordination and the ability to operate (albeit

at diminished capacity) even in case of temporary network or node failure.

To address these challenges, we structured PathStore as a hierarchy of independent object

Chapter 3. CloudPath 31

stores. The database of the PathStore node at the root of the hierarchy is assumed to be

persistent, while all other levels act as caches. To simplify the implementation, PathStore

requires the data replicated by a node to be a superset of the data replicated by its children.

To provide low-latency, all read and write operations are performed against the local database

node to which an application server is attached. PathStore supports concurrent object reads

and writes on all nodes of the database hierarchy; updates are propagated through the node

hierarchy in the background, providing eventual consistency.

Figure 3.5 shows a sample three layer PathStore deployment. PathStore consists of three

main components: a native object store, the PathStore server , and the PathStore driver . The

native object store provides persistent storage for objects that are temporarily (or permanently

in the case of the root) replicated at a node. In our prototype we use Cassandra [85], but

the design can be adapted to other storage engines (see 3.3.2). As the figure illustrates, the

size of the local Cassandra cluster can differ between nodes. The PathStore server copies

data between its local Cassandra instance and the Cassandra instance of its parent node.

Finally, the PathStore driver provides an API that third-party applications running inside

PathExecute containers can use to query the local PathStore node. Our prototype is based on

CQL, Cassandra’s SQL dialect, which organizes data into tables, and provides atomic read and

write operations at row granularity. CQL lets users read and write table rows using the familiar

SQL operation SELECT, INSERT, UPDATE, and DELETE; however, CQL operations are limited to

a single table – there is no support for joins.

On-Demand Replication

PathStore replicates data at row granularity on demand in response to application queries.

Applications issue queries using the PathStore driver which executes them against the local

PathStore node; however, before a CQL query is locally performed, PathStore server replicates

from the parent node all objects that match the query as determined by the conditions in the

where clauses of the CQL statement. To prevent a node from fetching data on each query from

its parent, the PathStore server keeps a query cache consisting of all recently executed CQL

queries. Subsequent CQL queries that match an existing entry in the cache are directly executed

on the local node. Queries in the query cache are periodically executed in the background by a

Chapter 3. CloudPath 32

Figure 3.5: PathStore Architecture

Chapter 3. CloudPath 33

pull daemon to synchronize the local node’s content with that of its parent (i.e., fetch new and

updated records from the parent node). To reduce unnecessary processing, PathStore keeps

track of the coverage of cache entries and the pull daemon bypasses queries that are otherwise

subsumed by other queries that have a wider scope. For example the query SELECT * FROM

marbles subsumes the query SELECT * FROM marbles WHERE color = red.

Figure 3.5 illustrates this process for a simple table that keeps track of marbles of different

colors. In the example, an application running at the edge node issues a query for the purple

marble (SELECT * FROM marbles WHERE color=’purple’). Assuming that this query does

not match an existing entry in the edge node’s query cache, the query is propagated to the

core node’s PathStore server, which in turn propagates it to the cloud node’s PathStore server.

Since the cloud node is the root of the hierarchy, it is assumed to contain all the data and

the query does not propagate any further. The core node then executes the query against the

Cassandra cluster of its parent node, stores the matching row(s) in its local Cassandra cluster,

and stores the query in its query cache. This process is repeated by the PathStore server

running on the edge node. Finally, the PathStore driver executes the query against the edge’s

Cassandra instance. As an optimization, the PathStore driver also keeps a query cache with

recently executed queries. Since the driver’s cache is guaranteed to be a subset of the server’s

cache, queries that match the driver’s can run directly against the local Cassandra instance

bypassing the need to first contact the PathStore server.

The obvious disadvantage of fetching data purely on demand in response to application

queries is the significant latency associated with fetching data across multiple levels of the

hierarchy. It is easy to imagine alternative approaches that pre-fetch data in anticipation of its

use. PathStore could leverage its fine grain knowledge about the data used by applications in

the past to predict future usage. For example, it may be possible for PathStore to identify data

that is requested for each user served by an application. When a new user connects to a node,

PathStore could eagerly fetch the data associated with the new user in anticipation of its use.

We leave the exploration of prefetching alternatives for future work.

Chapter 3. CloudPath 34

Update Propagation

PathStore applies all modifications locally, and a push daemon periodically propagates local

updates to higher levels of the hierarchy. PathStore keeps track of modifications using a write

log. In Cassandra, every table has a partition key that determines the host(s) in the Cassandra

cluster where a given row will be stored. In addition a Cassandra table can have one of more

clustering keys. Rows with the same partition key, but different clustering keys are stored

together on the same Cassandra host, in a local order determined by the clustering keys.

PathStore implements a write log for each row of a table by adding a version column as the

last element of the table’s clustering key. The version, is a UUID timestamp that records

the time the row was inserted, and the ID of the PathStore node where the modification was

originally recorded. PathStore assumes that nodes are tightly synchronized using some accurate

mechanism, such as GPS atomic clocks. As modifications get propagated through the hierarchy

(up by the push daemon and down by the pull daemon), PathStore uses the version timestamp

to determine order between modifications. In the current prototype the modification with the

most recent timestamp wins.

PathStore’s write log is not visible to applications, and therefore developers do not have

to modify their application queries. Instead, the PathStore Driver automatically collects the

multiple versions of a row that match an application’s query and returns the most recent data.

For example, Figure 3.6 shows a table that keeps track of personalized movie ratings. Columns

user and movie are the original partition and clustering keys, respectively. Column version

is added by PathStore to implement the write log. The table show that user John initially

assigned a rating of 8 to the movie Toy Story, but later updated this rating to 10. Running

the query SELECT * FROM movies WHERE user = ’John’ produces the tuples [’John’, ’Toy

Story’, d33d7fe0-195f-5d569c585662, 10] and [’John’,’Cars’, 825968c0-195d-5d569c585662, 8];

however, the PathStore driver returns only the most recent version of each row and hides any

PathStore meta columns, i.e., [’John’, ’Toy Story’, 10]. Finally, to prevent the log from growing

unbounded, PathStore runs a daemon at the root of the hierarchy that periodically trims the

log.

Chapter 3. CloudPath 35

user movie version rating

John Toy Story d33d7fe0-195f-5d569c585662 10
John Toy Story 825968c0-195d-5d569c585662 8
John Cars 7adf7210-1958-59e16851d966 9
Susan Finding Nemo 6833c850-1958-59e16851d966 8

Figure 3.6: Sample PathStore table.

Data Eviction

Cold query cache entries are deprecated periodically preventing the pull daemon from fetching

unnecessary data. Similarly, locally replicated rows that do not match any query in the query

cache are periodically deleted. In case of resource contention, our prototype uses a simple LRU

policy to free space. Exploring other approaches is the subject of future work.

Local Table

PathStore also provides local tables for temporary storage. Updates to local tables are not

propagated to other nodes. In Section 3.4.1 we describe an application that uses local tables

to aggregate sensor data at the edge of the network.

Consistency Model

At the individual node level, PathStore preserves the storage semantics of its underlying native

object store. Our current prototype, which is based on Cassandra provides local durability, row-

level isolation and atomicity, and strong consistency based on Cassandra’s quorum mechanism.

Across nodes, however, PathStore propagates updates at row granularity following an eventual

consistency model. The PathStore driver guarantees that code executing on a specific PathStore

node will see monotonically increasing versions of a row (i.e., the driver returns only the most

recent version of the row in the write log), and that given enough time without new modifications

all replicas of a row on all PathStore nodes will converge to the same most recent value.

Whereas PathStore does not enforce system-wide strong consistency, an application can

nevertheless achieve stronger consistency for requests emanating from a subset of the CloudPath

hierarchy by instructing the platform to execute its sensitive functions at a common ancestor

node. For example, a function running at city-level nodes will provide a consistent view of the

Chapter 3. CloudPath 36

data for all users in any given city, irrespective of the edge node they each use to connect to the

network; users in different cities, however, may see inconsistent data while updates propagate

through the hierarchy. An application can enforce global consistency by limiting its functions

to run at the root of the hierarchy. The stronger consistency, of course, comes at the cost of

increased network latency and obviates the benefits of path computing. In the future, we plan

to explore other consistency models that will enable applications to control how updates are

applied across the storage hierarchy.

Fault Tolerance

PathStore can continue to serve read queries for data that is locally replicated even in the

event of network partition; however, queries that are not already in the query cache (of the

current node and its reachable ancestors) will fail if an ancestor becomes unreachable. On the

other hand, write queries should be able to execute as long as the local Cassandra instance

is reachable. A write returns when it is persisted in the local Cassandra instance, and it is

guaranteed to remain stored in the local instance until it is propagated to the parent node. A

row is marked dirty when it is inserted into the local Cassandra instance. PathStore only marks

the row as clear when the parent acknowledges reception and storage of the write. If there is a

failure, PathStore retries propagating the write. If a PathStore node experiences a temporary

failure, upon recovery it will retry propagating all writes locally marked as dirty. Data is only

permanently lost if a PathStore node experiences a permanent failure before a dirty update is

successfully propagated to the parent. We anticipate that permanent PathSore node failure will

be a very rare occurrence as PathStore relies on replication in Cassandra to handle individual

machine failures.

Other Storage Engines

Whereas the current PathStore implementation leverage Cassandra other similar object stores

could be adopted as long as they provide (at the local node level) persistent object storage,

row-level isolation, and atomic timestamps.

Chapter 3. CloudPath 37

3.3.3 PathRoute

PathRoute is responsible for routing CloudPath requests to running functions using the URI

included in the request. In our current implementation, which uses HTTP to transfer requests

to functions, CloudPath applications get an unique sub-domain within the cloudpath.com

name-space after registration. CloudPath requests should consist of the application sub-domain

concatenated with cloudpath.com followed by the function name in the web-address such as in:

app name.cloudpath.com/function name. In the clock application example of Figure 3.4, re-

quests to the getTimeZone() function should be made to the clockapp.cloudpath.com/timeZone

web-address.

To divert CloudPath traffic from other traffic flowing in the network, we use a DNS A record

entry for cloudpath.com to map all CloudPath sub-domains to a single IP address. Hence,

all CloudPath application requests across the entire network will have the same destination IP

address which is the IP address of the PathRoute module on every edge node. The network

operator is required to route all packets destined for this IP address to the edge CloudPath

node connected to the user. The major benefit here is that by using only one static route on

the edge routers, CloudPath traffic can be diverted to the PathRoute module.

We implemented PathRoute using a NGINX [126] proxy. For each new HTTP request

received by our NGINX, a look-up is made on a local in-memory state cache using a small

script to determine whether a deployment request for that application on the node has been

previously made or not. If not, the application identifier is extracted from the request and

sent to the PathDeploy module where a decision for application deployment is made. When

PathDeploy decides to deploy the application on the node and PathExecute completes the

application deployment, the proxy cache is updated. Future requests are then proxied to the

PathExecute container running the application (the function preferences should also match the

node’s location).

If PathDeploy decides against deploying the application on the node, subsequent requests

will be proxied to the next CloudPath node in the hierarchy (we assume each PathRoute proxy

has the address of the PathRoute module of its parent node). In CloudPath, requests can only

move upwards towards the root cloud node.

Chapter 3. CloudPath 38

Handover

When the user moves between edge nodes (e.g., handover), the IP address of the source client

and the destination which is the PathRoute module on the edge node node is still valid, but the

traffic will flow through a different set of routers and will therefore lead to the execution of the

function at a different CloudPath node. In case of a hard handover the existing TCP connections

would be terminated, and the client is forced to reconnect and restart their request. When a

soft hand over happens, the connection is restarted at the edge CloudPath node. Because of

the short-lived nature of the requests, restarting the connection would not lead to significant

overhead.

3.3.4 PathDeploy

PathDeploy is responsible for initiating the process of deploying an application and its functions

on a node. Application deployment decisions are triggered by PathRoute requests. The decision

on whether to deploy the application on a particular node depends on higher level system

policies, user preferences and the resource status on that node. One policy that we include in

our prototype is that functions specified by the user to run on a certain level of the CloudPath

hierarchy can also run on any higher level and all functions by default run on the cloud node. If

the application is to be deployed on the node, PathDeploy retrieves the application code from

PathStore, and sends the code to PathExecute. In parallel, a request is made to PathStore

module of the node to create the application data tables based on the schema.

Our PathDeploy prototype is a Java HTTP server. When new requests for an application

and function deployment arrive at PathDeploy, it retrieves the application and function infor-

mation, including user preferences from PathStore to decide if the application and function

should be running on the node or not. If the decision to deploy an application is positive,

PathDeploy deploys the application locally by fetching the application code from PathStore

and passing it to PathExecute along with the application meta-data. In parallel, it fetches the

application database schema from PathStore and creates the application data tables on the

node.

At present, when we deploy an application on a node, all its functions are deployed at once,

Chapter 3. CloudPath 39

but requests are only forwarded to a subset of functions that should be deployed on that node.

A fine grain deployment scheme will be implemented in future versions of CloudPath.

3.3.5 PathMonitor

PathMonitor is designed to provide insight into the lifecycle of a deployed application as well

as the status of the CloudPath nodes themselves. It consists of both a back-end module that

collects data from the various modules and third party applications of CloudPath, as well as a

front-end web application to present the collected data.

PathMonitor pulls statistics such as CPU and memory metrics for containers and hosts

from the PathExecute module. This data is pre-processed, aggregated, and stored on the

PathStore module in the node. In addition, the various CloudPath modules and third party

applications create logs depending on the application function; such as access, status, and error

logs. PathMonitor acts as a central point for collecting and storing logs that are created by

these other modules.

The front-end web interface lets us visualize the current and past state of the CloudPath

system through various graphs and infographics, such as; the topology of the system, including

the hierarchy of nodes; CPU and memory metrics for application containers; and the same

metrics for the hosts and nodes themselves.

3.3.6 PathInit

In the root cloud node, the PathInit module is responsible for receiving the applications from

the developers through a web interface, extracting application and function properties from the

web.xml file, and saving them along with the application’s code and database schema file on

PathStore.

PathInit also creates augmented tables from the submitted application database schema file,

and deploys the application on the root node. The augmented schema files and the information

about the application are used by PathDeploy to deploy the application on other nodes.

Chapter 3. CloudPath 40

Deployment
Location

PathDeploy
Processing

Nomad
Processing

Container
Spawning

Application
Initialization

Consul
Update

Database
Initialization

Total
Time

Cloud
463.9

(118.1)
131.6
(29.7)

1754.9
(28.3)

841.0
(22.8)

33.1
(13.6)

234.3
(22.1)

3531.2
(133.8)

Core
823.0

(140.1)
129.7
(32.8)

1772.1
(53.6)

887.0
(27.6)

36.6
(19.5)

622.5
(35.2)

3849.8
(154.5)

Edge
1005.2
(155.5)

133.6
(45.3)

1709.3
(45.4)

866.4
(18.9)

39.4
(20.2)

974.3
(55.4)

4084.3
(181.3)

Table 3.1: Breakdown of average time required to deploy an application in milliseconds on
different locations. Standard deviation in parenthesis.

Figure 3.7: Topology of our experimental setup network with average round trip times of the
links

3.4 Experimental Setup

Our experiments emulate a CloudPath deployment consisting of a cloud node, and two mobile

networks each with one core node and two edge nodes. Figure 3.7 depicts this topology. Each

CloudPath node is implemented in a separate computer. The only part of the experiment that

is emulated is the network between the clusters which is done by using Linux’s Traffic Control,

that enabled us to configure the Linux kernel packet scheduler. Network latencies are chosen

based on results from the paper by Hu et al. [75], and we use a normal distribution to describe

the variation in delay. The average round trip times of the links is included in Figure 3.7.

Chapter 3. CloudPath 41

3.4.1 Test-Cases

We created a series of microbenchmarks to measure deployment time, routing overhead, and

the latency and throughput of PathStore. We have also implemented a series of sample user

applications to show how our platform supports different categories of applications that can

benefit from the architecture:

Face detection: Computational resources on edge nodes can be suitable for offloading

resource-intense functions from the mobile end-user device. When offloaded to the edge, ap-

plications can benefit from an increase in execution speed and battery lifetime [23]. Our face

detection application is deployed as a Servlet and uses the image processing library OpenCV [79]

through its Java interface JavaCV to detect faces in an image. The input to this application is

an image sent in an HTTP request. The application finds faces in the image and saves them in

PathStore.

Localized face recognizer: Using PathStore, applications can push localized content to

edge nodes based on the geographic location of end-users. One example is face recognition clas-

sifiers which have been trained on a specific dataset, relevant to a given geographical location.

We use the AT&T face dataset [3] consisting of a total of 400 face images, of 40 people (10

samples per person) and divide it into 4 separate smaller datasets. We then train 5 different

classifiers using the FisherFaces algorithm in OpenCV on these smaller datasets. We store the

classifiers in PathStore and the face recognizer application running on each edge node retrieves

them.

IoTStat aggregator: Another important benefit of having multiple processing edge nodes

close to the user is their ability to filter and aggregate streams of data. As the number of IoT de-

vices using the Internet is likely to raise significantly in the future, processing and filtering data

on the edge will decrease the amount of traffic from these devices that need to go through the

Internet. We implemented a sample application that performs aggregation functions (average,

min, max) on data received from sensors on edge nodes. The first handler of this application

receives and parses HTTP/JSON requests containing the sensor data, and stores the extracted

information onto a local PathStore table. A second handler, that can be called periodically

using HTTP requests, then performs MIN, MAX and AVERAGE queries on the data stored

Chapter 3. CloudPath 42

Execution
Location

Direct
Connection

Direct
Connection
(no latency)

L7 Routing
L7 Routing
(no latency)

Edge 5.38 (0.38) 0.413 (0.2) 5.755 (0.411) 0.89 (0.22)

Core 20.33 (1.37) 0.465(0.32) 20.96 (1.64) 1.23 (0.77)

Cloud 130.46 (6.65) 0.443(0.38) 132.20 (7.45) 1.45(0.93)

Table 3.2: Average RTT for HTTP requests in milliseconds. Standard deviation in parenthesis

by the first function within specific time frames. This processed data is then saved in another

regular PathStore table, which is pushed to the core and cloud.

3.5 Results

We evaluate CloudPath and its applications from different aspects:

• The deployment time of applications on a specific node

• The minimum routing time for applications

• The performance of PathStore and its overhead

• Connection handover between edges

• Benefits for applications

3.5.1 Deployment Latency

We measure the performance of our system in terms of average deployment time of a sam-

ple Hello World application with one table. The process is initialized by an HTTP request

received by PathRoute, which triggers a container deployment request in PathDeploy as the

application is not already deployed on that node. Table 3.1 shows the amount of time required

by PathDeploy and PathExecute to retrieve and deploy an application on a particular node.

Each experiment was repeated 15 times. The initial time to retrieve application and function

information from the database and make a deployment decision is shown in the first column

(PathDeploy Processing). Then the next steps (Nomad Processing, Container Spawning and

Application Initialization) are done in PathExecute while the application database initialization

Chapter 3. CloudPath 43

from the stored schema file is done in parallel. As shown in this table, as we move from the

cloud towards the edge, the average database initialization time and the PathDeploy process-

ing time increases. We assumed the worst case scenario where the application data has to be

fetched all the way from the cloud. In practice, an edge deployment will likely get a hit on the

core tier. However the overall processing time is still between 3.5 seconds in the cloud to 4.08

seconds in the edge. If developers have larger applications with more complex databases, this

time is likely to increase because more data should be retrieved from PathStore.

A non-FaaS approach requires the full VM or container to be downloaded on the edge node

each time it is required. To compare that approach with ours, we measured the overhead time

required to download a minimal container with only Java installed from a cloud repository,

which on average was 13.2 seconds. In CloudPath, this time is saved during each deployment

because all clusters are pre-loaded with the executing container.

Routing Overhead

To calculate the overhead that our systems adds to each packet, we measure the average response

time of requests using an HTTP benchmarking tool called wrk [58]. We compare the latency of a

baseline approach where no proxies exist between the user and the container (direct connection)

to our method, where we use layer 7 routing using PathRoute. In our experiment, after creating

a single TCP connection with the proxy, a new request is sent when an acknowledgment for the

previous request is received. This is repeated for 10 seconds for 16 concurrent connections. The

average round trip times (RTT) and standard deviation is presented in Table 3.2. Furthermore,

we compare our L7 routing with the baseline approach, when there isn’t any emulated latency

in the network. As shown in this Table, our routing method only introduces a slight increase in

latency compared to the baseline approach where packets are routed on layer 3. This is specially

evident when no emulated latency exists in the network and shows the overhead introduced by

our PathRoute proxies is about 0.9ms for the first layer and about 0.3ms for each additional

layer.

