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Abstract—We study wireless sensor network (WSN) node
placement in an environment where RF signal losses vary with
position. This reflects real-world outdoor environments where
vegetation and topography cause nonuniform path loss. Many
techniques that solve for a variety of objective functions subject
to various constraints have previously been proposed for node
placement. However, many of these methods make simplifying
assumptions such as all nodes having the same transmission
range. Our goal is to take the insights and approaches of this
previous work and extend it to real-world environments. The
present work assumes we have a map that quantifies the path
loss behaviour of the real environment. Based on this map, and
a path loss model that accounts for spatial variations in the
path loss exponent, we propose a node placement algorithm for
two-tiered WSNs that maximizes the area covered by a specified
number of relay nodes and sensor nodes.
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I. INTRODUCTION

Over the past decade, Wireless Sensor Networks (WSNs)
have been used in a wide range of application areas, in-
cluding agriculture, transportation, home automation, search
and rescue, industrial and environmental monitoring, military
applications and medical care [2], [47], [52]. One category
of applications is environmental monitoring. WSNs have been
used in detecting forest fires, monitoring endangered habitats,
watching over volcanoes, detecting soil erosion, etc. [7], [33],
[42]. However designing efficient networks for outdoor envi-
ronments is still a major challenge. Factors such as limited or
intermittent connectivity, faulty connections, limited lifetime
and the cost of the nodes must be confronted. In particular, in
static networks where the location of the nodes is not changed
frequently, node placement is a key concern and can affect
many properties of the network, as well as the quality of the
data sensed about the environment.

In difficult environments such as tropical dry forests or
Arctic glaciers, it can be expensive and time-consuming to
reach and access the area to be monitored. In these types of
surroundings, it is impractical to consider adjusting the net-
work to provide proper sensing or RF coverage after placing
it on the ground [22]. Planning techniques are required that
can predict ahead of time where best to locate sensor nodes
(SNs), relay nodes (RNs) and other equipment. Otherwise,

spatial constraints on node placement that must be respected
to guarantee data integrity could easily be violated. Also,
physical impact on the plants or animals being monitored
may reduce the value of the data. Lastly, access restrictions
or weather may limit the duration or timing of such work.
Our goal is to contribute techniques that can make use of
historically known and predictable environmental data that
can be sensed remotely via satellite, aircraft or UAVs. These
data can be used to characterize the RF environment of the
network (e.g. predicting differences in RF signal propagation
in different areas), as well as dictating how densely sensors
must be placed to reliably gather data on the environmental
variables of interest. Design techniques based on such data
would be able to overcome the drawbacks of trying to plan and
adjust networks on site, in harsh or delicate environments, and
under the multiple pressures of time, cost and human frailty.

In this work, we assume the use of a two-tiered network
consisting of SNs forwarding data to a base station through
RNs. We further assume single-hop communication from each
SN to a nearby RN, rather than multihop communication
amongst SNs. The commercial hardware we are currently
placing in the field operates in this manner, so this type of
network is our first concern. Future work will address design
algorithms for networks based on multihop forwarding.

Once the environmental variables of interest have been
sensed by the SNs, these data need to be collected, aggregated
and transmitted via a reliable route from each SN through the
RNs to one or more base stations. In single-tiered networks,
the SNs participate in the process of forwarding data to the
base station. In multi-tiered networks additional nodes called
relay nodes (RNs) are used [22], and SNs may or may not
participate in forwarding the data. The RNs are more expensive
than SNs because they have higher maximum transmission
power than SNs. However, their use can reduce the frequency
with which batteries need to be replaced in the SNs, thus
significantly increasing network lifetime.

Although optimal node placement has been proven NP-hard
in most conditions [14], [54], various optimal and sub-optimal
techniques have been proposed for minimizing the number
of nodes needed to create a network while respecting con-
straints such as connectivity [3], network lifetime [49], [50],
reliable data transfer [5] and coverage [46]. These methods
make various simplifying assumptions such as homogeneous



transmission range of nodes. They also often concentrate on
optimizing either the number of SNs or the number of RNs
separately [8], [11].

We propose a node placement algorithm for two-tiered
WSNs that maximizes the area covered by a given number of
RNs and SNs. We assume the area to be covered has a path
loss characteristic that varies spatially, and that this variation
has been mapped and expressed in terms of values of a path
loss exponent. We specifically concentrate on static networks.
Our main contributions are:

• Considering heterogeneous signal path loss: In this
work we consider heterogeneous communications among
nodes. This means that a signal that originates from a
source may experience different amounts of loss when it
reaches points at different directions from the source, but
at the same distance r from the source. The amount of
loss depends on the areas the signal propagates through.

• Maximizing the area covered by a given number of
RNs and SNs in an environment of heterogeneous
path loss: We solve the problem of maximizing the area
that can be covered by a specific number of SNs and
RNs. Rather than first placing the SNs, our Max-Cover
1-Connected algorithm first places RNs in locations that
maximize the area in which SNs can be placed. We then
modify a known SN placement algorithm to fully utilize
a given number of SNs by placing them within that area.

The paper is organized as follows: in Section II we review
related work, including the problem model, details of signal
propagation, and the hardware we simulate. We describe
the Max-Cover 1-Connected algorithm in Section III, and in
Section IV we present our results and comparisons in detail.
Conclusions and future work follow in Section V.