Chapter 3. CloudPath 44

100 Entries 1000 Entries 10000 Entries

Deployment
Location

PathStore
First
query

PathStore
Consequent

queries

Native
Cassandra

driver

PathStore
First query

PathStore
Consequent

queries

Native
Cassandra

driver

PathStore
First
query

PathStore
Consequent

queries

Native
Cassandra

driver

Edge
529.1
(9.7)

4.7
(0.4)

506.4
(7.4)

1664.2
(177.1)

29.5
(9.3)

1035.5
(181.9)

8857.5
(123.9)

113.0
(8.4)

2640
(195.0)

Core
510.4
(13.8)

4.4
(0.1)

398.9
(15.9)

1121.8
(47.3)

24.8
(0.7)

869.0
(34.3)

5244.8
(282.1)

111.1
(2.1)

2268.7
(147.4)

Cloud
6.3

(0.6)
4.9

(0.2)
6.1

(0.1)
29.7
(0.9)

26.9
(1.6)

27.1
(1.78)

137.5
(6.7)

112.8
(6.4)

124.9
(3.1)

Table 3.3: Time required for querying full tables in milliseconds (standard deviation in paren-
thesis).

PathStore Performance

We next measure the performance of PathStore using micro benchmarks. We present the time

required to execute different types SELECT and INSERT queries both when data is located locally

or is available on a parent node.

Local Read Latency

We compare the time to execute SELECT queries on a local node using PathStore versus using

the native Cassandra driver. In Figure 3.8, we depict the Cumulative Distribution Function

(CDF) of the time it takes to execute these queries. The blue line shows the performance of

the native Cassandra driver while the green line shows the performance of the PathStore driver

when we execute 1000 SELECT queries with WHERE clauses that match individual rows and result

in a miss in the local client query cache. Each row of our table contains 1KB of data. The

red line shows the performance of the PathStore driver with the difference that before 1000

individual SELECT queries, a single SELECT query without any clauses on the same table is

made so that data would be cached locally. This results in hits on the client query cache. As

shown in Figure 3.8, the PathStore driver is on average 1.6ms slower than the native Cassandra

driver when it misses the client query cache. However the performance of our driver is close to

the baseline if we have hits in the query cache.

Local Write Latency

We also measured the time required for executing local INSERT queries and there were no

noticeable difference in terms of performance between the PathStore driver and the Cassandra

Chapter 3. CloudPath 45

Figure 3.8: CDF chart for 1000 select queries on a local node.

driver. For INSERT queries, our PathStore driver does not add extra overhead to the native

Cassandra driver.

Remote Read Latency

We next analyze the time required to retrieve data to the edge and core from the cloud node

using SELECT queries that match individual rows. These queries are executed from the core

and edge nodes where there is a miss in the client and server query cache of the PathStore

unit . We measure the retrieval time for 1000 queries and present the CDF in Figure 3.9. The

green and red figure show PathStore’s execution time from the core and the edge. The blue

and orange lines show the execution time for the native Cassandra driver from the core and

the edge. We can see that in Figure 3.9, PathStore (red and green lines) is nearly twice as

slow as the Cassandra driver (blue and orange lines) in retrieving the data. This is because

PathStore first checks to see whether data is present on the parent node or not. Then when it

gets the response back, it fetches the data from the remote node. This adds one RTT time to

each query.

We next measure the time required to fetch different number of entries (a whole table) from

edge, core and cloud nodes when the data is only initially located on the cloud node. Again each

row or entry is 1KB. We do a SELECT query with no clauses to fetch the whole table at different

nodes with PathStore and the native Cassandra driver. The experiment is repeated 20 times

and the results are presented in Table 3.3. As shown in the table, PathStore’s first query takes

Chapter 3. CloudPath 46

Figure 3.9: CDF chart for individual select queries on a remote node.

more time than the native Cassandra driver to retrieve the data, but for consequent queries, as

the data is already fetched, we will have a hit on the local client cache and the queries would

take the same time as a local SELECT. Furthermore consequent queries that are a subset of the

first query will also be fetched locally.

Update Propagation Latency

We also measure the propagation latency of a single INSERT query. In this scenario we execute

a single INSERT query at different nodes of the hierarchy and measure the time that the single

row update takes to propagate to all other nodes that have previously issued a SELECT query.

Figure 3.10 illustrates the results of this experiment . The links shown in this Figure are logical

links between nodes from Figure 3.7. Meaning a query travelling between Edge1 and Core2 has

to traverse nodes Core1, Cloud1. As shown in this Figure, moving down on the tree takes more

time than moving up. This is because pull operations require 2 RTT’s while push operations

only need half an RTT. INSERT and UPDATE operations on a node get pushed all the way to

the cloud, while nodes can express their interest in a certain query with a SELECT query. This

results in periodic data pulls from parent nodes when updated information on the parent about

the query exists.

Chapter 3. CloudPath 47

Figure 3.10: Propagation time (in milliseconds) of an INSERT query between nodes (standard
deviation in parenthesis). Links are logical links between nodes from Figure 3.7.

Data Overhead

Finally we measure the total overhead of each table in PathStore. We add 5 columns to each

of our PathStore tables and in total, 38 bytes is added to each entry.

Handover Latency

We examined the effects of a soft handover in case of mobile movement between two edge

nodes A to B. When a soft handover happens, then TCP packets will continue to be sent

from the user device (as explained before, all PathRoute modules on every edge, have the same

IP address) however the data arriving at the PathRoute module of edge will not accept such

packets because no such TCP connection exists, so it sends a TCP packet with the RST flag

set and the connection will be re-initiated by the user device. We emulate a soft handover in

our environment and measure the time required to re-initiate the connection. On average it

takes 16.56 milliseconds (4.03 standard deviation for 100 experiments) for the device to start

re-initiating the connection, and another 15.2 milliseconds to establish a new TCP connection.

3.5.2 Application Performance

In this section, we will show the benefits of running applications on CloudPath. These benefits

come in the form of greatly reduced response time or reductions in data and network traffic.

Chapter 3. CloudPath 48

Figure 3.11: CDF for response time of the Face Recognition application.

Face Detection

We measure the average response time of the face detection and face recognition programs

when they are deployed at different locations. For the face detection program, the average

response time for 100 different requests when the program is running on the edge, core and

cloud is: 13.6(2.1), 32.6(1.8), 141.9(6.4) milliseconds (standard deviation in parentheses). The

same image was used and the file size was 2KB. There is a substantial reduction in response

time when running on the edge (closer to the client) compared to running on the core and

cloud.

Face Recognition

The Face Recognizer program labels an input image (received through HTTP requests with

a file size of 11KB) based on a trained model. The results for processing 100 requests are

illustrated in Figure 3.11. Similar to the Face detection program, running on the edge lowers

the latency by 88 percent.

IoTStat Aggregator

For the IOTStat aggregator application, the average processing time of each query received at

the edge node is 1.6 ms for 3 different sensor values in the same request. This means that

an application running on the container (1 core) can handle up to 900 queries per second.

The processing time required for aggregating 1000 queries, is about 10ms. If there were no

Chapter 3. CloudPath 49

aggregation, then n sensors sending k requests per second will send n×k messages to the cloud

for processing. However if we assume a single layer of aggregation (p edge nodes), assuming

that aggregation results are required every second, then the total number of messages sent to

the cloud would only be: p. In our example we insert a row containing the aggregation results

of each edge node on to PathStore which would push this data to the cloud.

3.6 Chapter Summary

In this chapter, we presented path computing, a new paradigm that enables processing and

storage on a progression of datacenters interposed along the geographical span of the network.

Path computing gives applications developers the flexibility to place their serve functionality

at the locale that best meets their requirements in terms of cost, latency, resource availability

and geographic coverage.

We also described CloudPath, a new platform that implements the path computing paradigm.

CloudPath minimizes the complexity of developing path computing applications by preserving

the familiar RESTful development model. CloudPath applications consist of a collection of

short-lived and stateless functions that can be rapidly instantiated on-demand on any data-

center that runs the CloudPath framework. CloudPath makes this functional decomposition

possible by providing an eventual consistent storage service that automatically replicates ap-

plication state on-demand across the multiple datacenter tiers to optimize access latency and

reduce bandwidth consumption.

Our experimental evaluation showed that CloudPath can deploy applications in less than

4.1 seconds and has negligible read and write overhead for locally replicated data. Moreover,

our test applications achieve up to 10X reductions in response time when running on CloudPath

compared to an alternative implementation running on a wide-area cloud datacenter.

Chapter 4

SessionStore: A Session-Aware

Datastore for the Edge

50

Chapter 4. SessionStore 51

Edge computing expands the traditional cloud architecture with additional datacenter layers

that provide computation and storage closer to the end user or device. For example, a wide-area

cloud datacenter which serves a large country can be augmented by a hierarchy of datacenters

that provide coverage at the city, neighborhood, and building levels.

Recent storage systems for the edge [116, 42, 124, 64] generally rely on eventually consistent

models [152, 11] to replicate data. These systems propagate updates in the background and

guarantee that if no new updates are made to an object, eventually all replicas will converge to

the same value. Eventual consistency works well for many applications where clients interact

with the same replica for the duration of their sessions. The reason is that as long as the client

interacts with the same replica, the storage system in effect provides session consistency [152],

a stronger consistency model that has additional important properties: read-your-writes, where

subsequent reads by a client that has updated an object will return the updated value or a

newer one; and, monotonic reads, where if a client has seen a particular value for an object,

subsequent reads will return the same value or a newer one. While session consistency does not

guarantee that different clients will perceive updates in the same order, it nevertheless presents

each individual client with an intuitive view of the world that is consistent with the client’s own

actions. Examples of applications that can benefit from session consistency on the edge include

authentication services, file storage applications and messaging applications. We describe more

usage scenarios for session consistency on the edge in Section 4.1.

Session consistency however, may not be guaranteed when consecutive client requests are

sent to different replicas. This may occur in edge applications when: (i) a mobile client switches

between edges [27, 120]; (ii) functionality is dynamically reallocated between edges [141]; or (iii)

an application’s functionality has been partitioned between different datacenters [26, 146, 167]

(e.g., running some functions on the edge and others on the cloud). If consecutive client

requests are sent to different replicas before data needed by the client request is replicated, the

application may not be able to read its own writes or have monotonic reads.

Figure 4.1 illustrates two such scenarios. In Figure 4.1a, client 1 writes object O on Edge1.

As a result of mobility, client 1 switches its association to a different Edge2 and observes the

old value of O on its subsequent read. In the second scenario illustrated in Figure 4.1b, client

2 issues a command that results in object O being overwritten on Edge1. Client 1 then reads

Chapter 4. SessionStore 52

Tim
e

Edge1 Edge2

a

client 1

client 1

O=2
w(O=2)

O=1 O=1

O=1
r(O)

O=2

(a) Read your writes failure

Edge1 Edge2
O=1

a

client 2

O=2
w(O=2)

r(O)

O=2 client 1

O=1
r(O)

O=2

O=1

client 1

(b) Monotonic reads failure

Figure 4.1: In (a) the client writes and Edge1 but its consequent read on Edge2 return an
old value. In (2) client 1 reads a value but when it makes the read on Edge2, an old value is
returned

this value and moves to Edge2. If client 1 issues another request that reads object O on Edge2,

an old value will be returned. While in the previous examples, clients read and write directly

to the replicas of the storage system, this is done purely for ease of explanation. In practice,

clients instead communicate with a replica of a service (e.g., an HTTP server) deployed on each

edge datacenter that runs application code that access the replicated datastore.

We present SessionStore, a distributed datastore tailored for fog/edge computing that

ensures session consistency between a hierarchy of otherwise eventually consistent replicas.

Whereas previous approaches [24, 20] that provide session consistency on top of eventual con-

sistent storage systems target applications running on a relatively small number of cloud dat-

acenters, SessionStore is designed for applications running on a large and variable number of

edge/fog datacenters. SessionStore supports resource-limited datacentres by leveraging partial

replication and only replicating data on demand. SessionStore supports session consistency

using a session-aware reconciliation algorithm that only reconciles keys that a client either

reads or writes at the source replica. SessionStore further minimizes the data transfer by not

transferring up-to-date data already existing on the destination. In our example application

use case, this saving is as much as 95% in terms of data transfer.

The main contributions of SessionStore are: (i) a session-aware reconciliation algorithm

that enforces session consistency by only transferring relevant client data; (ii) a prototype that

implements our algorithms; (iii) an experimental evaluation based on micro-benchmarks and

Chapter 4. SessionStore 53

Mobile
Network 2

Mobile
Network 1

e3 e1

c1 c2

cl

e2

t1

t2 t2

t1 t1

Cloud

Core

Edge

Client application
requests

e1

Figure 4.2: Hierarchical datacenter topology

the RUBBoS benchmark that shows SessionStore is able to guarantee session consistency at a

fraction of the latency and bandwidth costs of a strongly consistent implementation.

The rest of this chapter is structured as follows. Section 4.1 discusses scenarios of edge

applications that require session consistency. Sections 4.2 and 4.3 discuss design considera-

tions and our implementation. Section 4.4 presents the results of our experimental evaluation.

Section 4.5 summarizes the chapter and discusses avenues for future work.

4.1 Use Cases

In this section, we give examples of scenarios that require session consistency to guarantee

that requests emanating from the same client experience a view of the underlying data that is

consistent with the client’s own actions. We consider applications deployed on an edge network

with two or more levels. For example, Figure 4.2 shows a sample edge network consisting of a

cloud datacenter, and two mobile networks each with a datacenters at its core, and one or two

additional datacenters at edge location such as base stations. Each datacenter has a replica

of the datastore, as well as additional servers to run application code. We assume that the

cloud datacenter stores a persistent full replica of the datastore. Each of the other datacenters

hosts a partial replica and data gets replicated on-demand. On a read access, if the data is

not already available on the local replica, it is fetched recursively from its parent. Similarly,

updates are applied to the local replica and get propagated through the replica hierarchy in the

background.

We enforce session consistency by grouping related datastore accesses into a session based on

Chapter 4. SessionStore 54

application-specific considerations. In the examples below, we uses a session to group together

data accesses executed on behalf of the same user; however, it is possible to think of other

applications where a session could be used to group together accesses executed on behalf of

a device or a specific application module or function. We consider the case where requests

that belong to the same session execute against different replicas due to: (i) user mobility; (ii)

different parts of an application being deployed on different datacenters; or (iii) code mobility.

The use cases below follow a stateless server design pattern where all application state is kept

in the datastore, and applications are implemented as a collection of independent stateless

functions.

Scenario 1: Mobile Client In this scenario, as a user moves around, his/her requests

get routed to the closest edge datacenter. Session consistency is needed when the state that is

read or written when connected to one edge datacenter is later accessed again after the user

switches to a different edge. Consider the case of a user that leverages edge computing to edit

a video. After recording a video on their phone, the user uploads it to an edge video-editing

service which stores it in the datastore. The user then boards a bus, and proceeds to edit

the video by applying a sequence of filters (e.g., image stabilization, cropping). By grouping

the operations performed on behalf of the user into a single session, a datastore that provides

session consistency guarantees that the effect of each of the filtering operations is preserved

even as subsequent operation may run on different edges along the route as the bus travels.

Scenario 2: Functional Partitioning. In this scenario, an application’s functionality

is partitioned and deployed on different datacenters. Session consistency is needed when the

results of executing one function on one datacenter should be made visible to another function

running on a different datacenter. As an example, consider the case of a simple access control

service that consists of three functions: login, logout , and authorize. A client logs into the

system by providing a password to validate against a hash stored in the datastore. The login

function is deployed on the cloud datacenter to ensure that sensitive password information

is not replicated anywhere else. After successful validation, login adds a certificate with the

user’s permissions to the datastore. Similarly, to log a user out, logout modifies the certificate

to indicate that it is no longer valid. Subsequent client requests (e.g., read an email, send a

message) execute on one of the edge datacenters after first running authorize, which involves

Chapter 4. SessionStore 55

reading the user’s certificate from the datastore to verify its validity. By grouping the operations

performed on behalf of a client into a single session, a datastore that provides session consistency

would guarantee that the version of the certificate created by the most recent invocation to login

or logout is the one that is read by authorize.

Scenario 3: Function Mobility. In this scenario an application (or an application com-

ponent) is reallocated between datacenters. Migration may be done for load balancing purposes,

when the demands of a task surpass the locally available resources on the current execution

location, or to improve quality of experience. Session consistency is needed when after migra-

tion an application reads state from the datastore in the new datacenter that was either read

or written in the old datacenter. As an example, consider the case of an interactive web-hosted

game that stores the state of the game in the datastore. When the network is experiencing

low queuing delay, the application runs on the cloud, but migrates to a datacenter on the

edge when an increase in wide-area traffic degrades the user’s experience. By grouping the

operations performed on behalf of each user into their own session, a datastore that provides

session consistency guarantees that after migration the state of the game presented to the user

corresponds to the user’s last move.

The previous use cases can also run correctly on top of a datastore that provides stronger

consistency guarantees, such as sequential consistency or casual consistency; however, the

stronger properties come at a large cost in terms of bandwidth and latency as we show ex-

perimentally in Section 4.4. The above scenarios do not require a globally consistent view of

the world; instead, they only require a view of the world that reflects the actions of operations

that belong to the same session. The rest of this chapter shows how session consistency can

provide this guarantee with low overhead in terms of data transfer and replica switching cost.

4.2 Design Considerations

In this section, we elaborate on our design choices for adding support for session consistency to

a replicated datastore that runs on a hierarchy of datacenters that facilitate edge computing.

We consider three dimensions: when to synchronize state, what state to synchronize, and how

to keep track or identify the state that needs to be synchronized.

Chapter 4. SessionStore 56

Session consistency can be enforced either proactively or re-actively. In a proactive imple-

mentation, data is continuously sent to other replicas eagerly. This approach supports fast

switching between replicas; however, it results in high bandwidth consumption. On the other

hand, a reactive implementation ensures session consistency only after a client switches to a

new replica. Before running code on behalf of a client on a new replica, all relevant state has

to be synchronized, which may incur delay.

We argue that the reactive approach is more appropriate for edge computing because the

latency and resiliency demands of edge computing may dictate that mobile clients must often

be served by their closest replica – thereby the proactive approach necessities a large number of

service replicas and hence a very high replication factor that results in more resources needed

on the edge. Our experiments confirm that a proactive implementation incurs large update

latencies and high data volumes even for a modest replication factor. Conversely, the latency

to switch between replicas that are kept in sync using reactive replication is relatively small

(see Section 4.4.3).

This choice, however, does not preclude eager replication to a small number of replicas that

the system determines have a high likelihood of executing queries on behalf of the session. We

leave the study of pre-fetching for future work.

State between replicas can be synchronized using either full replica reconciliation or session-

aware data reconciliation. In the former, the destination replica will have the latest/synchro-

nized union of all records available at both replicas before the switch occurs. The advantage of

this method is that it is conceptually simple, however it may result in high switching time and

high bandwidth consumption for the transfer. In the latter, only data relevant to the session,

including any records that were read or written, are synchronized. This approach is efficient in

terms of data transfer and switching time; however, it is more complex and requires application

support to identify relevant data accessed by the session. We argue that for multi-user services

where the same replica handles requests from multiple clients, the second option where only

the session’s data is synchronized is more beneficial. Our experiments show that this approach

reduces bandwidth requirements and latency. Moreover, in our experience the effort to label

queries is modest.

To keep track or identify the state that needs to be synchronized, we can either tag individual

Chapter 4. SessionStore 57

records with read and write information, or use a higher level abstraction, such as user queries to

capture access patterns. The benefit of tagging individual records is its simplicity, which comes

at the expense of potential significant additional storage overhead for data objects. Instead,

we opted to track data accesses by recording SQL-like queries executed against the replica.

While this approach is more complex to implement, it has lower storage requirements as simple

queries can identify many data objects.

4.3 SessionStore

In this section we describe SessionStore, our distributed datastore for edge computing which

guarantees session consistency on top of otherwise eventual consistent replicas. The basic idea

behind our approach to ensuring session consistency is simple, yet effective: we group related

datastore operations into sessions, and we track all the rows either read or written to by a

session through tracking the queries it executes. When a client switches from a source to a

destination replica, we ensure that the same (or newer) versions of the rows associated with

their session are present on the destination replica before executing new queries.

In the rest of this section, we first describe a distributed datastore that provides eventual

consistency across a hierarchy of replicas that extend from the cloud to the edge of the network.

We next describe how we add support for session consistency on top of this otherwise eventual-

consistent datastore.

4.3.1 Eventual-Consistent Operation

Our session consistent datastore is based on PathStore, an eventual-consistent object store

introduced in the previous chapter. PathStore is structured as a hierarchy of replicas configured

as a tree with a persistent replica at the root, and an unlimited number of layers of partial

replicas below it. Our implementation uses Cassandra [85] which can run on typical laptops [4]

or even Raspberry Pi’s [6], making it a feasible choice for edge deployments. Each replica runs

a separate independent Cassandra ring, and our code is in charge of replicating data between

otherwise independent rings. We replicate data at row granularity on demand in response to

application queries. Each of the independent Cassandra rings may in turn consist of multiple

Chapter 4. SessionStore 58

servers and data may be internally replicated by Cassandra for fault tolerance or performance.

In the rest of this chapter, the term replica refers to a (potentially multi-server) Cassandra

deployment on a datacenter in the PathStore hierarchy.

The datastore provides an API based on CQL, Cassandra’s SQL dialect, which organizes

data into tables, and provides atomic read and write operations at row granularity. CQL lets

users read and write table rows using the familiar SQL operation SELECT, INSERT, UPDATE, and

DELETE; however, CQL operations are limited to a single table – there is no support for joins.

Figure 4.3 illustrates a simple 3-level deployment of the datastore (a cloud replica, and

two mobile networks each with a replica at its core, and one or two additional replicas at

edge location such as base stations). To provide low-latency, all read and write operations are

performed against the local replica. During a read query on a local replica, if the query has not

been previously executed on the replica, we fetch it recursively from its parent. The query is

then added in a Query Cache that keeps track of recently executed CQL queries. Subsequent

CQL queries that match an existing entry in the cache are directly executed on the local node.

Queries in the query cache are periodically executed in the background by a pull daemon to

synchronize the local node’s content with that of its parent (i.e., fetch new and updated records

from the parent node). To reduce unnecessary processing, we keep track of the coverage of cache

entries and the pull daemon bypasses queries that are otherwise subsumed by other queries that

have a wider scope. For example the query SELECT(*) FROM balloons subsumes the query

SELECT (*) FROM balloons WHERE color=red.

The datastore supports concurrent object reads and writes on all replicas of the hierarchy;

updates are propagated up toward the root of the replica hierarchy in the background by a push

daemon. Modifications are tagged with a version timestamp that records the time the row was

inserted, and the ID of the replica where the modification was originally recorded. We assume

that replicas are tightly synchronized using some accurate mechanism, such as GPS clocks. As

modifications are propagated through the hierarchy (up by the push daemon and down by the

pull daemon), we use the version timestamp to determine ordering – most recent timestamp

wins.

Figure 4.3 illustrates the operation of PathStore for a simple table that keeps track of

balloons of different colors and sizes. Initially (Figure 4.3a), the cloud replica stores 2 balloons,

Chapter 4. SessionStore 59

C

A

BC

A

B

(2)
select * from baloons

where size='small'

C

A

B

(3)
Pull

C

A

B

(4)
select * from baloons
 where size='small'

(a)
(c)

(b)

Red, small

Yellow, large

(2)
Push

Red, small

Yellow, large

Red, small

Red, small

Red, small

Yellow, largeGreen, large

Blue, small

Blue, small

Green, large

Yellow, large

Red, smallBlue, small

Green, large

Red, small

Blue, small

(5)
PullGreen, large

Blue, small

D D

(1)
select * from baloons

where size='small'

(4)
Pull

Red, small

E D

(d)

E DBlue, small

Green, large

(1)
Push

Blue, small

Green, large

(3)
select * from baloons
 where size='small'

Blue, small

(6)
Pull

Red, small

Red, small

EE

Figure 4.3: PathStore operation.

Chapter 4. SessionStore 60

and all other replicas are empty. Figure 4.3b shows the result of running a query for small

balloons (SELECT(*) FROM balloons WHERE size=small) on edge D: the small red balloon is

first copied to the replica C and the query is added to node C’s query cache. From there, it is

then pulled on to edge D. Figure 4.3c shows how the state changes after an application running

on edge E adds two new balloons, one large green and one small blue. The push daemon of edge

E propagates these two new balloons onto B. From there, the push daemon of B replicates the

balloons onto the cloud replica. Figure 4.3d shows how the pull daemon on node C identifies

that there is a new balloon on the cloud replica that matches the query in its query cache, and

pulls the small blue balloon to node C’s replica. Similarly, the pull daemon on edge D also

detects a new balloon on node C that matches the query in its query cache and automatically

pulls the small blue balloon onto node D.

4.3.2 Session-Consistent Operation

We next describe how we expand the above eventual-consistent implementation with support

for session consistency across replicas. We fist describe how users can group database accesses

into sessions. We then describe how we track data related to a session. Finally, we discuss how

we perform session-aware replica reconciliation.

Sessions

We enforce session consistency by grouping related CQL requests into a session. What con-

stitutes a session, however, is left to the application developer to determine. For example, the

developer can decide to make a session representing a user, a device belonging to a user, a

set of commands executed by a function, or a subset of the requests issued by a device. Our

system simply enforces session consistency semantics among those queries that are identified as

belonging to the same session.

We identify each session using a custom token called the Session Token, or stoken. The

stoken consists of a four fields: A unique session id (SID), timestamp, current replica, and

status. The stoken is included in all messages sent by the devices, and can be encrypted

and signed to prevent forging and misrepresentation by a centralized authentication system.

Developers chose between eventual and session consistency by including (or not) the stoken

Chapter 4. SessionStore 61

together with their queries. In our experiments, we use Java Servlets to run our server-side

code and pass the stoken using an HTTP cookie.

State Tracking

To keep track of data related to a session, a CommandCache is added to each replica that stores

all the queries that were executed on behalf of a session s.

For INSERT, UPDATE and DELETE commands, we keep track of modified rows affected by

associated SELECT queries. For example if the session executes the command where a1 is the

primary key (key):

INSERT INTO T1(key, v1) VALUES (a1, b1)

we store the following query in CommandCache[s] :

SELECT * FROM T1 WHERE key = a1

This transformation creates a query that tracks the accessed key a1.

The entries in the CommandCache[s] precisely identify the data accessed by a session. To

recover the rows associated with a session we just have to execute the queries without any

projections (SELECT(*)) and without any aggregations (without any GROUP BY). Our database

implementation is based on Cassandra where queries are limited to a single table (no joins).

To keep the CommandCache small, we don’t keep queries for a given session that are

subsumed by more general ones. We also keep queries only for data that is actually replicated

by each site. A background garbage collection mechanism deletes queries for sessions that have

been moved to other datacenters.

To support session consistency, our current implementation can only run queries for a stoken

at only one replica at a time. We keep track of the location of this replica on the stoken itself

(the current replica field) and every site also keeps track of sessions it is serving.

Session-Aware Reconciliation

We leverage the stoken to detect when a client switches between replicas (e.g. when it moves

between edge replicas ns, nd as shown in Figure 4.4a). When a replica receives a query it checks

the stoken. If the ID of the replica servicing the query does not match the replica ID in the

Chapter 4. SessionStore 62

stoken then this is indicative that the client has switched replicas and the reconciliation process

needs to start.

(a) non-siblings (b) siblings

Figure 4.4: Session transfer s between ns, nd

When the switching process for a session is initiated by a client request received with a

stoken, the status field on the stoken changes to Switching to nd where nd is the ID of the

destination replica. A separate thread then fetches the session data to nd. In the meantime if

the client requests are processed on a another edge ne, ne will wait for the switching process

on nd to finish and then fetch the data from nd. ne can detect that there is a switching process

in progress if it has access to the stoken and it’s status field.

To assure session consistency, when a switching process is triggered on ns, ns’s SessionStore

replica will not process further commands for that session. Furthermore, requests for the session

are delayed on nd until the switch is complete. When the switching process is finished, it is

reflected in the status field. If during the switching process the client moves to a another edge

ne, ne will wait for the switching process on nd to finish and then fetch the data from nd.

During a switching process, nd sends a request to the source replica asking for all rows

modified or accessed by the session s. Having recorded all the queries executed by s, the source

replica re-executes theses queries from its CommandCache[s]. It will then transmit the resulting

rows as well as CommandCache[s] to the destination replica.

Using queries to find accessed rows has the benefit of aggregation. While for writes we map

every row modification to a separate query, for reads which usually dominate the accesses to the

database, a single query can track many rows. Replication is done at full row level irrespective

of columns projected in the select query.

Table 4.1 illustrates a database table ratings that keeps track of personalized movie ratings

Chapter 4. SessionStore 63

Viewer Movie Version Rating

John WALL-E 825968c0-195d-5d569c585662 10
Bob Lion King 7adf7210-1958-59e16851d966 9

Susan Bambi 6833c850-1958-59e16851d966 8
Anna WALL-E 38400000-b23e-000044004725 10

Table 4.1: Sample table ratings on ns

Viewer Movie Version Rating

John WALL-E d33d7fe0-195f-5d569c585662 8
Mark Cars 8b5f2471-19a2-59e168456212 9
Sara Peter Pan 1263ca45-1912-59e36a58d990 8
Anna Lion King 15460690-de22-a80b17057344 9

Table 4.2: Sample table ratings on nd

on ns. Column viewer is the primary key and column version is added by SessionStore to

determine ordering between updates to the same row. Now suppose that the following queries

had been executed by session s on ns:

SELECT * FROM Ratings WHERE viewer = ANNA

INSERT INTO Ratings(viewer, movie,rating) VALUES(Susan, Bambi, 10)

CQL INSERT provides upsert - that is, inserting a primary key that already exists will

update the values associated with that key. SessionStore keeps track of updates (i.e., INSERT,

UPDATE, DELETE) by turning them into SELECT queries so the INSERT command above

is saved in the CommandCache as:

SELECT * FROM Ratings Where viewer = SUSAN

When the session switches from ns to nd, the two queries are executed on ns (for the INSERT

command, the associated SELECT query is executed) and only the third and fourth rows are

copied to the ratings table on nd as these are the only rows that match the recorded queries.

Optimizations

We implemented two optimizations to SessionStore’s session-aware reconciliation that take ad-

vantage of data locality between different replicas and of SessionStore’s hierarchical structure.

Chapter 4. SessionStore 64

∆-list optimization The previous algorithm can be optimized when many clients are ac-

cessing the same rows on different replicas. The ∆-list optimization does not copy data that is

already present at the destination replica. During a session switch, the destination, nd, selects

all primary keys and latest version for data belonging to an application and sends them to ns.

With this data ns can then calculate rows accessed by a session that are either not already on

nd or have a newer version.

Sibling optimization Finally, we provide a special optimized-sibling-transfer algorithm that

works when the source and destination share a common parent node. This optimization takes

advantage of the fact that in our design, all rows read by a node are also first replicated on its

parent. In addition, the push daemon running on nodes, periodically propagates data written

on a child onto the parent node. To take advantage of the fact that data written on ns gets

propagated on to np by the push daemon and considering the fact that usually the link from

nd to np (shown in Figure 4.4b), is closer and has more bandwidth in the underlay network

than the link from nstond, this optimization tries to minimize the data transfer between ns, nd.

Whenever a row is modified or created on ns, the push daemon running on ns will push data

to np. If nd and ns both have np as parents, then rather than fetching all the rows accessed by

s from ns, nd can fetch new and updated records from the parent node np. During a switch,

only the rows that have not yet been pushed from ns to np need to be replicated from ns to nd.

Other rows can be accessed from np. Finally we synchronize any row on the destination that

matches any query on the CommandCache[s] by fetching an update from the parent.

In addition, we have to make sure that existing rows on nd that also exist on ns and have

been accessed by s on ns, are at least as up to date. This is because some rows on nd might

be outdated. We transmit CommandCache[s] from ns to nd and compare each query qs in

CommandCache of ns with the query qd in the QueryCache[s] of nd. If qd ⊆ qs, then qd is

immediately re-executed on the parent and the data matching the queries will be sent to nd. If

qs ⊂ qd then qs is executed on the parent and the rows will fetched by nd.

Chapter 4. SessionStore 65

4.3.3 Failures

If a source replica fails when a destination is replicating state from it, SessionStore has to wait

for the source to be available again and continue the transfer for the rows that it could not

already replicate. The application is informed about any issue through an exception. The

application can then decide to wait and retry, or invalidate the session and restart. Combining

proactive replication to a few replicas with SessionStore’s reactive approach is an avenue of

future work.

4.4 Experimental Evaluation

In this section we evaluate the performance of SessionStore and compare it to other alternatives

for providing session consistency on a network of distributed replicas.

4.4.1 Platform

We conduct our experiments on an emulated hierarchical edge deployment shown in Figure 4.2.

Our topology consists of a cloud datacenter, and two mobile networks each with a datacenters

at its core, and one or two additional datacenters at edge location such as base stations.

Each (emulated) datacenter is implemented in a separate computer with 16GB of RAM and

8 CPU cores that runs either an instance of SessionStore, PathStore, or unmodified Cassandra,

as well as an instance of Apache Tomcat. The network between the datacenters is emulated

by using Linux’s Traffic Control. Each link has a bandwidth of 1Gbps. We assume that the

underlay IP network has the same topology as the replica topology. This means that the point to

point RTT between e1, e3 will be t1+t2+t2+t1. Unless stated otherwise, for the network latency

between different datacenters, we optimistically assume two-way latencies t1 = 2ms, t2 = 20ms.

These relatively low latency values tilt the comparison against SessionStore and in favor of

Cassandra, which is more adversely affected by higher latency. Finally, requests are issued by

clients running on additional computers that connect to one of the edge datacenters (e1, e2,

e3) with negligible latency.

Chapter 4. SessionStore 66

4.4.2 Workloads

Our evaluation uses a combination of locally-developed micro-benchmarks and RUBBoS [15], a

benchmark application that models a discussion board. While RUBBoS was designed as a web

benchmark, we use it because its data access pattern is representative of a typical multi-user

application in three aspects: (i), it involves a large amount of state; (ii), it includes both read

and write queries; and (iii), only a small fraction of the application’s state is relevant to any

given user.

The original RUBBoS benchmark is limited to text comments (1 KB in average), which are

small compared to modern media-sharing standards. To better mimic the expected behaviour

of a modern social media application, such as Snapchat or Instagram, which allow users to

upload short videos and images, we create two new versions of the benchmark by adding an

extra 10 KB or 100 KB of data to each comment to simulate a small and medium multimedia

attachment. This increase the total size of the RUBBoS database from 540 MB to 23.9 GB and

240 GB, respectively. We used a RUBBoS database populated by over 2.34 million comments,

12000 stories, and 500000 users.

We used the Java Servlet-based RUBBoS implementation which was originally designed

to store its state in relational database. We ported this code to use SessionStore instead.

The ported benchmark uses eight tables and consists of roughly 40 different queries including

SELECT, INSERT, UPDATE and DELETE.

4.4.3 Results

We next present results that quantify the overhead of keeping track of session information,

the benefits of session-aware reconciliation, compare the approach to alternatives that enforce

stronger consistency as the cost of higher overhead, and explore the sensitivity of SessionStore

session-aware reconciliation protocols to the number of queries in the command cache.

Session Tracking Overhead

To measure the cost of keeping track of session state, we compared the latency for reading and

writing single 1KB row on e1 with SessionStore. The experiment is repeated for 10000 different

Chapter 4. SessionStore 67

(a) Reads

(b) Writes

Figure 4.5: CDF of latency required to read and write a 1KB row.

Chapter 4. SessionStore 68

rows. Figure 4.5a shows a CDF of the read latencies for SessionStore in three different scenarios

that assume the rows being read are already replicated on e1, c1, and cl, respectively. The read

latency for SessionStore is indistinguishable from PathStore(not shown), which indicates that

the session tracking overhead is negligible. As expected, the figure shows that replication at the

edge reduces read times dramatically. The average time to read a row already available on the

edge was 0.9 ms, compared to an average of 4.65 ms and 26.2 when the row had to be fetched

from the core and cloud, respectively.

Figure 4.5b shows a CDF of the write latency for SessionStore. There is only one configu-

ration as all writes are performed on the local replica (e1). The average write time is 0.73 ms,

and is similarly indistinguishable from write time in PathStore(not shown).

Session Migration

We use the RUBBoS benchmark to evaluate the costs in terms of latency and bandwidth of

enforcing session consistency when a user switches between two replicas as a result of mobility.

We consider four different approaches: Full-replica reconciliation, session-aware reconciliation,

∆−list optimization, sibling optimization.

We use the client emulator in the RUBBoS package to simulate 100 clients connected to

replica on e1 that are browsing and commenting on the RUBBoS bulletin board. The client

emulator sent HTTP requests to Servlets running on the edge node e1 which generated 2203

queries on the SessionStore replica on e1. This resulted in SessionStore fetching data from cl

and replicating it on e1. A total of 1.86 MB for the text-only version of RUBBoS, and 22.7

MB and 220.3 MB for the versions with the small and medium multimedia attachments was

transferred. On average, each RUBBoS query resulted in 13.4 rows on the database, which

exemplifies the benefits of using a query-based approach compared to tagging each row.

Table 4.3 shows the latency and data transferred for different replica reconciliation scenarios

for a client that moves from e1 to either e2 or e3. The experiment is repeated 100 times, once

for every client. We first consider the worst case where sessions move from e1 into a cold e3

replica that does not have any data. Full-replica reconciliation (first column) requires sending

the full 1.86, 22.7, 220.3 MBs of application data which takes 562.1 ms, 2.24 s and 10.7 s for

each of the three configurations of the benchmark. In contrast, session-aware reconciliation

Chapter 4. SessionStore 69

Full Reconciliation
(e1, e3)

Session-Aware
(e1, e3)

∆-List
(e1, e3)

Neighbor (e1, e2)
No users on e2

Neighbor (e1, e2)
100 users on e2

Default
RUBBoS

rows

Data Transfer
1.86 MB
(40 KB)

187.25 KB
(73.3 KB)

141.22 KB
(45 KB)

14.2 KB
(1.2 KB)

198 KB
(38 KB)

Time
562.1 ms
(20 ms)

343.9 ms
(57.8 ms)

288.52 ms
(45 ms)

15.9 ms
(1.4 ms)

62.7 ms
(17.9 ms)

Added 10KB
to each row

Data
Transfer

22.7 MB
(0.10 MB)

2.56 MB
(563.1 KB)

1.22 MB
(220 KB)

16.3 KB
(2.2 KB)

1.16 MB
(70 KB)

Time
2.24 s

(32 ms)
534.0 ms

(40.59 ms)
330.4 ms
(30.1 ms)

19.2 ms
(2.4 ms)

76.86 ms
(12.48 ms)

Added 100KB
to each row

Data Transfer
220.3 MB
(1.1 MB)

24.32 MB
(6.6 MB)

15.9 MB
(4.2 MB)

13.1 KB
(4.3 KB)

10.7 MB
(1.7 MB)

Time
10.7 s

(76 ms)
1.09 s

(169.1 ms)
741.51 ms
(105.1 ms)

20.8 ms
(3.7 ms)

153 ms
(25.5 ms)

Table 4.3: Average reconciliation time and data transfer for a Rubbos client. Standard deviation
in parenthesis.

(second column) only transfers an average of 0.18, 2.56, 24.32 MBs of data, which takes only

343.6, 534, 1090 ms. This major improvement, that is mainly because of the data overlap in

the data accessed by different clients, represents a reduction in data and latency of close to

90%, and is strong evidence of the benefits of leveraging session-aware reconciliation for server

applications where only a fraction of the replicated data is relevant to a given client.

The ∆-list optimization (third column) further improves these numbers. In this experiment,

we assume that a different set of 100 clients send requests to e3 before the transfer. e1 calculates

the rows it needs to send to e3 for each user and on average transfers 141.2KB’s of data. For

the three version of RUBBoS, ∆-list optimization only transfers 0.14, 1.22, 15.9 MB of data in

288, 330, 741 ms, which is an additional 22−35 percent improvement in each scenario compared

to the Session-Aware approach. ∆-list performs best when each row contains a lot of data

and saves on bandwidth and transfer time by not sending those rows that are already on the

destination.

We next evaluate the benefits of the sibling optimization when a single client moves from

e1 to e2. We first consider the case where there are no other users on e2 (fourth column). In

this particular application, many queries are common between sessions so more stale data has

to be fetched from the parent. This results in only information about the queries transferred

between the two nodes which is only 16.5 KB of data and takes less than 20 ms on average for

the transfer (compared with 10.7s with the Full Reconciliation approach). This is extremely

fast compared to other scenarios because no other data needs to be transferred between the

Chapter 4. SessionStore 70

Scenario
Average data

transfer per row

Reads SessionStore Fetch from cl 3245.8B
SessionStore Fetch from c1 1620.7 B
SessionStore Fetch From e1 0
Cassandra Full Replication 0
Cassandra Single Replication 1120.7 B

Writes SessionStore 2346.8 B
Cassandra Full Replication 6372.4 B
Cassandra Single Replication 1213.6 B

Table 4.4: Data transfer

nodes. If the user executes their commands again, the data will be fetched from c1 so the cost

of fetching the data will be on demand and when the user requires it. Finally, we assume a

scenario where another set of 100 users run the same application (and hence run similar queries)

on e2. Common queries between the moving user and users already running on e2 may result

in synchronizing data from that the parent. This on average increases the transfer time to

62, 76, 153 ms and a further 0.19, 1.16, 10.7 MB of data is transferred between e2, c1.

Comparisons with Eager Replication and Strong Consistency

In this section, we explore three alternative ways in which unmodified Cassandra could be de-

ployed on our network of six datacenters that use eager replication or strong consistency to

guarantee session consistency for a client that can move between replicas. In these configura-

tions, all six datacenters form a single Cassandra ring, and each Cassandra server creates point

to point connections to other servers using the underlying IP network.

Full Replication-All, uses a replication factor of six and Cassandra’s All consistency model

which requires all replicas to respond before a write operation returns. We can then use Cas-

sandra’s One consistency model for the reads which will fetch data from the local replica. Full

Replication-Quorum, also uses a replication factor of six and Cassandras Quorum consistency

model. This configuration requires a responses from a quorum of replicas for both reads and

writes. Single Replication-One, uses a replication factor of one, and relies on Cassandra’s stan-

dard hashing algorithm to uniformly distribute rows among replicas in the Cassandra ring.

Reads and writes in this configuration involve a single server. Finally to compare to a strongly

Chapter 4. SessionStore 71

Figure 4.6: Comparing session reconciliation(solid lines) and full application data reconciliation
that consists of 10000 rows (dashed lines). Both axes are in logarithmic scale

consistent database, Full Replication-Strong acts similarly to Full Replication-All with addition

of linearizable consistency through the use of Cassandra’s light weight transactions and the

Paxos protocol [86].

Figure 4.5 shows the CDFs of the time required for writing or reading a single 1KB row

on e1. The experiment is repeated for 10000 different rows. Table 4.4 shows the average data

transferred aggregated across all links to store or read a 1KB row for the various configurations.

All Cassandra alternatives perform poorly, which is hardly surprising given that Cassandra is

not designed to be used in this manner and requires communication between different servers.

On the other hand, our results are optimistic as real-world edge deployments will likely consist

of a much larger number of datacenters.

Full Replication-All handles reads very well, but pays for it with high latency and bandwidth

cost for writes. Full Replication-Strong performs even worse as the Paxos protocol needs addi-

tional rounds of communication between nodes. Full Replication-Quorum is a little better for

writes, but much worse for reads. Finally, Single Replication-One read and write performance

varies widely between rows based on their random allocation across the various datacenters. In

comparison, SessionStore provides low latency for writes and reads, particularly in cases where

the rows are already available on e1 or c1, and uses much less bandwidth.

Chapter 4. SessionStore 72

Size of Command Cache

We evaluate the benefits of session-aware reconciliation as a function of the fraction of data in

the replica that is relevant to a session and the number of queries used to track this data.

Figure 4.6 plots the latency to reconcile 10000 rows when a session moves from ns = e1 to

nd = e3. We consider two reconciliation strategies: Full reconciliation, depicted by the dashed

lines, that does not keep track of data accessed by individual sessions, and as a result all 10000

application rows have to be copied when the client moves between replicas. This becomes espe-

cially expensive when the amount of data stored in each row increases (1KB, 10KB, 100KB).

Session-aware, displayed as solid lines, uses the CommandCache to keep track of rows accessed

by the client that need to be moved between the replicas. We vary the number of commands

executed by the client between 1, 8192 and we assume each command only affects a single row.

When the mobile client accesses only a fraction of the total data used by the service it is more

beneficial to track session data. However, as the number of queries for a session increases, the

overhead also increase because each query in the CommandCache has to be fetched and exe-

cuted. As expected, the benefits of session-aware reconciliation is more distinguishable as the

as the amount of data in each row increases. As shown in the Figure, when the rows are 1KB,

after around 1200 commands executed at ns, it takes less time to transfer the full application

data (orange lines). But when each row contains 100KBs, even by executing 8192 commands

for the session at ns, it is still faster to use session-aware reconciliation (blue lines).

Figure 4.8 compares the transmission and processing delay for the session-aware reconcili-

ation (left bar) and the sibling optimization (right bar) as a function of the number of queries

executed by the session. The figure shows that the for session-aware reconciliation, when we

increase the number of queries that a session has executed on ns, the processing time to gather

the data for that session at ns increases. This is expected behavior as we have to execute all

queries again and the transfer all the retrieved data to nd. In comparison, the sibling optimiza-

tion (hatched bars in Figure 4.8) does not re-execute all the sessions’ commands on ns as this

done on demand after the transfer at nd.

RTT Figure 4.7 illustrates the effect that increasing RTT has on reconciliation latency for a

client that moves from ns = e1 to nd = e3. The red line in this Figure shows the time it takes

Chapter 4. SessionStore 73

Figure 4.7: Session transfer time when the latency between ns, nd increases. The Figure includes
charts for session aware transfer and sibling optimization.

to create required connections between ns, nd and then transfer a single row. This is the worst

case and it emulates a scenario where the session moved to a destination node that did not

already have an established connection with the source. This can happen when a client moves

between those datacenters in the network that typically see very little traffic and transfers

between them. The orange dashed line illustrates a similar process except ns, nd already have

a pre-established connection. As a result, the transfer time is significantly lower. We expect

this to be the common case where transfers happen between a small set of neighboring nodes.

The blue line depicts the amount of time required to transfer 10000 rows between ns, nd using a

single SELECT query with a cached connection as a function of RTT between ns, nd. The green

line (which closely tracks the orange line) illustrates the transfer time when ns = e1, nd = e2

are sibling replicas. In this scenario, nd does not include any other rows for the application and

ns does not have any dirty data (data not pushed to its parent replica). Hence, when s moves

between ns, nd, no data transfer is required between nd, ns and only the queries executed by

s are transferred to nd and the session token is also updated accordingly. If s executes any

query, data is fetched from the parent replica on demand. Using the sibling optimization is a

major improvement to the session aware scenario with no optimizations as it involves minimal

data transfer between siblings. This is particularly useful in scenarios where the link between a

nd, np is cheaper in terms of bandwidth cost compared to a link between ns, nd in the underlying

network.

Chapter 4. SessionStore 74

Figure 4.8: Reconciliation time breakdown (in percentile) for regular session aware (left bars)
and sibling optimization (right bars - hatched). The x-axis represents the number of queries
executed at ns

Figure 4.9: Data transfer between ns, nd when ns sends all primary keys of an application along
with their timestamps to nd. Note that the Y-Axis is in logarithmic scale

Data Overlap Figure 4.9 illustrates the performance of the ∆-list optimization as we vary

the number of common rows between e1 and e3. At the beginning of the processing for session

si, we send all primary keys and their respective timestamps present on nd = e3 to ns = e1. We

call this list ld. We assume the application on nd consists of 20000 rows. ns receives ld and only

sends rows accessed by si that are either not in ld or have a newer timestamp. As we increase

the number of common rows between ns, nd (rows that have the same key and timestamp),

the data bandwidth consumption on the link between ns, nd decreases. Comparing the blue

line when each row is 100KB with the orange line where each row is 1KB, illustrates the

Chapter 4. SessionStore 75

effectiveness of our optimization when the amount of data needed to be sent increases. The

Figure shows that the more common rows there are between ns, nd the less data needs to be

transferred from ns to nd. The red dashed line indicates the overhead of sending ld. Note that

because we are only sending the keys and their timestamps, the overhead remains relatively

small. The average processing time required to generate ld is 370.8 ms.

4.5 Chapter Summary

A key tenet of fog computing is the ability for clients and application functions to be redi-

rected seamlessly across the different edge datacenters hosting the data replicas of a service or

application. In this chapter, we presented SessionStore, a novel storage system that provides

session consistency even when the client switches between replicas in different edge locations.

Our session-aware reconciliation algorithms enforces session consistency at minimal costs, by

tracking the accessed or affected keys by a session and then performing fine-grain reconcilia-

tion on the destination replica with minimum overhead. Our results show that our approach

provides session consistency at a fraction of the latency and bandwidth costs of a system with

eager replication or strong consistency, with minimal transfer costs.

Chapter 5

Feather: Hierarchical Query

Processing on the Edge

76

Chapter 5. Feather 77

Data is increasingly stored in databases distributed across a wide area, separated by com-

paratively high-latency and bandwidth-limited links. In particular, in edge computing and

IoT applications data is generated over a wide geographic area and is stored near the edge or

across a hierarchy of datacenters. Querying such geo-distributed databases traditionally falls

into two general approaches: push incoming queries down to the edge where the data is, or

run them locally in the cloud. For example, stream processing reduces aggregation bandwidth

while pushing data to the cloud. Alternatively, eventually-consistent databases can execute the

query locally, providing a stale answer quickly.

Consider a hypothetical Industrial-Internet-of-Things (IIoT) application deployed over a 3-

tier network [36], as shown in Figure 5.1. Machines on the factory floor generate large volumes

of data, used locally for low-latency process control decisions on the production line. The data

is also forwarded to a local aggregation center, perhaps one per factory or a group of factories,

where more resource-intensive predictive maintenance models can be applied, and where latency

requirements are less stringent. Finally, data is forwarded from the core to a cloud server, where

a management back-end shows a web dashboard with global production status and inventory.

It can also be used for training machine learning on historical data, since more resources are

available in the cloud. Similar unidirectional data flow is common in other settings, such as

urban sensing [139, 57, 109], smart grid [130, 110], IoT and wearable devices [132, 137, 127],

and healthcare [155, 22].

Data management in this geographically-distributed environment can be challenging: net-

work links have limited bandwidth, high latency variation, and can intermittently fail . Luck-

ily, many applications exhibit strong locality: most reads and writes can be done locally, and

changes need not be immediately replicated to the entire network. Therefore, a common scheme

provides fast local reads and writes using a high-performance local data store (e.g., one per

factory floor), then periodically propagate data it upwards using a best-effort or on-demand

strategy [137, 149, 116, 111]. This scheme is eventually-consistent, handles link failures, and is

relatively straightforward to implement and reason about.

This scheme, however, provides no guarantee on the freshness of data received from lower

layers when executing read queries at the parent (e.g., cloud). Consider a read query initiated

on the cloud by the management back-end in our example. Since the most up-to-date data

Chapter 5. Feather 78

factory floor
process
control

predictive
maintenance

regional office

cloud dashboard

query

query

query

Figure 5.1: Example IIoT application components deployed over a 3-tier network. Data is col-
lected from each factory floor and must be sent up the hierarchy. Process control functions run
on the factory floor, since they require fresh local data and low latency. Predictive maintenance
models consume more resources, but use staler data from multiple production lines. Global
dashboard runs in the cloud, and requires balancing data freshness with answer latency.

is distributed over factory floors and local aggregation centers, it is difficult to guarantee the

freshness and completeness of the read query.

One common approach to handling such queries is to execute them on the cloud’s local

replica: since all data will be eventually replicated to the cloud, we can answer the query using

the data that has already been replicated. This provides an answer very quickly, but it might be

very stale; there are no guarantees on data freshness. The other extreme is to fetch up-to-date

data from edge devices to the cloud where the results can be aggregated [31]. This results in

fresh data but incurs high latency, additional load on edge nodes, more bandwidth usage, and

may even miss data if an edge is unreachable. Another alternative is stream processing: queries

are decomposed to graphs of operators, and are distributed across the edge network. Data can

be processed and aggregated as it is streamed from the edge towards the cloud. However this

approach requires deploying, coordinating, and executing operators across various datacenters.

Moreover, distributed stream processing across edge networks is difficult due to unreliable links,

frequent re-configurations, and high latency [145, 51]. Stream processing therefore incurs high

setup and ongoing costs, and is therefore better suited for processing a small set of recurrent or

continuous queries that is known in advance. In contrast we are interested in enabling ad-hoc

queries and data exploration.

We present a hybrid approach for efficient on-demand global queries with guaranteed fresh-

ness by exploiting the underlying hierarchical structure of edge networks.

Chapter 5. Feather 79

Feather is an eventually-consistent tabular data management system for edge-computing

applications that allows users to intelligently control the trade-off between data freshness and

query answer latency. Users can specify precise freshness constraint for each individual query,

or alternatively a deadline for the answer. We then execute this query over a subset of the

network, using local replicas in intermediate network nodes as caches to avoid querying edge

nodes. The result set is guaranteed to include, in the absence of failures, all data that is at least

as fresh as the specified limit; we further return an actual freshness timestamp telling users how

up-to-date the query answer is.

To deal with intermittent link errors, Feather also allows returning of partial answers, and

provides users with an estimate of how much data was missed by the query. Our Feather pro-

totype supports features typically available in high-performance tabular data stores: filtering,

aggregation, grouping, ordering, and limiting of the result set. This allows existing read queries

that currently run on centralized tabular databases to be easily ported.

We evaluate Feather by emulating a geo-distributed service that is deployed on an edge

network, and use traces of geo-tagged data to mimic the request patterns of geo-distributed

clients. In controlled experiments, we evaluate the effect of network, topology, and Feather

parameters on the trade-off between latency, staleness, bandwidth, and work at edge nodes.

We validate our findings by conducting a real-world experiment where we instantiate an edge

network that spans North America, Europe, and Asia to process local Twitter data. Feather is

able to combine the best of cloud and edge execution, answering queries with a fraction of edge

latency, providing fresher answers than cloud, while reducing network bandwidth and load on

edges.

5.1 Background

For clarity, we first define key concepts we will use throughout the chapter, and then review

several examples of edge-computing scenarios where ad-hoc querying mechanisms can be ben-

eficial.

Chapter 5. Feather 80

Applications

Edge computing plays a key role in many upcoming application scenarios. We focus on a

common scenario where data collected from from end-user devices or sensors is initially stored

locally, and must be later forwarded to higher layers for ad-hoc querying and analysis. We give

three such examples.

First, in advanced industrial automation scenarios, resource-limited IoT devices can log huge

amounts of data metrics, but store it locally to save on bandwidth and other costs [37, 36].

Figure 5.1 is an example for such a scenario. An efficient ad-hoc global querying mechanism can

allow remote monitoring and management without incurring significant bandwidth or compu-

tation overhead. For example, if a fault in certain class of equipment is suspected, an operator

could query specific relevant metrics for that equipment for the last minute, hour, or day. Sec-

ond, smart cities use distributed sensors to collect data used for pollution monitoring [139],

transportation and traffic control [109, 38], and healthcare [155, 22]. These sensors produce

large amounts of valuable data and sensory information, not all of it needed to be streamed

in real-time for processing. Instead, data is often uploaded in batches. Some queries can be

ad-hoc, in response to specific events. For example, an operator could query for the number

of pedestrians and bikes in a specific area affected by a car accident. Finally, utility compa-

nies have been using smart meters to aggregate usage information from customers [130, 110].

While these meters periodically send data to a centralized location for coarse grained analysis,

on-demand querying could allow for fine-grained analysis, which in turn could enable more

responsive resources management.

Eventual-Consistency and Tabular Databases

While the above scenarios benefit from and efficient and accurate global querying mechanism,

in practice strong consistency over a large geographical area is difficult to achieve [100, 87].

Data-heavy edge computing applications are therefore built to accommodate relaxed consis-

tency guarantees such as eventual consistency [152]. Updates are not propagated immediately

to all replicas, but are instead propagated periodically or on-demand. Similarly, edge com-

puting applications often rely on distributed tabular or key-value stores, rather than classic

Chapter 5. Feather 81

relational databases. Joining tables and transaction support can be prohibitively expensive in

distributed settings [154], particularly when the volume of data is large. While relational and

transactional databases in geo-distributed settings is an active area of research, many current

high-performance distributed databases are tabular or key-value stores [106].

5.2 Design

In this section we describe the design considerations of Feather: an geo-distributed tabular data

management systems for hierarchical networks that supports on-demand, global queries with

guaranteed, user-specified lower-bound on data freshness.

Feather offers applications two types of queries, local and global. Both types can access data

written locally and by descendent nodes, but differ in their guarantees. Local queries are fast

reads and writes executed directly on the high-performance local data store. This is the type

of queries ordinarily performed by applications, and are also supported by several edge-centric

eventually-consistent distributed databases [111]. Global queries are the main contribution of

Feather. These are on-demand read queries that provide user-specified freshness guarantees.

When executed on a node, the query response will be computed from recent local and descendant

data, up to a user-specified limit. By carefully keeping track of update times for data stored

at intermediate nodes, Feather avoids querying remote edges, allowing for faster responses and

conserving bandwidth.

Beyond the freshness guarantee, Feather provides additional features such as setting query

deadlines, estimating result coverage, and handling link failures gracefully.

5.2.1 Semantics of Global Queries with Guaranteed Freshness

We first explain the querying semantics and the guarantees provided by Feather on-demand

query mechanism.

Feather global queries include a freshness constraint provided by users, which we call laxity

L. This constraint guarantees that data created up to a time t requested by the user will be in

the result set, relaxing the freshness requirements on data.

Formally, if query time Tq is the time the query was sent for execution to the system, Feather

Chapter 5. Feather 82

time

query time
Tq

actual
freshness

Tf

freshness
threshold

answer time
Ta

laxity L
staleness

latency

Figure 5.2: The freshness guarantees for Feather global queries. Actual freshness Tf is guar-
anteed to be between Tq − L and Ta. Any row created before Tf (blue) is guaranteed to be
included in the results, while rows created after Tf (green) may or may not be included.

guarantees that the set of rows used to process the query contains all data updates (insertions,

deletions, and updates) that occurred before the freshness threshold time defined as Tq − L.

While laxity gives a limit on data freshness, query results can in practice be more fresh than

the limit. Thus query answers also include an actual freshness time Tf : all data updates that

happened before Tf are included in the answer. Note that updates that happened after Tf may

also be included in the result, but cannot be guaranteed to be so. The exact value of Tf depends

on which data has already been replicated up the hierarchy. Additionally, even if we set L = 0

and had a fresh copy of all data, the answer could still be slightly out of date: queries take

time to execute and data takes time to transfer between datacenters. Note that it is possible,

though rare in practice, that Tf > Tq. Hence, we define staleness as the difference between

answer time Ta and the actual freshness time: Ta − Tf . In summary, Feather guarantees:

Tq − L ≤ Tf ≤ Ta .

Figure 5.2 illustrates these semantics.

For example, consider a dashboard query from the industrial monitoring application (Fig-

ure 5.1) that retrieves the average power consumed by arm robots in the last 10 minutes (600

seconds). Given the needs of the application, we may decide to allow the data to be out of date

for up to 30 seconds, but no more. We therefore execute the query:

Chapter 5. Feather 83

time

A

B C

D E F

K2, 3

K2, 3
K4, 7

K1, 2

K3, 4
K1, 2
K6, 7
K5, 10

2
(K1)

3
(K2)

4
(K3)

7
(K4,K6)

10
(K5)

Tq = 8

L = 2

Figure 5.3: Edge network with 6 rows K1 to K6, with row update times (numbers next to keys).
A query submitted to A at time Tq = 8 with laxity of L = 2 must retrieve all keys updated
before time Tq − L = 6, and must therefore access nodes B, C and E, but not D and F .

SELECT AVG(power) FROM hardwareStats

WHERE machine = ’arm robot’

AND timestamp >= NOW()-600

LAXITY = 30

This query asks for the average power in all rows created up to 600 seconds before query

time Tq whose machine is arm robot. The laxity constraints guarantees the average includes

all rows created 30 seconds before query arrived at time Tq, and perhaps even more recent

rows. Suppose this query took 2 seconds to process and answer, so Ta = Tq + 2 seconds, and

the result includes all data up to 20 seconds before Tq. Then we have laxity L = 30 seconds,

actual freshness is Tq − 20 and staleness is Ta − Tf = 22 seconds.

By tuning the laxity constraint, system operators can fine tune the trade-off between query

response time and freshness. Higher laxity thresholds can result in faster response latency and

reduced bandwidth. To illustrate this, suppose the state of the system is as shown in Figure 5.3.

A is the cloud, B and C are core nodes, and D, E and F are edge nodes. Power consumption

events (rows K1 to K6) are created on the nodes D to F , and some rows such as K1 have already

been replicated to parent nodes. If a global query to retrieve all rows was executed at time

Tq = 8 starting from node A with a freshness threshold L = 2, then Feather must guarantee

that rows K1,K2,K3 will be in the answer set. As a result, at least nodes B, C, and E will

have to be queried because they all have rows that should be in the answer set, while F ’s last

Chapter 5. Feather 84

propagation time to C is recent enough and therefore we need not query it. Suppose instead

we were to execute the same query at the same time, Tq = 8, but with a more permissive laxity

L = 4.5. In this case, it would be sufficient to query only nodes B and C to obtain K1 and K2,

resulting in a faster response though staler data.

Returning the previous IIoT example: suppose we allowed laxity of L = 120 seconds, and

received an answer from the cloud’s local replica in 15 milliseconds with actual freshness of 90

seconds behind Tq. In such a case, staleness will be Ta − Tf = 90.015 seconds.

Our freshness guarantee is similar to formal treatments such as ∆-atomicity [59] and t-

freshness [125]; we discuss these in Section 2.0.3.

5.2.2 High Level Design

Feather’s assumptions are common in geo-distributed, eventually-consistent databases [116,

111, 125, 65, 124, 42]. As described in Section 5.1, we assume the system is deployed over a

set of geographically distributed datacenters (nodes) that communicate through an underlying

hierarchical network, and have synchronized clocks1. The hierarchical structure of our system

follows the hierarchical topology of the underlying network. The local replica at each node need

only know about its parent and keep track of its children, which allows for both horizontal and

vertical scaling of the system. As with any eventually-consistent database, users can be insert,

update, or read data at any node, and it will be eventually propagated up the hierarchy.

Local Persistent Storage

Each Feather replica contains a high-performance persistent store, which contains both user

data as well as metadata used by Feather2. Local queries from applications are served directly

from this persistent store. Thus, data updates are written to this local storage by either

applications running at the same datacenter or by Feather when replicating.. Similarly, data

is read by user applications as well as by Feather. The local data store is configured to be

1Feather requires that clock drift be lower than the minimum one-way latency of any link in the network, i.e.,
up to a few milliseconds. Such accuracy is well within the capability of GPS clocks and IEEE-1588 [55] which
reach microsecond accuracy for even low-cost hardware [153].

2In practice, such sharing can have security and performance isolation implications in production systems.
While it is not fundamental to our design, for simplicity, we describe a single local data store that runs a single
application.

Chapter 5. Feather 85

strongly consistent, for example using quorum reads and writes. Since the local storage in each

Feather replica is independent of other replicas, it is easy to scale it horizontally within a local

datacenter.

Pushing Upstream

Feather replicas periodically push batches of new or updated (“dirty”) data upstream to their

parents. The update period and batch size are configurable, and control the trade-off between

data freshness and resource usage (such as link bandwidth, CPU, and storage).

Each push update from child to parent also contains the update time, a timestamp that

describes how fresh is the data being pushed. The update time is defined recursively. For

Feather replicas on non-edge node, the update time is set to the minimum of latest update

times of all its children. For an edge node, the update time is set to the current timestamp if

the push includes all dirty data, or the update timestamp of latest row pushed up to the parent

if the update needed to be batched. The update time is used by the querying mechanism

(Section 5.2.3) to guarantee freshness, and is inspired by how stream processing systems such

as Flink [33] and Google Cloud Dataflow [84] use watermarks to manage operators. Even when

there are no dirty rows, replicas send empty updates to their parent with the update time as

defined above. This helps avoid spurious child queries in the querying mechanism.

Consider for example in Figure 5.3. Node C maintains the latest update time for nodes E

and F . If E’s pushed data at time T2, it would push an empty update with update time T2

to C (since K3 has not yet been created). Now suppose F pushes data at time T3: it would

push K1 to C with update time T3. The update time for C is therefore T2, the minimum of the

latest update times from E and F , reflecting the fact that C has not received any data updates

from E after T2.

5.2.3 Answering Global Queries

The hierarchical global querying algorithm provides the query semantics defined in Section 5.2.1.

Unlike local application queries, which are served directly from the persistent store, the global

queries described in Section 5.2.1 are processed hierarchically. Each replica first determines the

set of children needed to execute the query, and then recursively sends it to each child. Once

Chapter 5. Feather 86

ALGORITHM 1: The hierarchical algorithm for global queries with freshness guar-
antee L.
Input: query q, query time Tq, laxity L, current node n
Output: result R, actual freshness time Tf

1 Initialize set of accessed children A← ∅
2 Initialize result R
3 foreach child c ∈ children(n) do
4 if last update time from child Tu(c) < Tq − L then
5 Add c to accessed children: A← A ∪ {c}
6 Send global query q to child c

7 Rloc ← execute q on local store on rows not from A
8 Update result R with local results Rloc

9 Set freshness time Tf to latest update time: Tf ← minc{Tu(c)}
10 foreach response Rc, Tc from child c of node n do
11 Update result R with child result Rc

12 Tf ← min(Tf , Tc)

13 Return results R and actual freshness Tf

all partial results sets are received, the replica merges them and its own local answer, and sends

the result to the parent.

Algorithm 1 describes the hierarchical querying algorithm. At its core, this algorithm is a

recursive, parallel tree traversal. When a global query is received at a node at time Tq with

laxity L, we must first determine whether it can answer the query locally, or does it need to

recursively query any of its children. This decision depends on the latest update time received

from each child c, denoted Tu(c). If this time is larger than the freshness threshold Tq − L, we

know that the data we already have from that node is recent enough that there is no need to

query that child or its own children. If Tu(c) < Tq − L, then the data pushed by the child to

the parent is too stale and we have to visit the child. This decision then plays out recursively

on each child, which returns the result to its parent.

Nodes execute queries in parallel: queries are first dispatched asynchronously to child nodes

(line 6), then the local query is executed (line 7), and finally we wait for child responses and

add incorporate them into the query results (line 11).

Finally, the actual freshness time Tf for the result is defined recursively, similarly to the

latest update time. It is the minimum between the latest update time for the current node

minc{Tu(c)} (line 9) and the freshness Tf returned by each of the sub-queries (line 12). Tf

strongly depends on the push period and the depth of the hierarchical network. We explore

Chapter 5. Feather 87

this in Section 5.4.

5.2.4 Reversed Semantics for Providing Latency Guarantees

Recall the example query from Section 5.2.1. Suppose this time the query is executed by a

web dashboard with latency SLA, so we must return an answer within 150 milliseconds even if

it does not include all the freshest data. We therefore replace the freshness constraint LAXITY

= 30 with the latency constraint DEADLINE = 150ms, which guarantees that the response will

be sent to the client after 150ms. As before, every response comes with actual freshness time

Tf , allowing the dashboard to display the freshness of this response to the user. Coverage

estimation (Section 5.2.5 provides additional information as to how much data was included.

Latency guarantee is achieved by treating nodes that did not respond in time as failed links

(Section 5.2.6), and by a small modification to Alg. 1. When a child receives a global query

from parent, it decreases the deadline to take into account latency between parent and child,

plus some headroom for processing. In addition to executing the query in line 7, we also execute

one query on the local dataset for each child that we contacted in line 6 (i.e., a local query

for every child in A). Finally, for every queried child whose response was not received by the

deadline, we instead use the result of the respective local query to update R in line 11 and Tf

in line 12.

5.2.5 Result Set Coverage

With each query result, Feather provides analytical information on how many nodes participated

in the querying process, how many data rows were included in the query, and an estimate of the

number of updated data rows that were not included in the query due to freshness constraints

or link errors.

The first two are easy to provide: each replica knows how many children it must query

(Algorithm 1), and the total number of rows received from children and its own local queries.

Estimating the number of new or updated data rows requires us to track the rate of row

updates (and insertions) received from each child. We estimate the rate of updates from each

child node ρ(c) as the mean rate from the last K updates. In addition to recording the last

Chapter 5. Feather 88

update time, each replica also records the timestamps of the last K + 1 pushes received from

children, and the number of new rows reported on the child.

Let T0(c) be the time of the last push from the child, T1(c) be the time of the push before

that, and so on until TK(c) Similarly, let Ri(c), i = 0 . . .K, be the number of new rows on the

same child reported during the respective pushes. We estimate the rate of new rows from the

sub-tree at the child as

ρ(c) =

∑K−1
i=0 Ri(c)

T0(c)− TK(c)
.

The estimated number of new or updated in a child c at time t > T0(c) is therefore ρ(c) · (t−

T0(c)). When returning an answer, we includes the sum of estimates for all children.

As we show in Section 5.4, this simple estimation technique is sufficiently accurate for the

datasets we tested on. If more accurate estimation is needed, more sophisticated time series

prediction approaches can be used [56, 52, 93].

5.2.6 Handling Failures

Failures are common in geo-distributed environments. In particular, since networks are large

and intermittent link errors are not uncommon, it is important to have queries running even if

connectivity to some datacenters is lost. In addition to a monitoring system that keeps track

of the health of Feather nodes between datacenters, our queries can timeout. When Feather

produces results for a query, it includes information about what datacenters it was not able to

access.

If a link to a child that must be queried has failed or a sub-query timed-out, then we cannot

provide the freshness guarantee for that particular query. In such cases, Feather provides either

a complete but less fresh answer that includes old results for the missing child, or a partial but

up-to-date answer.

In the first option, the result set is complete not for the freshness guarantee requested by the

user, but rather a less strict one that depends on the last update time for the child connected

by the failing link. In other words, the answer is guaranteed to be complete for the actual

freshness Tf , but this actual freshness is below the freshness threshold: Tf < Tq − L. For

example, though the user requested data that includes no less than 5 minutes ago, the system

Chapter 5. Feather 89

persistent
storage

query
server

push
daemon

receive
daemon

to parent’s
receive daemon

to parent’s
query server

from children’s
push daemons

from children’s’
query servers

local
queries

user
global
queries

Figure 5.4: The main components of an Feather replica. Global queries are sent to the query
server for execution. To provide fast local access, applications run local writes and reads directly
on the persistent store using a user-level library that handles additional columns needed by
Feather.

returns a complete result set for the data as of 15 minutes ago. Alternatively, the query result

can fulfill the original freshness guarantee Tf > Tq − L, with the caveat that it is partial: it

does not contain any new information from the sub-tree that cannot be queried.

In both cases, the failure is communicated to the user: the answer includes the sub-tree that

was excluded, as well as the estimated number of rows that the query is missing (using the row

coverage feature). Given the actual freshness returned and the number of missing rows, users

can then intelligently use or discard the query results, depending on the application.

5.2.7 Adding and Removing Nodes

In Feather, modifications to the topology are local operations and only involve a parent and

child node. Nodes can join the topology by connecting to their parent node and a parent node

can remove a branch at any time.

5.3 Implementation

We implemented a prototype of Feather as a Kotlin standalone application that uses Cassandra

3.11.4 as its persistent storage. In this section we describe the details of our implementation.

Chapter 5. Feather 90

5.3.1 Architecture

Feather is comprised of four components on each node, shown in Figure 5.4: persistent storage

for local data, a query server to receive queries from parents and return results, a push daemon

to push periodic data updates to parents, and a receive daemon to receive child updates.

To eliminate overheads, local reads and writes are executed directly on the local data store.

Writes are done through a small client-side driver that adds the necessary metadata for the

push demon and query servers.

Persistent Storage

Our implementation uses Cassandra[85] as the persistent storage component. Each local replica

runs an independent single-datacenter Cassandra cluster, which allows horizontal scaling within

a datacenter by simply adding nodes to the local cluster. We configure Cassandra to QUORUM

reads and writes. Feather’s design is independent of the choice of the underlying datastore, and

can be adapted to use other systems.

Push Daemon

The push daemon is responsible for replicating new and updated data upstream towards the

cloud. Whenever a row is written or updated on a local database, the row is marked as

dirty, with an update timestamp. The push daemon runs in the background and periodically

pushes dirty data to the receive daemon in the parent [116, 111]. To avoid saturating links or

overwhelming the parent, dirty data that is too large is pushed in batches sorted by timestamp

from older to more recent. After a row has been successfully pushed on to the parent receive

daemon, it will be marked as clean.

Receive Daemon

The receive daemon is a background process running on each replica that is not located on an

edge node. It is responsible for receiving data from the children’s push daemons on the node

and storing data on the persistent storage. It also records the latest update time as received

from each child.

Chapter 5. Feather 91

Query Server

The query server processes global queries, and is responsible to executing Algorithm 1 using

information recorded by the receive daemon.

5.3.2 Writing and Replicating Data

User applications write data directly to the Feather local store at the node they are running at.

To support replication and querying, the following columns are added to the client applications’

schema, and added to user writes by a client-side driver: (i) a timestamp column;(ii) a Boolean

dirty column to identify rows that have not yet been pushed up; and (iii) a prev loc that

determines from which node the row was received from. If the row was produced on the same

node, it will be populated with that node’s ID.

After data is written to a replica on a node, it is replicated (pushed) to ancestor nodes on

the path to the cloud. Feather implements a write log for each row of a table by adding a

timestamp column as the last element of the table’s clustering key. This is a UUID timestamp

that records the time the row was inserted. It is used to resolve write conflicts with a last-

write-wins policy, and to determine update times (Section 5.2.2). As described in Section 5.2.2,

Feather assumes that all replicas have sufficiently synchronized GPS clocks.

Modifications and updates are propagated through the hierarchy by the push daemon on

each node. The push daemon periodically selects all rows that have not been pushed to the

receive server (starting from the older ones) and sends them to the receive daemon on the parent

node through ZeroMQ [73], which writes the data to the parent’s persistent storage. Feather

marks a row dirty when it is inserted into the local Cassandra instance by a local write or the

receive deamon. The row is only marked as clear when the parent acknowledges reception and

storage of the write.

5.3.3 Implementing Global Queries

As shown in Figure 5.5, Feather queries follow the format of CQL queries, with additional

conditions on data freshness or result latency. To make porting applications easier, and since

it is built on top of Cassandra, we support almost all features provided by CQL, specifically all

Chapter 5. Feather 92

SELECT * | expression [, ...]

FROM table

[WHERE condition]

[GROUP BY expression [, ...]]

[LIMIT count]

[LAXITY time-delta | DEADLINE time-delta]

Figure 5.5: The syntax of a query in Feather.

aggregate functions (*, MAX, MIN, AVG, COUNT, SUM) and most clauses (WHERE, GROUP BY,

ORDER, LIMIT, DISTINCT). This is sufficient for many eventually-consistent edge-computing

applications, and for the kind of high-volume queries executed on cloud Cassandra installations.

We do not support the CQL IN clause, as support of this clause is severely limited even in a

centralized Cassandra installation.

Our Feather prototype implements global read queries using Algorithm 1 as described in

Section 5.2.3. To support querying rows received from specific children (line 7 in Algorithm 1),

cloud and core nodes use a materialized view that includes conditions on the freshness and

from which children the query came from (edge nodes do not have this materialized view since

they do not have children to query.) The materialized view allows us to use an efficient IN

predicate, which Cassandra only supports on columns that are part of the primary key. When

a query is received on Feather with a requirement on freshness, the query is executed on the

materialized view rather than the original table. Consider an example query initiated on node

A from Figure 5.3:

SELECT * FROM table WHERE key = value

LAXITY = L

Since F ’s data is already on C, it can be fetched from C’s local store without querying the

child F . Thus, the query executed locally on C will be:

SELECT * FROM table WHERE key = value

AND timestamp > NOW() - L

AND prev loc IN (’F’,’C’)

where NOW() - L implements the freshness requirement.

Finally, To support GROUP BY global queries, we execute them without the GROUP BY

Chapter 5. Feather 93

condition and perform the GROUP BY operation in memory.

5.3.4 Merging Results

Algorithm 1 requires incrementally updating results sets (lines 8 and 11). For queries that

do not aggregate rows, we simply add the rows into the result set. For aggregate queries and

group by queries, we update the result based on the type of queries, for example by adding

values for sum, updating maximum/minimum, matching groups, and so on. Note our current

implementation of aggregate queries assumes rows sets are disjoint: the same row (or key) is

only created and updated by the same edge node. While this is sufficient for the scenarios we

are targeting, we discuss this limitation in Section 5.3.5.

To perform aggregation queries such as MIN, MAX, SUM, COUNT on a node, only a single

value is retrieved as a result from child nodes, for queries involving AVG, two values are required

to perform the aggregation – the average and the number of elements in the set. If there is a

GROUP BY clause, we compute the aggregation functions for each group, and send the results

to the parent node, which merges results from each group with those from other children.

Similarly, for a WHERE clause, the clause is applied locally on the data and then the result is sent

to parent node for aggregation. However for the DISTINCT, ORDER, LIMIT clause, our current

implementation aggregates result at the final layer of aggregation rather than at intermediate

nodes. While there is rich literature on more efficient aggregation [97, 81, 77], this is not the

focus of this work.

5.3.5 Prototype Limitations

Our current Feather implementation has certain limitations.

First, our implementation of aggregates (e.g., COUNT, SUM) currently assumes the set of rows

(or keys) written to by different nodes are disjoint, which is the common case in our targeted

applications. We plan to address this using data summary techniques such as Cuckoo filters [54]

and Count-Min sketches [45] to detect conflicts.

Second, while Feather supports deletion by the application, unlike some other systems [116]

we do not clear (i.e., evict) “live” data from intermediate nodes to reclaim space. For our target

applications, very old data is seldom relevant for the kind of ad-hoc queries we are targeting.

Chapter 5. Feather 94

Such data is often migrated from the cloud replica to a separate batch processing system or

cold-storage system in the cloud for later analysis and then deleted, or simply deleted by edge

nodes. Supporting such eviction is possible by only evicting data after it already been pushed

up, and by modifying the query server to also include local results.

Finally, queries can only read data written locally or propagated from descendants. Again,

this is by far the common case for the kinds of scenarios we target, where nodes make local

decisions based on local or downstream data. For the rare cases where a query needs data

from the whole network, we can offload it to the cloud and execute it there [137, 132]. Another

option is downstream replication. While we currently do not replicate data updates down the

hierarchy, this is not a fundamental limitation. In practice supporting periodic or on-demand

updating from parent replicas to children is a matter of engineering, and has been addressed

in prior works [116]. Alternatively, the global querying mechanism can be extended to perform

an upwards traversal followed by the usual downward traversal.

5.4 Evaluation

Since applications execute local read or write queries directly on the local Cassandra store of

each replica (Section 5.3), we focus instead on evaluating the performance of global queries.

We issue global queries in the cloud, as this allows better exploration of the trade-offs.

We evaluate Feather’s performance on several metrics:

• Latency, defined as the time between arrival of the user query and availability of results

Ta − Tq. This time includes all execution times on local and remote persistent stores, as

well as communication in the edge network.

• Staleness, defined as the difference between query answer time and the actual freshness

time of the results: Ta − Tf .

• Bandwidth, which we define as the total number of rows sent over all links in the edge

network.

• Work at edges, defined as the average number of rows retrieved by edge nodes from the

local Feather replicas to answer a query.

Chapter 5. Feather 95

Table 5.1: Toplogies in Controlled Experiments.

Topology Depth Split Nodes per tier Latency per tier

Wide 3 10 1-10-100 85, 45
Deep 5 3 1-3-9-27-81 70, 30, 20, 10
Medium 4 3 1-3-9-27 80, 85, 15

• Coverage estimation accuracy, our ability to correctly estimate how many data rows were

needed to answer the query (Section 5.2.5).

We evaluate Feather’s global query mechanism in both controlled and real-world experi-

ments. The bulk of our evaluation is carried out using controlled experiments. The evaluation

real-world experiment is detailed in Section 5.4.7.

5.4.1 Experimental Setup for Controlled Experiments

Our controlled experiments are designed to evaluate the benefits and limitations of Feather

under controlled settings and on a publicly available dataset. Each experiment uses one of

three topologies, summarized in Table 5.1: wide uses a network with depth of 3 and split of

10 (one cloud, 10 cores, and 10 edges for each core), deep with depth of 5 and split of 3, and

medium with depth of 4 and split of 3. We run each node on the edge network as a collection

of containers on an Amazon instance. The cloud node is an c5.xlarge AWS instance running

Ubuntu 18.04 and the the rest of the network is emulated on three m5.16xlarge instances.

Each topology has total edge-to-cloud latency of 130ms, divided between the network tiers as

explained in Table 5.1 (the end-to-end latency and tier division is similar to real edge networks,

such as in Section 5.4.7). The network delays and jitter between the containers is emulated

using Linux’s Traffic Control [14, 71], and each link has a bandwidth of 1Gbps.

For end user data, we use the New York Taxi dataset which is a repository of nearly 7

million rides of taxi collected for the month of December 2019 [142], sped up ×30 times to

provide more dense data and to allow experiments to run faster. This data set contains geo-

distributed labelled data (pickup and drop-off zones), as well as information such as fare amount,

number of passengers, and so on. We map each of the 265 geographical zones to the nearest

edge, assigning a roughly equal number of zones per edge. When inserting data, each row is

Chapter 5. Feather 96

0 2500 5000 7500 10000 12500 15000 17500

query

0

10000

ro
w

s

Figure 5.6: Number of rows covered by each query over the length of experiment.

added to the relevant edge by drop-off zone.

We issue 3 queries on the data, all filtered to a window of the last 90 seconds of real time,

corresponding to 45 minutes of sped-up time. The select query returns the fare amount and

timestamp for all rides in the window for rides with distance larger than 8km. The groubpy

query groups all rides in the window by passenger count and returns the count of rides and sum

of fares, for computing average fare per passenger. The min query returns the minimum fare

for all rides in the window. These queries were selected to demonstrate the selection, grouping,

and aggregation mechanisms of Feather, and because they are representative of the kind of

queries that might be run in an application.

In each experiment, we run Feather for about 18000 seconds, which covers about a week of

recorded data. Figure 5.6 shows the number of rows covered by the 90 second window in each

such query, showing a clear diurnal pattern. Every second, we issue a single query with laxity

set between 0 and (D − 1) · f where D is the depth of the topology and f is the period of the

push demon. The query is selected in round robin order from the 3 possible queries described

above. To better measure steady-state behavior, we discard measurements from the first 300

queries in each run. Unless otherwise noted, we set the push daemon interval between two

pushes to f = 30 and jitter is set to 10% of link latency.

5.4.2 Latency/Staleness Trade-off

Feather is designed to provide controlled trade-off of answer latency and answer staleness in

global queries. This trade-off depends on query laxity, network topology, period of the push

demon, and data update distribution among the edges. To evaluate this trade-off, we run

Chapter 5. Feather 97

0

100

200

300

la
te

n
cy

[m
s]

18

36

54

st
a

le
n

es
s

[s
ec

]

edge hybrid
L = 18

hybrid
L = 36

hybrid
L = 54

cloud

system

0

250

500

750
ro

w
s

system
edge

hybrid

cloud

Figure 5.7: Mean query latency, result staleness, and bandwidth (rows sent over the network)
when running global queries on the medium topology using different global querying systems.

controlled experiments where we vary the first three, while fixing the data distribution to the

NYC Taxi data.

Figure 5.7 shows performance of global queries for the medium topology for several latency

levels. Sending all queries to the edge (laxity L = 0) results in fresh answers but high latency

and bandwidth usage. Running them on the cloud replica results in low latency and zero

bandwidth, but stale answers. Feather freshness guarantee (“hybrid”) provides flexible trade-

off of latency, bandwidth, and staleness, while guaranteeing the freshness threshold L. Error

bars show standard deviation. If the latency between nodes is known the optimal (minimum)

staleness value can be chosen, as the query answer time depends on the latency between nodes.

Figure 5.8 shows a more complete picture across different topologies and push daemon

period f . Each point depicts the answer staleness and latency for that query, and the color

indicates the lowest tier involved in answering the query.

The most immediate observation is that query performance is clustered based on the depth

of the lowest tier involved in answering them. This is partly because our controlled topologies

have similar latency for all nodes in a tier, and the key factor is the round-trip time from cloud

to the most distant node (we explore this in Section 5.4.7). We also observe that frequent

pushes (top row) result in much fresher answers, at the cost of increased load on the network.

What is the effect of topology on the trade-off? The wider spread of latency for on-cloud

Chapter 5. Feather 98

0

200

400

la
te

n
cy

[m
s]

deep topology with f = 30 medium topology with f = 30 wide topology with f = 30

0 100 200

staleness [sec]

0

200

400

la
te

n
cy

[m
s]

deep topology with f = 60

0 100 200

staleness [sec]

medium topology with f = 60

0 100 200

staleness [sec]

wide topology with f = 60

mechanism

on-cloud

down-to-1

down-to-2

down-to-3

down-to-4

Figure 5.8: Staleness vs latency of the answer for each query. Colors/markers indicate the
depth of most distant node which was involved in answering the query. For clarity, we only
show a sample of the queries.

0 100 200

laxity [sec]

0

100

200

300

la
te

n
cy

[m
s]

deep topology

0 50 100 150

laxity [sec]

medium topology

0 50 100

laxity [sec]

wide topology

f = 30 f = 60

Figure 5.9: 95th percentile of latency as a function of laxity for different with push period
f = 30 seconds and f = 60 seconds. Shaded areas show standard deviation. Dotted lines show
the time it takes data to be pushed from edge to the cloud (D − 1) ∗ f .

queries in the wide topology indicates increased load at the cloud. Thus, in wide and shallow

topology, setting higher push deamon period f might make more sense if we aim to reduce load

on the cloud. Finally, deeper network do not inherently result in larger overall latency, it is

the round-trip time that counts. Rather, deeper network result in more performance clusters,

allowing a more fine-grained trade-off of staleness vs. latency.

Different systems have different requirements: some aim to minimize average latency, while

others must meet an SLO such as 95th percentile of latency below a threshold. Feather can help

meet these objectives by setting a flexible upper limit of freshness. Figure 5.9 shows how system

operators can tune required laxity and push demon period to meet latency requirements. For

Chapter 5. Feather 99

0 100

laxity [sec]

0

50

100

ro
w

s

min

0 100

laxity [sec]

0

250

500

groupby

0 100

laxity [sec]

0

2000

select

deep medium wide

Figure 5.10: Number of rows sent over the network for each types of queries across a range of
laxity values. Shaded areas show standard deviation.

example, on a medium topology, to have 95th percentile latency below 230ms with push period

f = 60, laxity must be set to L = 111 seconds. If this is too stale for application requirements,

using push period of f = 30 seconds with laxity of L = 50 will achieve the same thing. As

before, deeper topologies offer more fine-grained trade-offs.

A single static laxity setting may not be sufficient as the network conditions and data

distribution change. Since Feather provides freshness guarantee per query, it is amenable to

dynamically varying the freshness threshold as the workload changes. We plan to explore such

dynamic control policies in future work.

5.4.3 Bandwidth and Query Type

We measure the bandwidth used by each query as the number of rows sent over all links in

the edge network to answer the query. This depends not only on the data, but also the type

of query. Let rows(n) be the number of rows sent by the query sever in node n to the parent

to answer a query q. The total number of rows sent over the network is thus
∑

n rows(n). We

define the number of rows returned by each participating node to be 1 for aggregate queries

(min), and the number of groups in the node’s replica for grouping queries (groupby). For

nodes not queried, rows(n) is 0.

Figure 5.10 shows the bandwidth reduction for each query type and topology. Feather

reduces bandwidth across the board with even a modest laxity, since queries are answered by

a smaller set of nodes. Note that for queries that aggregate multiple response from all children

Chapter 5. Feather 100

0 100 200

laxity [sec]

0

5000

10000

a
vg

ro
w

s
p

er
ed

g
e deep topology

0 50 100 150

laxity [sec]

medium topology

0 50 100

laxity [sec]

wide topology

f = 30 f = 60

Figure 5.11: Average number of rows accessed by each local edge replica as a function of laxity
for different with push period f = 30 seconds and f = 60 seconds. Feather shifts work from
edges towards the core and cloud nodes, and once L > f edges are seldom involved in answering
global queries. Shaded areas show standard deviation. Dotted vertical lines show push period
f .

to one response (min and groupby queries), the number of rows is basically a multiple of the

number of links in the network. Since the medium topology has fewer links than wide and deep

topologies, we see that those queries requires less bandwidth.

5.4.4 Work at Edge Nodes

Edge nodes are often resource-constraint, and one of goals of Feather is to offload work from the

edge nodes towards the inner nodes in the network (core and edge nodes). Figure 5.11 shows,

for every laxity level, the average number of rows accessed on the persistent store of local edge

replicas. As laxity increases, we observe a linear drop of rows accessed by global queries on edge

nodes, leaving more resources to deal with local queries. When laxity grows above the push

daemon period (L > f), practically all queries can be answered without involving edge nodes

since all new data would have been pushed to the core. Note this figure does not show accesses

to the persistent store by the push daemon itself. Such an access (once per updated row) would

be present in some form in any eventually-consistent database, and we are interested in the

extra work induced by ad-hoc queries.

Chapter 5. Feather 101

0 50 100

real coverage [%]

0

50

100

es
ti

m
a

te
d

co
ve

ra
g

e
[%

]
0 50 100

node coverage [%]

−50

−25

0

25

50

co
ve

ra
g

e
er

ro
r

[%
]

mean error: 2.8%

Figure 5.12: Rows covered per query across all topologies and laxity ranges. The left Figure
estimated row coverage compared to real row coverage. Dashed line shows equality (Y=X).
The right Figure estimation error (the difference between estimate and real row coverage) as a
function of how many nodes participated in the query. Dashed line shows the mean coverage
estimation error. For clarity, we only show a sample of queries.

5.4.5 Coverage Estimation

As detailed in Section 5.2.5, each global query returns an estimate of the number of rows

involved in answering it, and the percentage of rows used to answer the query. When queries

execute on the edge (L = 0), this number is accurate since we know how many rows were

accessed. When L > 0, we must estimate the number of updated rows in child nodes not

contacted by the algorithm, which we denote as E. Let Q be the true number of rows that

would be accessed for each query, and R the number of rows accessed by nodes involved in the

query. We define row coverage as R
E+R , i.e., the estimated fraction of rows needed to answer

the query, and the real coverage as R
Q . We also define node coverage as the fraction of nodes

that participated in answering the query.

Each point in the left Figure in 5.12 shows the real and estimated coverage for one query

from the deep, medium, and wide experiments with f = 30. Despite the simplicity of the

estimator for E, we see strong agreement between the real and the estimated row coverage.

The right Figure in 5.12 shows the coverage error, defined as the difference between the real

and estimated coverage. The mean coverage error is only 2.7%, confirming the accuracy of the

estimator. Unsurprisingly, when more nodes are involved in answering a query, the estimate is

more accurate. However, even when very few nodes participate in answering a query, coverage

error is below 25%.

Chapter 5. Feather 102

0 50 100 150

laxity [sec]

0

100

200

300

la
te

n
cy

[m
s]

f = 30

0 50 100 150

laxity [sec]

f = 60

1% latency jitter 10% latency jitter

Figure 5.13: Effect of latency jitter on the 95th percentile latency with the medium topology.

5.4.6 Network Jitter

To evaluate the effect of network jitter on latency, we repeat the medium topology experiment

with latency jitter set to 1% and to 10%. Figure 5.13 shows the 95th percentile of latency for

different laxity levels. Since query servers must wait for the slowest child before replying to the

parent, latency jitter slightly increases latency of queries in higher percentiles, but has little

effect on mean latency.

5.4.7 Real World Experiment

california

Ohio Frankfurt Seoul

Toronto New York London Paris Singapore Tokyo

54.49 147.88 139.45

17.31 18.50 10.31 16.57 107.28 33.78

latency in ms

Figure 5.14: Topology of the real-world experiment. Numbers indicate mean measured round
trip time in milliseconds.

In this experiment we deploy Feather over a real edge network, comprised of 10 datacen-

ters from three different cloud operators spread over three continents. Figure 5.14 shows the

topology of the edge network, and the mean round-trip latency between every two datacenters.

We use geo-tagged public tweets as the dataset for this experiment to simulate the pattern

of event arrivals. In this emulation the creation of a tweet is a local event. We scraped a total

Chapter 5. Feather 103

0 20 40

staleness [sec]

0

100

200

la
te

n
cy

[m
s]

Ohio

Singapore

mechanism

on-cloud

down-to-1

down-to-2

Figure 5.15: Staleness vs latency of the answer for each query in the real-world experiment. For
clarity, we only show a sample of the queries. The varied latency from cloud to the different
nodes is reflected in the different latency-staleness clusters in the figure.

of 1 million tweets from New York City, Toronto, London, Paris, Singapore, and Tokyo over a

one week period from December 2019 using Twint [121]. We up experiment time by ×7. As

with the previous experiment, we run over 33000 queries at a rate of 1 query per second, and set

the push daemon period to f = 30 seconds. The query we run is a max query on the number

of likes tweets have received in the past 10 minutes. For this experiment we do not add any

artificial network delay or jitter.

Figure 5.15 shows the latency/staleness trade-off for queries in the twitter experiment.

While the overall shape of the curve remains similar to those seen in Figure 5.8, we observe

many more clusters. Though the depth of the lower tier still determines query performance, we

observe that the key factor is the round-trip time from the cloud to the most distant node that

participated in answering the query. Since the link latency in this experiment is much more

varied, we can observe more clusters and even associate some of them with specific nodes.

Figure 5.16 shows the mean latency for each laxity level, which can be used to determine

laxity and push period to maintain SLOs. It also shows the average work per edge for this

experiment drops linearly with increased laxity, as with previous experiments, reaching zero

when L = f .

Finally, Figure 5.17 confirms that coverage estimation remains very accurate in the real-

world, with a mean error of 0.4%.

Chapter 5. Feather 104

0 20 40 60

laxity [sec]

0

100

200

300

400
la

te
n

cy
[m

s]

0 20 40 60

laxity [sec]

0

500

a
vg

ro
w

s
p

er
ed

g
e

Figure 5.16: Mean latency (left) and average work per edge (right) as a function of laxity.
Shaded areas show standard deviation. Dotted lines on the right show push period f and on
the left the time it takes data to be pushed from edge to the cloud (D − 1) ∗ f .

0 50 100

real coverage [%]

0

50

100

es
ti

m
a

te
d

co
ve

ra
g

e
[%

]

0 50 100

node coverage [%]

−5.0

−2.5

0.0

2.5

5.0

co
ve

ra
g

e
er

ro
r

[%
]

mean error: 0.4%

Figure 5.17: Accuracy of coverage estimation for all queries in the real-world experiment. For
clarifty we only show a sample of the data.

Chapter 5. Feather 105

5.5 Chapter Summary

We proposed Feather: a geo-distributed, eventually-consistent tabular data store for edge com-

puting applications that supports efficient global queries using a flexible freshness guarantee.

While most existing work execute global queries on one replica or push to edges, Feather ex-

ecutes global queries on a subset of the network required to meet the user-provided freshness

guarantees. Our evaluation of Feather on real and controlled settings shows that it is able to a

user-controlled trade-off between latency, staleness, bandwidth, and load on edge nodes.

Chapter 6

Conclusion and Future Work

106

Chapter 6. Conclusion 107

Edge computing promises highly responsive service by moving the data processing and

management resources closer to the end-users and devices. This decentralization of data and

process calls for new architectures for running applications as well as storing and managing

their data. In this thesis, we have identified the intrinsic properties of a suitable deployment,

execution, and storage layer for the edge and presented CloudPath, PathStore, SessionStore,

and Feather. These systems take the first steps to make the edge computing vision a reality by

providing a new model for structuring and deploying applications and managing their data. In

particular, our contributions can be summarized as follows:

• Presenting Path Computing and deploying applications on a path from the edge towards

the cloud based on the principle of separating code and data. We implement this architec-

ture with CloudPath that consists of an execution environment that enables the dynamic

installation of light-weight stateless event handlers.

• Managing application data in a scalable manner by creating an eventually consistent

database that supports storage on a progression of datacenters deployed over the geo-

graphic span of a network. PathStore enables transparent data access across the hierarchy

of cloud and edge datacenters.

• Providing data consistency for mobile users and applications by presenting a data storage

layer that ensures session consistency on a top of otherwise eventually consistent repli-

cas. SessionStore groups related data access into a session and using a session-aware

reconciliation algorithm to reconcile only the data that is relevant to the session.

• Enabling distributed querying across a hierarchical edge computing platform by designing

and implementing a distributed query engine that exploits the hierarchical structure of

eventually-consistent geo-distributed databases to trade temporal accuracy (freshness) for

improved latency and reduced bandwidth. Rather than pushing queries to the edge or

executing them in the cloud, Feather pushes queries selectively towards the edge while

guaranteeing a user-supplied per-query freshness limit.

Below we summarize some potential directions for future research:

Chapter 6. Conclusion 108

CloudPath addresses the problem of application provisioning, deployment, and code execu-

tion on the edge. Caching application code on nearby datacenters will improve CloudPath’s

performance in terms of deployment time. The deployment time can also be reduced by using

pools of warm containers and rather than spinning a new container for each application when

requests arrive. Additionally, scheduling algorithms could decide where to run functions based

on the current load of the system. Moreover, while our current implementation relies on the

application developer to provide the system with hints on where to deploy functions, the system

should ultimately make this decision automatically. Embedding application functions on the

physical plane is an open research question. Finally, while we have implemented a series of

applications in section 3.5, and in other studies [50] for CloudPath, it would be interesting to

see how current applications can be modified to fit the CloudPath architecture.

In PathStore reads and writes are executed locally, and data transfer between datacen-

ters is managed automatically, but better caching polices could decide on when to evict data

based on load and usage. Improved caching policies can significantly improve the performance

of PathStore. Moreover, The current PathStore implementation is based on Cassandra; for

future work, it would be interesting to apply the concepts used in PathStore on other under-

lying databases in addition to Cassandra. Another essential improvement for PathStore would

be automatically choosing the push period based on network bandwidth and other resources

available on datacenters. Currently, this value is static, but future work can have a dynamic

approach in setting this parameter.

SessionStore addresses the problem of data consistency and provides session consistency

on top of an eventually consistent database. Ensuring read your own writes and monotonic

reads/writes is particularly beneficial for mobile applications where devices move between base

stations. SessionStore can be extended to provide a range of consistencies from eventual to

session to strong consistency. This is a challenging problem, especially given the scale and geo-

distribution of edge datacenters. Further, a combination of pro-active replication techniques

in conjunction with SessionStore’s session aware transfer algorithms to further mitigate the

latency of reconciliation can be explored.

Feather addresses the problem of data processing and querying in a geo-distributed database

and supports efficient global queries using flexible freshness guarantees. For future work, Feather

Chapter 6. Conclusion 109

can be improved in several ways. First, to address limitations, Feather should allow non-disjoint

keys to support more applications. Second, Feather can be improved by placing dynamic control

policies for the latency/staleness trade-off. By tuning the laxity parameter dynamically, we can

better adapt to changes in data distribution and query patterns. Finally, parameter adjustment,

such as finding the minimum staleness based on the network latency between nodes, can improve

the guarantees that are given to users.

Edge computing incorporates different technologies from various research areas such as dis-

tributed systems, wireless networks and virtualization hence there are wide-ranging challenges

for research and innovation in both academia and industry. In addition to potential extensions

mentioned above, we believe our systems can improve in the following ways:

• Improved replication strategies: As storage and process get cheaper, it may be benefi-

cial to proactively replicate and cache data and processes on regional datacenters rather

than centralized cloud datacenters with the pattern of data consumption determining the

caching policy.

• Privacy: One of the main benefits edge computing provides is that storage and processing

can be performed locally. For example, data gathered by sensors inside a house can

be processed locally, and only some analytical data is sent to the cloud [131]. Many

applications, including healthcare applications, can benefit from a processing and storage

layer that supports privacy and protects end-user data.

• Resource allocation: Datacenters on the edge have limited processing, storage, and band-

width resources, and they can be overwhelmed with requests. In a distributed environ-

ment, global resource allocation strategies that properly manage the processing, storage,

and network resources are required to ensure performance and reliability guarantees.

• Service level agreements (SLA’s) have not yet been defined for edge computing, a potential

direction for research is to identify new and compatible SLA’s for databases and process

on the edge that guarantee throughput and data availability and performance.

• Billing: With multiple service providers involved in the underlying network, an interesting

question is how to define billing mechanisms for edge computing? Different parameters

Chapter 6. Conclusion 110

can be considered, for example: how much resources are used, what resources are used,

what service guarantees are offered, etc.

• Fail-over capabilities: Networks on the edge of the network are more prone to error, and

maintaining the hardware on thousands of edge datacenters can be challenging. However,

the data storage layer should continue to provide uninterrupted data delivery services

when failures happen. An exciting avenue for research is how to balance between providing

reliability and performance at the same time.

Edge computing is evolving from merely providing some computational resources to nearby

devices to an essential infrastructure with services that significantly amplify the capabilities

of applications and devices. While many studies have offered ideas with limited real-world

implementations, this thesis offered solutions to bridge this gap by implementing systems that

fit the current real-world networks and solve some of the existing edge computing challenges.

When this gap is fully bridged, edge computing can emerge as a disruptive technology benefits

organizations, businesses, and users for decades to come.

Bibliography

[1] Cisco global cloud index: Forecast and methodology, 2016–2021 white pa-

per. https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-

index-gci/white-paper-c11-738085.html.

[2] Cockroachdb: Ultra-resilient sql for global business. https://www.cockroachlabs.com.

[3] AT&T database of faces. http://www.cl.cam.ac.uk/research/dtg/attarchiv-

e/facedatabase.html, 2008.

[4] Cassandra hardware choices, December 2017.

[5] Huawei service anchor. http://carrier.huawei.com/en/products/wireless-network/small-

cell/service-anchor, 2017.

[6] Installing datastax enterprise on raspberry pi 2 with ubuntu core os, December 2017.

[7] Configure sticky sessions for your classic load balancer.

https://docs.aws.amazon.com/elasticloadbalancing/

latest/classic/elb-sticky-sessions.htm, 2018.

[8] Consul by hashicorp. https://www.consul.io/, 2020.

[9] Nomad by hashicorp. https://www.nomadproject.io/, 2020.

[10] The Eclipse foundation. http://www.eclipse.org/jetty/, April 2020.

[11] Daniel J Abadi. Consistency tradeoffs in modern distributed database system design:

Cap is only part of the story. Computer, (2):37–42, 2012.

111

Bibliography 112

[12] William Adjie-Winoto, Elliot Schwartz, Hari Balakrishnan, and Jeremy Lilley. The design

and implementation of an intentional naming system. ACM SIGOPS Operating Systems

Review, 33(5):186–201, 1999.

[13] A. Ailijiang, A. Charapko, M. Demirbas, B. O. Turkkan, and T. Kosar. Efficient dis-

tributed coordination at wan-scale. In 2017 IEEE 37th International Conference on Dis-

tributed Computing Systems (ICDCS), pages 1575–1585, June 2017.

[14] Werner Almesberger. Linux traffic control-implementation overview. Technical report,

1998.

[15] Cristiana Amza, Emmanuel Cecchet, Anupam Chanda, Alan L Cox, Sameh Elnikety,

Romer Gil, Julie Marguerite, Karthick Rajamani, and Willy Zwaenepoel. Specification

and implementation of dynamic web site benchmarks. In 5th Workshop on Workload

Characterization, number LABOS-CONF-2005-016, 2002.

[16] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph, Randy H Katz,

Andrew Konwinski, Gunho Lee, David A Patterson, Ariel Rabkin, Ion Stoica, et al.

Above the clouds: A berkeley view of cloud computing. Technical report, Technical

Report UCB/EECS-2009-28, EECS Department, University of California, Berkeley, 2009.

[17] Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K Bradley,

Xiangrui Meng, Tomer Kaftan, Michael J Franklin, Ali Ghodsi, et al. Spark sql: Rela-

tional data processing in spark. In Proceedings of the 2015 ACM SIGMOD international

conference on management of data, pages 1383–1394. ACM, 2015.

[18] Victor Bahl. Emergence of micro datacenter (cloudlets/edges) for mobile computing.

Microsoft Devices & Networking Summit 2015, 2015.

[19] Victor Bahl. Cloud 2020: The emergence of micro datacenters for mobile computing. On-

line: https://www. microsoft. com/en-us/research/wp-content/uploads/2016/11/Micro-

Data-Centers-mDCs-for-Mobile-Computing-1. pdf. Accessed, 12, 2017.

Bibliography 113

[20] Peter Bailis, Ali Ghodsi, Joseph M Hellerstein, and Ion Stoica. Bolt-on causal consistency.

In Proceedings of the 2013 ACM SIGMOD International Conference on Management of

Data, pages 761–772. ACM, 2013.

[21] Ioana Baldini, Paul Castro, Perry Cheng, Stephen Fink, Vatche Ishakian, Nick Mitchell,

Vinod Muthusamy, Rodric Rabbah, and Philippe Suter. Cloud-native, event-based pro-

gramming for mobile applications. In Proceedings of the International Workshop on Mo-

bile Software Engineering and Systems, pages 287–288. ACM, 2016.

[22] Rabindra K Barik, Harishchandra Dubey, and Kunal Mankodiya. Soa-fog: secure service-

oriented edge computing architecture for smart health big data analytics. In 2017 IEEE

Global Conference on Signal and Information Processing (GlobalSIP), pages 477–481.

IEEE, 2017.

[23] Michael Till Beck, Martin Werner, Sebastian Feld, and S Schimper. Mobile edge com-

puting: A taxonomy. Citeseer.

[24] David Bermbach, Jörn Kuhlenkamp, Bugra Derre, Markus Klems, and Stefan Tai. A

middleware guaranteeing client-centric consistency on top of eventually consistent data-

stores. In 2013 IEEE International Conference on Cloud Engineering (IC2E), pages

114–123. IEEE, 2013.

[25] Ketan Bhardwaj, Ming-Wei Shih, Pragya Agarwal, Ada Gavrilovska, Taesoo Kim, and

Karsten Schwan. Fast, scalable and secure onloading of edge functions using airbox. In

Proceedings of the 1st IEEE/ACM Symposium on Edge Computing, Washington, DC,

October 2016.

[26] Giuseppe Bianchi, Erez Biton, Nicola Blefari-Melazzi, Isabel Borges, Luca Chiaraviglio,

Pedro de la Cruz Ramos, Philip Eardley, Francisco Fontes, Michael J McGrath, Lionel

Natarianni, et al. Superfluidity: a flexible functional architecture for 5g networks. Trans-

actions on Emerging Telecommunications Technologies, 27(9):1178–1186, 2016.

Bibliography 114

[27] Luiz F Bittencourt, Javier Diaz-Montes, Rajkumar Buyya, Omer F Rana, and Manish

Parashar. Mobility-aware application scheduling in fog computing. IEEE Cloud Comput-

ing, 4(2):26–35, 2017.

[28] MKABV Bittorf, Taras Bobrovytsky, CCACJ Erickson, Martin Grund Daniel Hecht,

MJIJL Kuff, Dileep Kumar Alex Leblang, NLIPH Robinson, David Rorke Silvius Rus,

JRDTS Wanderman, and Milne Michael Yoder. Impala: A modern, open-source sql

engine for hadoop. In Proceedings of the 7th biennial conference on innovative data

systems research, 2015.

[29] Flavio Bonomi, Rodolfo Milito, Preethi Natarajan, and Jiang Zhu. Fog computing: A

platform for internet of things and analytics. In Big Data and Internet of Things: A

Roadmap for Smart Environments, pages 169–186. Springer, 2014.

[30] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog computing and

its role in the internet of things. In Proceedings of the first edition of the MCC workshop

on Mobile cloud computing, pages 13–16. ACM, 2012.

[31] Maxim Buevich, Anne Wright, Randy Sargent, and Anthony Rowe. Respawn: A dis-

tributed multi-resolution time-series datastore. In 2013 IEEE 34th Real-Time Systems

Symposium, pages 288–297. IEEE, 2013.

[32] Kenneth L Calvert, Samrat Bhattacharjee, Ellen Zegura, and James Sterbenz. Directions

in active networks. IEEE Communications Magazine, 36(10):72–78, 1998.

[33] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi, and

Kostas Tzoumas. Apache flink: Stream and batch processing in a single engine. Bulletin

of the IEEE Computer Society Technical Committee on Data Engineering, 36(4), 2015.

[34] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike

Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A distributed

storage system for structured data. ACM Trans. Comput. Syst., 26(2):4:1–4:26, June 2008.

[35] W. Chang, J. Su, L. Chen, M. Chen, C. Hsu, C. Yang, C. Sie, and C. Chuang. An ai edge

computing based w earable assistive device for visually impaired people zebra-crossing

Bibliography 115

walking. In 2020 IEEE International Conference on Consumer Electronics (ICCE), pages

1–2, 2020.

[36] Djabir Abdeldjalil Chekired, Lyes Khoukhi, and Hussein T Mouftah. Industrial iot data

scheduling based on hierarchical fog computing: a key for enabling smart factory. IEEE

Transactions on Industrial Informatics, 14(10):4590–4602, 2018.

[37] Baotong Chen, Jiafu Wan, Antonio Celesti, Di Li, Haider Abbas, and Qin Zhang. Edge

computing in IoT-based manufacturing. IEEE Communications Magazine, 56:103–109,

09 2018.

[38] Min Chen, Yixue Hao, Kai Lin, Zhiyong Yuan, and Long Hu. Label-less learning for

traffic control in an edge network. IEEE Network, 32(6):8–14, 2018.

[39] Navraj Chohan, Chris Bunch, Sydney Pang, Chandra Krintz, Nagy Mostafa, Sunil Soman,

and Rich Wolski. Appscale: Scalable and open appengine application development and

deployment. In International Conference on Cloud Computing, pages 57–70. Springer,

2009.

[40] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and Ashwin Patti.

Clonecloud: elastic execution between mobile device and cloud. In Proceedings of the

sixth conference on Computer systems, pages 301–314. ACM, 2011.

[41] Cisco. Cisco annual internet report (2018–2023) white paper.

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-

networking-index-vni/white-paper-c11-741490.html, 2020.

[42] Bastien Confais, Adrien Lebre, and Benôıt Parrein. Performance analysis of object store

systems in a fog and edge computing infrastructure. In Transactions on Large-Scale

Data-and Knowledge-Centered Systems XXXIII, pages 40–79. Springer, 2017.

[43] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein, Philip

Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana Yerneni. Pnuts:

Yahoo!’s hosted data serving platform. Proc. VLDB Endow., 1(2):1277–1288, August

2008.

Bibliography 116

[44] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost,

Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter

Hochschild, et al. Spanner: Google’s globally distributed database. ACM Transactions

on Computer Systems (TOCS), 31(3):8, 2013.

[45] Graham Cormode and S. Muthukrishnan. An improved data stream summary: the count-

min sketch and its applications. Journal of Algorithms, 55(1):58–75, 2005.

[46] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan Saroiu,

Ranveer Chandra, and Paramvir Bahl. Maui: making smartphones last longer with code

offload. In Proceedings of the 8th international conference on Mobile systems, applications,

and services, pages 49–62. ACM, 2010.

[47] Sudipto Das, Shoji Nishimura, Divyakant Agrawal, and Amr El Abbadi. Albatross:

Lightweight elasticity in shared storage databases for the cloud using live data migration.

Proc. VLDB Endow., 4(8):494–505, May 2011.

[48] Marcos Dias de Assunçào, Alexandre da Silva Veith, and Rajkumar Buyya. Distributed

data stream processing and edge computing: A survey on resource elasticity and future

directions. Journal of Network and Computer Applications, 103:1 – 17, 2018.

[49] Eyal de Lara, Carolina S. Gomes, Steve Langridge, S. Hossein Mortazavi, and Meysam

Roodi. Poster: Hierarchical serverless computing for the mobile edge. In Proceedings of

the 1st IEEE/ACM Symposium on Edge Computing, Washington, DC, October 2016.

[50] Joel Dick, Caleb Phillips, Seyed Hosein Mortazavi, and Eyal de Lara. High speed object

tracking using edge computing. In Proceedings of the Second ACM/IEEE Symposium on

Edge Computing, pages 1–2, 2017.

[51] Shlomi Dolev, Patricia Florissi, Ehud Gudes, Shantanu Sharma, and Ido Singer. A survey

on geographically distributed big-data processing using MapReduce. IEEE Transactions

on Big Data, 5:60–80, 07 2017.

Bibliography 117

[52] Boubacar Doucoure, Kodjo Agbossou, and Alben Cardenas. Time series prediction using

artificial wavelet neural network and multi-resolution analysis: Application to wind speed

data. Renewable Energy, 92:202–211, 2016.

[53] Aaron J. Elmore, Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. Zephyr: Live

migration in shared nothing databases for elastic cloud platforms. In Proceedings of the

2011 ACM SIGMOD International Conference on Management of Data, SIGMOD ’11,

pages 301–312, New York, NY, USA, 2011. ACM.

[54] Bin Fan, Dave G. Andersen, Michael Kaminsky, and Michael D. Mitzenmacher. Cuckoo

filter: Practically better than Bloom. In Proceedings of the 10th ACM International on

Conference on Emerging Networking Experiments and Technologies, CoNEXT ’14, pages

75–88, 2014.

[55] Fang Gao, Zhangqin Huang, Shulong Wang, and Zheng Wang. A hybrid clock synchro-

nization architecture for many-core cluster system based on GPS and IEEE 1588. In 2016

2nd IEEE International Conference on Computer and Communications (ICCC), pages

2645–2649, 2016.

[56] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Continual

prediction with lstm. 1999.

[57] Nam Ky Giang, Victor CM Leung, and Rodger Lea. On developing smart transportation

applications in fog computing paradigm. In Proceedings of the 6th ACM Symposium

on Development and Analysis of Intelligent Vehicular Networks and Applications, pages

91–98, 2016.

[58] Will Glozer. wrk - a modern http benchmarking tool. https://github.com/wg/wrk, 2017.

[59] Wojciech Golab, Xiaozhou Li, and Mehul A. Shah. Analyzing consistency properties for

fun and profit. In Proceedings of the 30th Annual ACM SIGACT-SIGOPS Symposium

on Principles of Distributed Computing, PODC ’11, page 197–206, 2011.

[60] Mark S Gordon, D Anoushe Jamshidi, Scott Mahlke, Z Morley Mao, and Xu Chen.

Comet: code offload by migrating execution transparently. In Presented as part of the

Bibliography 118

10th USENIX Symposium on Operating Systems Design and Implementation (OSDI 12),

pages 93–106, 2012.

[61] Abhimanyu Gosain, Mark Berman, Marshall Brinn, Thomas Mitchell, Chuan Li, Yuehua

Wang, Hai Jin, Jing Hua, and Hongwei Zhang. Enabling campus edge computing using

geni racks and mobile resources. In Proceedings of the 1st IEEE/ACM Symposium on

Edge Computing, Washington, DC, October 2016.

[62] Ramesh Govindan, Joseph Hellerstein, Wei Hong, Samuel Madden, Michael Franklin, and

Scott Shenker. The sensor network as a database. Technical report, Citeseer, 2002.

[63] Ashish Gupta, Fan Yang, Jason Govig, Adam Kirsch, Kelvin Chan, Kevin Lai, Shuo Wu,

Sandeep Dhoot, Abhilash Rajesh Kumar, Ankur Agiwal, et al. Mesa: a geo-replicated

online data warehouse for google’s advertising system. Communications of the ACM,

59(7):117–125, 2016.

[64] Harshit Gupta, Zhuangdi Xu, and Umakishore Ramachandran. Datafog: Towards a

holistic data management platform for the iot age at the network edge. In {USENIX}

Workshop on Hot Topics in Edge Computing (HotEdge 18), 2018.

[65] Harshit Gupta, Zhuangdi Xu, and Umakishore Ramachandran. Datafog: Towards a

holistic data management platform for the iot age at the network edge. In HotEdge, 2018.

[66] Kiryong Ha, Zhuo Chen, Wenlu Hu, Wolfgang Richter, Padmanabhan Pillai, and Ma-

hadev Satyanarayanan. Towards wearable cognitive assistance. In Proceedings of the

12th annual international conference on Mobile systems, applications, and services, pages

68–81. ACM, 2014.

[67] Kiryong Ha, Padmanabhan Pillai, Wolfgang Richter, Yoshihisa Abe, and Mahadev Satya-

narayanan. Just-in-time provisioning for cyber foraging. In Proceeding of the 11th annual

international conference on Mobile systems, applications, and services, pages 153–166.

ACM, 2013.

[68] Kiryong Ha and Mahadev Satyanarayanan. Openstack++ for cloudlet deployment. 2015.

Bibliography 119

[69] Benjamin Heintz, Abhishek Chandra, and Ramesh K Sitaraman. Trading timeliness and

accuracy in geo-distributed streaming analytics. In Proceedings of the Seventh ACM

Symposium on Cloud Computing, pages 361–373. ACM, 2016.

[70] Benjamin Heintz, Abhishek Chandra, and Ramesh K Sitaraman. Optimizing timeliness

and cost in geo-distributed streaming analytics. IEEE Transactions on Cloud Computing,

2017.

[71] Stephen Hemminger et al. Network emulation with netem. In Linux conf au, pages 18–23,

2005.

[72] Scott Hendrickson, Stephen Sturdevant, Tyler Harter, Venkateshwaran Venkataramani,

Andrea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. Serverless computation with

openlambda. In 8th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud

16), 2016.

[73] Pieter Hintjens. ZeroMQ: messaging for many applications. ” O’Reilly Media, Inc.”,

2013.

[74] Xueshi Hou, Yong Li, Min Chen, Di Wu, Depeng Jin, and Sheng Chen. Vehicular fog com-

puting: A viewpoint of vehicles as the infrastructures. IEEE Transactions on Vehicular

Technology, 65(6):3860–3873, 2016.

[75] Wenlu Hu, Ying Gao, Kiryong Ha, Junjue Wang, Brandon Amos, Zhuo Chen, Padman-

abhan Pillai, and Mahadev Satyanarayanan. Quantifying the impact of edge computing

on mobile applications. In Proceedings of the 7th ACM SIGOPS Asia-Pacific Workshop

on Systems, page 5. ACM, 2016.

[76] Chien-Chun Hung, Ganesh Ananthanarayanan, Peter Bodik, Leana Golubchik, Minlan

Yu, Paramvir Bahl, and Matthai Philipose. Videoedge: Processing camera streams using

hierarchical clusters. In 2018 IEEE/ACM Symposium on Edge Computing (SEC), pages

115–131. IEEE, 2018.

Bibliography 120

[77] Ihab F. Ilyas, George Beskales, and Mohamed A. Soliman. A survey of top-k query

processing techniques in relational database systems. ACM Comput. Surv., 40(4), October

2008.

[78] Chalermek Intanagonwiwat, Ramesh Govindan, and Deborah Estrin. Directed diffusion:

A scalable and robust communication paradigm for sensor networks. In Proceedings of the

6th annual international conference on Mobile computing and networking, pages 56–67.

ACM, 2000.

[79] Itseez. Open source computer vision library. https://github.com/itseez/opencv, 2015.

[80] Minsung Jang, Hyunjong Lee, Karsten Schwan, and Ketan Bhardwaj. Soul: An edge-

cloud system for mobile applications in a sensor-rich world. In 2016 IEEE/ACM Sympo-

sium on Edge Computing (SEC), pages 155–167. IEEE, 2016.

[81] Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An optimal algorithm for the

distinct elements problem. In Proceedings of the Twenty-Ninth ACM SIGMOD-SIGACT-

SIGART Symposium on Principles of Database Systems, PODS ’10, page 41–52, 2010.

[82] Leonard Kawell Jr, Steven Beckhardt, Timothy Halvorsen, Raymond Ozzie, and Irene

Greif. Replicated document management in a group communication system. In Pro-

ceedings of the 1988 ACM conference on Computer-supported cooperative work, page 395.

ACM, 1988.

[83] Jay Kreps, Neha Narkhede, Jun Rao, et al. Kafka: A distributed messaging system for

log processing. In Proceedings of the NetDB, pages 1–7, 2011.

[84] SPT Krishnan and Jose L Ugia Gonzalez. Google cloud dataflow. In Building Your Next

Big Thing with Google Cloud Platform, pages 255–275. Springer, 2015.

[85] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized structured storage

system. ACM SIGOPS Operating Systems Review, 44(2):35–40, 2010.

[86] Leslie Lamport. The part-time parliament. ACM Transactions on Computer Systems

(TOCS), 16(2):133–169, 1998.

Bibliography 121

[87] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. In

Concurrency: the Works of Leslie Lamport, pages 179–196. 2019.

[88] Kfir Lev-Ari, Edward Bortnikov, Idit Keidar, and Alexander Shraer. Modular composition

of coordination services. In USENIX Annual Technical Conference (ATC), 2016.

[89] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguiça, and Rodrigo

Rodrigues. Making geo-replicated systems fast as possible, consistent when necessary. In

Presented as part of the 10th {USENIX} Symposium on Operating Systems Design and

Implementation ({OSDI} 12), pages 265–278, 2012.

[90] Xin Li, Young Jin Kim, Ramesh Govindan, and Wei Hong. Multi-dimensional range

queries in sensor networks. In Proceedings of the 1st international conference on Embedded

networked sensor systems, pages 63–75. ACM, 2003.

[91] Yujin Li and Wenye Wang. Can mobile cloudlets support mobile applications? In Infocom,

2014 proceedings ieee, pages 1060–1068. IEEE, 2014.

[92] Yi Lin, Bettina Kemme, Marta Patino-Martinez, and Ricardo Jimenez-Peris. Enhancing

edge computing with database replication. In 2007 26th IEEE International Symposium

on Reliable Distributed Systems (SRDS 2007), pages 45–54. IEEE, 2007.

[93] Chenghao Liu, Steven CH Hoi, Peilin Zhao, and Jianling Sun. Online arima algorithms

for time series prediction. In Thirtieth AAAI conference on artificial intelligence, 2016.

[94] Peng Liu, Bozhao Qi, and Suman Banerjee. Edgeeye: An edge service framework for

real-time intelligent video analytics. In Proceedings of the 1st International Workshop on

Edge Systems, Analytics and Networking, pages 1–6, 2018.

[95] Peng Liu, Dale Willis, and Suman Banerjee. Paradrop: Enabling lightweight multi-

tenancy at the network’s extreme edge. In Proceedings of the 1st IEEE/ACM Symposium

on Edge Computing, Washington, DC, October 2016.

[96] Peng Liu, Dale Willis, and Suman Banerjee. Paradrop: Enabling lightweight multi-

tenancy at the network’s extreme edge. In Edge Computing (SEC), IEEE/ACM Sympo-

sium on, pages 1–13. IEEE, 2016.

Bibliography 122

[97] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir Braver-

man. One sketch to rule them all: Rethinking network flow monitoring with UnivMon.

In Proceedings of the 2016 ACM SIGCOMM Conference, SIGCOMM ’16, page 101–114.

Association for Computing Machinery, 2016.

[98] Wyatt Lloyd, Michael J Freedman, Michael Kaminsky, and David G Andersen. Don’t

settle for eventual: scalable causal consistency for wide-area storage with cops. In Pro-

ceedings of the Twenty-Third ACM Symposium on Operating Systems Principles, pages

401–416. ACM, 2011.

[99] Wyatt Lloyd, Michael J Freedman, Michael Kaminsky, and David G Andersen. Stronger

semantics for low-latency geo-replicated storage. In NSDI, volume 13, pages 313–328,

2013.

[100] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. Don’t

settle for eventual consistency. Commun. ACM, 57(5):61–68, May 2014.

[101] Ping Lou, Liang Shi, Xiaomei Zhang, Zheng Xiao, and Junwei Yan. A data-driven adap-

tive sampling method based on edge computing. Sensors, 20(8):2174, 2020.

[102] Andrew Machen, Shiqiang Wang, Kin K Leung, Bong Jun Ko, and Theodoros Salonidis.

Live service migration in mobile edge clouds. IEEE Wireless Communications, 25(1):140–

147, 2018.

[103] Samuel Madden, Michael J Franklin, Joseph M Hellerstein, and Wei Hong. Tag: A tiny

aggregation service for ad-hoc sensor networks. ACM SIGOPS Operating Systems Review,

36(SI):131–146, 2002.

[104] Samuel R Madden, Michael J Franklin, Joseph M Hellerstein, and Wei Hong. Tinydb: an

acquisitional query processing system for sensor networks. ACM Transactions on database

systems (TODS), 30(1):122–173, 2005.

[105] Anil Madhavapeddy, Thomas Leonard, Magnus Skjegstad, Thomas Gazagnaire, David

Sheets, Dave Scott, Richard Mortier, Amir Chaudhry, Balraj Singh, Jon Ludlam, et al.

Bibliography 123

Jitsu: Just-in-time summoning of unikernels. In 12th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 15), pages 559–573, 2015.

[106] Ruben Mayer, Harshit Gupta, Enrique Saurez, and Umakishore Ramachandran. Fogstore:

Toward a distributed data store for fog computing. In 2017 IEEE Fog World Congress

(FWC), pages 1–6. IEEE, 2017.

[107] Dirk Merkel. Docker: lightweight linux containers for consistent development and deploy-

ment. Linux Journal, 2014(239):2, 2014.

[108] Microsoft. Consistency levels in azure cosmos db. https://docs.microsoft.com/en-

us/azure/cosmos-db/consistency-levels, 2020.

[109] Nader Mohamed, Jameela Al-Jaroodi, Sanja Lazarova-Molnar, Imad Jawhar, and Sara

Mahmoud. A service-oriented middleware for cloud of things and fog computing support-

ing smart city applications. In 2017 IEEE SmartWorld, Ubiquitous Intelligence & Com-

puting, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud

& Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/S-

CALCOM/UIC/ATC/CBDCom/IOP/SCI), pages 1–7. IEEE, 2017.

[110] Rosario Morello, Claudio De Capua, Gaetano Fulco, and Subhas Chandra Mukhopadhyay.

A smart power meter to monitor energy flow in smart grids: the role of advanced sensing

and IoT in the electric grid of the future. IEEE Sensors Journal, 17(23):7828–7837, 12

2017.

[111] Seyed Hossein Mortazavi, Bharath Balasubramanian, Eyal de Lara, and Shankara-

narayanan Puzhavakath Narayanan. Toward session consistency for the edge. In

{USENIX} Workshop on Hot Topics in Edge Computing (HotEdge 18), 2018.

[112] Seyed Hossein Mortazavi, Bharath Balasubramanian, Eyal de Lara, and Shankara-

narayanan Puzhavakath Narayanan. Toward session consistency for the edge. In

{USENIX} Workshop on Hot Topics in Edge Computing (HotEdge 18), 2018.

[113] Seyed Hossein Mortazavi, Bharath Balasubramanian, Eyal de Lara, and

Puzhavakath Narayanan Shankaranarayanan. Poster: Pathstore, a data storage

Bibliography 124

layer for the edge. Accepted at the The 16th ACM International Conference on Mobile

Systems, Applications, and Services (Mobisys), 2018.

[114] Seyed Hossein Mortazavi, Mohammad Salehe, Bharath Balasubramanian, Eyal de Lara,

and Shankaranarayanan PuzhavakathNarayanan. Sessionstore: A session-aware datastore

for the edge. In 2020 IEEE 4th International Conference on Fog and Edge Computing

(ICFEC), pages 59–68. IEEE, 2020.

[115] Seyed Hossein Mortazavi, Mohammad Salehe, Moshe Gabel, and Eyal de Lara. Feather:

Hierarchical querying for the edge. In Proceedings of the Fifth ACM/IEEE Symposium

on Edge Computing (SEC). IEEE, 2020.

[116] Seyed Hossein Mortazavi, Mohammad Salehe, Carolina Simoes Gomes, Caleb Phillips,

and Eyal de Lara. Cloudpath: A multi-tier cloud computing framework. In Proceedings

of the Second ACM/IEEE Symposium on Edge Computing, pages 1–13, 2017.

[117] Dan O’Keeffe, Theodoros Salonidis, and Peter Pietzuch. Frontier: Resilient edge process-

ing for the internet of things. Proceedings of the VLDB Endowment, 11(10):1178–1191,

2018.

[118] Opeyemi Osanaiye, Shuo Chen, Zheng Yan, Rongxing Lu, Kim-Kwang Raymond Choo,

and Mqhele Dlodlo. From cloud to fog computing: A review and a conceptual live vm

migration framework. IEEE Access, 5:8284–8300, 2017.

[119] Mugen Peng, Yong Li, Zhongyuan Zhao, and Chonggang Wang. System architecture

and key technologies for 5g heterogeneous cloud radio access networks. IEEE network,

29(2):6–14, 2015.

[120] Jan Plachy, Zdenek Becvar, and Emilio Calvanese Strinati. Dynamic resource allocation

exploiting mobility prediction in mobile edge computing. In 2016 IEEE 27th Annual Inter-

national Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC),

pages 1–6. IEEE, 2016.

[121] Francesco Poldi. Twint-twitter intelligence tool. URL:

https://github.com/twintproject/twint (visited on 01/02/2020), 2020.

Bibliography 125

[122] Ravi Prakash and Mukesh Singhal. Dependency sequences and hierarchical clocks: ef-

ficient alternatives to vector clocks for mobile computing systems. Wireless Networks,

3(5):349–360, 1997.

[123] Nuno Preguiça, Carlos Baquero, Paulo Sérgio Almeida, Victor Fonte, and Ricardo

Gonçalves. Dotted version vectors: Logical clocks for optimistic replication. arXiv preprint

arXiv:1011.5808, 2010.

[124] Ioannis Psaras, Onur Ascigil, Sergi Rene, George Pavlou, Alex Afanasyev, and Lixia

Zhang. Mobile data repositories at the edge. In {USENIX} Workshop on Hot Topics in

Edge Computing (HotEdge 18), 2018.

[125] Muntasir Raihan Rahman, Lewis Tseng, Son Nguyen, Indranil Gupta, and Nitin Vaidya.

Characterizing and adapting the consistency-latency tradeoff in distributed key-value

stores. ACM Trans. Auton. Adapt. Syst., 11(4), January 2017.

[126] Will Reese. Nginx: the high-performance web server and reverse proxy. Linux Journal,

2008(173):2, 2008.

[127] Ju Ren, Hui Guo, Chugui Xu, and Yaoxue Zhang. Serving at the edge: A scalable iot

architecture based on transparent computing. IEEE Network, 31(5):96–105, 2017.

[128] Eduard Gibert Renart, Javier Diaz-Montes, and Manish Parashar. Data-driven stream

processing at the edge. In 2017 IEEE 1st International Conference on Fog and Edge

Computing (ICFEC), pages 31–40. IEEE, 2017.

[129] Hooman Peiro Sajjad, Ken Danniswara, Ahmad Al-Shishtawy, and Vladimir Vlassov.

Spanedge: Towards unifying stream processing over central and near-the-edge data cen-

ters. In 2016 IEEE/ACM Symposium on Edge Computing (SEC), pages 168–178. IEEE,

2016.

[130] Yasir Saleem, Noel Crespi, Mubashir Husain Rehmani, and Rebecca Copeland. Internet of

things-aided smart grid: technologies, architectures, applications, prototypes, and future

research directions. IEEE Access, 7:62962–63003, 2019.

Bibliography 126

[131] Mohammad Salehe, Zhiming Hu, Seyed Hossein Mortazavi, Iqbal Mohomed, and Tim

Capes. Videopipe: Building video stream processing pipelines at the edge. In Proceedings

of the 20th International Middleware Conference Industrial Track, pages 43–49, 2019.

[132] Farzad Samie, Vasileios Tsoutsouras, Lars Bauer, Sotirios Xydis, Dimitrios Soudris, and

Jörg Henkel. Computation offloading and resource allocation for low-power iot edge

devices. In 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), pages 7–12.

IEEE, 2016.

[133] Mahadev Satyanarayanan, Paramvir Bahl, Ramón Caceres, and Nigel Davies. The case

for vm-based cloudlets in mobile computing. IEEE pervasive Computing, 8(4):14–23,

2009.

[134] Mahadev Satyanarayanan, Zhuo Chen, Kiryong Ha, Wenlu Hu, Wolfgang Richter, and

Padmanabhan Pillai. Cloudlets: at the leading edge of mobile-cloud convergence. In

Mobile Computing, Applications and Services (MobiCASE), 2014 6th International Con-

ference on, pages 1–9. IEEE, 2014.

[135] Raghav Sethi, Martin Traverso, Dain Sundstrom, David Phillips, Wenlei Xie, Yutian

Sun, Nezih Yegitbasi, Haozhun Jin, Eric Hwang, Nileema Shingte, et al. Presto: Sql on

everything. In 2019 IEEE 35th International Conference on Data Engineering (ICDE),

pages 1802–1813. IEEE, 2019.

[136] Yogeshwer Sharma, Philippe Ajoux, Petchean Ang, David Callies, Abhishek Choudhary,

Laurent Demailly, Thomas Fersch, Liat Atsmon Guz, Andrzej Kotulski, Sachin Kulka-

rni, Sanjeev Kumar, Harry Li, Jun Li, Evgeniy Makeev, Kowshik Prakasam, Robbert Van

Renesse, Sabyasachi Roy, Pratyush Seth, Yee Jiun Song, Benjamin Wester, Kaushik Veer-

araghavan, and Peter Xie. Wormhole: Reliable pub-sub to support geo-replicated internet

services. In 12th USENIX Symposium on Networked Systems Design and Implementation

(NSDI 15), pages 351–366, Oakland, CA, 2015. USENIX Association.

[137] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge computing: Vision

and challenges. IEEE Internet of Things Journal, 3(5):637–646, 2016.

Bibliography 127

[138] Weisong Shi and Schahram Dustdar. The promise of edge computing. Computer,

49(5):78–81, 2016.

[139] Baihaqi Siregar, Ahmad Badril Azmi Nasution, and Fahmi Fahmi. Integrated pollution

monitoring system for smart city. In 2016 International Conference on ICT For Smart

Society (ICISS), pages 49–52. IEEE, 2016.

[140] Sandeep K Sood and Kiran D Singh. An optical-fog assisted eeg-based virtual reality

framework for enhancing e-learning through educational games. Computer Applications

in Engineering Education, 26(5):1565–1576, 2018.

[141] Xiang Sun and Nirwan Ansari. Edgeiot: Mobile edge computing for the internet of things.

IEEE Communications Magazine, 54(12):22–29, 2016.

[142] NYC Taxi and Limousine Commission. New york city trip record data.

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page, 2020.

[143] Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike Spreitzer, Marvin Theimer, and

Brent W. Welch. Session guarantees for weakly consistent replicated data. In Proceedings

of the Third International Conference on Parallel and Distributed Information Systems,

PDIS ’94, pages 140–149, Washington, DC, USA, 1994. IEEE Computer Society.

[144] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Ning

Zhang, Suresh Antony, Hao Liu, and Raghotham Murthy. Hive-a petabyte scale data

warehouse using hadoop. In 2010 IEEE 26th international conference on data engineering

(ICDE 2010), pages 996–1005. IEEE, 2010.

[145] Abhishek Tiwari, Brian Ramprasad, Seyed Hossein Mortazavi, Moshe Gabel, and Eyal de

Lara. Reconfigurable streaming for the mobile edge. In Proceedings of the 20th Interna-

tional Workshop on Mobile Computing Systems and Applications, HotMobile ’19, page

153–158, New York, NY, USA, 2019. Association for Computing Machinery.

[146] Abhishek Tiwari, Brian Ramprasad, Seyed Hossein Mortazavi, Moshe Gabel, and Eyal de

Lara. Reconfigurable streaming for the mobile edge. In Proceedings of the 20th Interna-

Bibliography 128

tional Workshop on Mobile Computing Systems and Applications, pages 153–158. ACM,

2019.

[147] Sana Tonekaboni, Mjaye Mazwi, Peter Laussen, Danny Eytan, Robert Greer, Sebastian D

Goodfellow, Andrew Goodwin, Michael Brudno, and Anna Goldenberg. Prediction of

cardiac arrest from physiological signals in the pediatric icu. In Machine Learning for

Healthcare Conference, pages 534–550, 2018.

[148] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M Pa-

tel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Donham, et al.

Storm@ twitter. In Proceedings of the 2014 ACM SIGMOD international conference on

Management of data, pages 147–156. ACM, 2014.

[149] Animesh Trivedi, Lin Wang, Henri Bal, and Alexandru Iosup. Sharing and caring of data

at the edge. In 3rd USENIX Workshop on Hot Topics in Edge Computing (HotEdge 20).

USENIX Association, June 2020.

[150] Tim Verbelen, Pieter Simoens, Filip De Turck, and Bart Dhoedt. Cloudlets: Bringing

the cloud to the mobile user. In Proceedings of the third ACM workshop on Mobile cloud

computing and services, pages 29–36. ACM, 2012.

[151] Mario Villamizar, Lina Ochoa, Harold Castro, Lorena Salamanca, Mauricio Verano,

Rubby Casallas, Santiago Gil, Carlos Valencia, Angee Zambrano, Mery Lang, et al. In-

frastructure cost comparison of running web applications in the cloud using aws lambda

and monolithic and microservice architectures. In Cluster, Cloud and Grid Computing

(CCGrid), 2016 16th IEEE/ACM International Symposium on, pages 179–182. IEEE,

2016.

[152] Werner Vogels. Eventually consistent. Communications of the ACM, 52(1):40–44, 2009.

[153] Peter Volgyesi, Abhishek Dubey, Timothy Krentz, Istvan Madari, Mary Metelko, and

Gabor Karsai. Time synchronization services for low-cost fog computing applications. In

Proceedings of the 28th International Symposium on Rapid System Prototyping: Short-

Bibliography 129

ening the Path from Specification to Prototype, RSP ’17, page 57–63. Association for

Computing Machinery, 2017.

[154] Ashish Vulimiri, Carlo Curino, Brighten Godfrey, Konstantinos Karanasos, and George

Varghese. Wanalytics: Analytics for a geo-distributed data-intensive world. In CIDR,

2015.

[155] Haoyu Wang, Jiaqi Gong, Yan Zhuang, Haiying Shen, and John Lach. Healthedge: Task

scheduling for edge computing with health emergency and human behavior consideration

in smart homes. In 2017 IEEE International Conference on Big Data (Big Data), pages

1213–1222. IEEE, 2017.

[156] Junjue Wang, Ziqiang Feng, Zhuo Chen, Shilpa George, Mihir Bala, Padmanabhan Pillai,

Shao-Wen Yang, and Mahadev Satyanarayanan. Bandwidth-efficient live video analytics

for drones via edge computing. In 2018 IEEE/ACM Symposium on Edge Computing

(SEC), pages 159–173. IEEE, 2018.

[157] Zhe Wu, Michael Butkiewicz, Dorian Perkins, Ethan Katz-Bassett, and Harsha V Mad-

hyastha. Spanstore: Cost-effective geo-replicated storage spanning multiple cloud services.

In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles,

pages 292–308. ACM, 2013.

[158] Zhe Wu, Michael Butkiewicz, Dorian Perkins, Ethan Katz-Bassett, and Harsha V Mad-

hyastha. Spanstore: Cost-effective geo-replicated storage spanning multiple cloud services.

In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles,

pages 292–308. ACM, 2013.

[159] Yang Yang, Qiang Cao, and Hong Jiang. Edgedb: An efficient time-series database for

edge computing. IEEE Access, 7:142295–142307, 2019.

[160] Yong Yao and Johannes Gehrke. The cougar approach to in-network query processing in

sensor networks. ACM Sigmod record, 31(3):9–18, 2002.

Bibliography 130

[161] Shanhe Yi, Zijiang Hao, Qingyang Zhang, Quan Zhang, Weisong Shi, and Qun Li. Lavea:

Latency-aware video analytics on edge computing platform. In Proceedings of the Second

ACM/IEEE Symposium on Edge Computing, page 15. ACM, 2017.

[162] Ashkan Yousefpour, Caleb Fung, Tam Nguyen, Krishna Kadiyala, Fatemeh Jalali, Amir-

reza Niakanlahiji, Jian Kong, and Jason P Jue. All one needs to know about fog com-

puting and related edge computing paradigms: a complete survey. Journal of Systems

Architecture, 2019.

[163] Rong Yu, Yan Zhang, Stein Gjessing, Wenlong Xia, and Kun Yang. Toward cloud-based

vehicular networks with efficient resource management. IEEE Network, 27(5):48–55, 2013.

[164] Matei Zaharia, Reynold S Xin, Patrick Wendell, Tathagata Das, Michael Armbrust,

Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J Franklin,

et al. Apache spark: a unified engine for big data processing. Communications of the

ACM, 59(11):56–65, 2016.

[165] John K Zao, Tchin Tze Gan, Chun Kai You, Sergio José Rodŕıguez Méndez, Cheng En

Chung, Yu Te Wang, Tim Mullen, and Tzyy Ping Jung. Augmented brain computer

interaction based on fog computing and linked data. In 2014 International Conference

on Intelligent Environments, pages 374–377. IEEE, 2014.

[166] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Matthai Philipose, Paramvir

Bahl, and Michael J. Freedman. Live video analytics at scale with approximation and

delay-tolerance. In 14th USENIX Symposium on Networked Systems Design and Imple-

mentation (NSDI 17), pages 377–392, 2017.

[167] Quan Zhang, Qingyang Zhang, Weisong Shi, and Hong Zhong. Firework: Data pro-

cessing and sharing for hybrid cloud-edge analytics. IEEE Transactions on Parallel and

Distributed Systems, 29(9):2004–2017, 2018.

[168] Tan Zhang, Aakanksha Chowdhery, Paramvir (Victor) Bahl, Kyle Jamieson, and Suman

Banerjee. The design and implementation of a wireless video surveillance system. In

Bibliography 131

Proceedings of the 21st Annual International Conference on Mobile Computing and Net-

working, MobiCom ’15, pages 426–438, 2015.