II. RELATED WORK

Optimal node placement has been studied from the very
introduction of WSNs [54]. Many methods have been pro-
posed to address challenges such as network connectivity [3],
[4], [10], [29], [55], network lifetime [48], [50], [51], network
coverage [27], [45], [46], and fault tolerance [5], [57], [58],
etc. mainly in 2D but also in 3D space [34], [35]. These
papers often frame secondary challenges as constraints on
the problem. While some of these algorithms concentrate on
placing SNs [1], [11], [24], others focus on RN placement [8],
[26]. In this section, we review some previous algorithms
that optimize the number of SNs and RNs while providing
specified network coverage or network connectivity.

A. Sensor node placement

We first categorize static SN placement algorithms based on
the problem they solve. The methods used include linear pro-
gramming, greedy algorithms, divide and conquer, simulated
annealing, tabu search, etc. The problem that has attracted the
most attention in the literature is known as the area coverage
problem [15]. Here, the challenge is either maximizing the
sensing area covered by a specific number of nodes, or

minimizing the number of nodes needed to cover a specific
amount or proportion of an area.

One study is that by Dhillon and Chakrabarty [11]. They
present a probabilistic optimization framework for placing
SNs. Their framework uses a probabilistic detection model for
the SNs, and they consider noise and distance as parameters
that can affect the information sensed by the node. Their
Max-Min-Cov algorithm deploys SNs only at predefined grid
points. This greedy, iterative algorithm considers a coverage
miss probability for each cell in the grid. The miss probability
of a cell is the probability that a cell is not covered by any
sensor node. In each iteration an SN is deployed at the point
where it has the maximum impact on minimizing the miss
probabilities of the overall grid. After each SN is placed,
the miss probabilities of the cells are updated. Dhillon and
Chakrabarty also discuss similarities between this problem and
the art gallery [30] problem.

A triangular-grid SN placement architecture was presented
by Pompili et al. [34] for planning underwater WSNs in
both two and three dimensions. The main objective of this
study was to find the minimum number of SNs needed to
achieve optimal sensing and communication coverage; this
is done using tiling patterns. They propose placing the SNs
on a triangular grid and prove that if the distance between
neighbouring nodes is

√
3 times the sensing range, then the

given area would be fully covered using their method.
Lin et al. [24] consider the problem of sensor placement for

locating targets. They model the area to be sensed as a grid
and propose a simulated annealing minimax optimization that
ensures full coverage. They first place SNs on all grid points
and gradually remove unnecessary nodes until a cost constraint
is met. In each iteration an attempt is made to remove one
node. If this would violate coverage, a node is selected and
moved to a random position. The algorithm terminates once
coverage and discrimination requirements are achieved. They
compare their solution with the optimal solution in smaller
cases and claim that although their algorithm may not always
find the best possible result, the results are near-optimal.

Zhang et al. [56] address the problem of node placement in
situations where the required detection probability thresholds
of various locations are different. Similar to the work by
Dhillon and Chakrabarty, they assume probabilistic sensing by
the SNs. They propose an iterative heuristic algorithm called
DIFF-DEPLOY. The main drawback of their method is its
O( 4

3n
6) computational complexity.

Aitsaadi et al. [1] propose a tabu search to achieve full
coverage. They also consider a differentiated detection proba-
bility threshold for different areas and use a probabilistic event
detection model for sensor nodes. Geographical characteristics
of the monitored events are also considered. They claim that
the number of SNs needed to fully cover a field is less than for
previous methods, such as Max-Min-Cov and DIFF-DEPLOY.

The problem of evaluating coverage in a network was
scrutinized by Meguerdichian et al. [27]. In their study of
wireless ad-hoc sensor networks, Voronoi diagrams and De-
launay triangulation are used to find spaces between the nodes



that are not covered. They compute maximal breach paths and
maximal support paths. The maximal breach path is a path
where the shortest distance to any sensor is as large as possible.
The maximal support path is a path whose greatest distance
from the closest sensors is minimized. The polynomial time
algorithm they present is centralized and is used to determine
worst-case (breach) and best-case (support) coverage.

While connectivity is very important in WSNs, the previous
studies only discuss the coverage constraint - connectivity
among the SNs is not considered. These studies have been
extended by including the connectivity constraint. This means
that while coverage remains the main objective, the single or
k-connectivity constraint among the SNs is satisfied as a side
problem. To satisfy the k-connectivity constraint, every SN
must be connected to k other SNs in the network.

To achieve both connectivity and coverage, Wang et al. [49]
divide a sensing area into subareas. In each area, they deploy
SNs row-by-row such that each row guarantees continuous
coverage and connectivity, and such that adjacent rows ensure
continuous coverage. Their solution allows arbitrary polygons
as the sensing area, with possible existence of obstacles.

The relationship between connectivity and coverage in
single-tier networks has been studied in detail by Zhang
and Hou [55]. They use computational geometry to prove
that with a radio transmission range of at least twice the
sensing range, connectivity is implied by complete coverage
of a convex area in the network. In their work they maintain
coverage and connectivity by keeping a minimum number of
SNs operational. They also study the problem of choosing
the optimal number of working SNs from a dense network to
obtain full coverage.

Biagioni and Sasaki [5] discuss various SN placement
topologies. They aim to achieve coverage and also preserve
connectivity in case of possible failures or battery depletion
of a number of SNs. They study various deployment topolo-
gies such as circular, hexagonal, star-in-square, triangle and
hexagonal grids. They conclude that the deployment depends
on the sampling distance and the communication radius of the
SNs, which means that each deployment should be customized
to its specific location.

Other work includes the analytical study by Kumar et
al. [20]. Their method covers each point of an area with
at least k nodes, and provides analytical bounds on the
number of nodes needed to do so. This property is mainly
required in intrusion detection and security applications. They
also develop the Randomized Independent Scheduling (RIS)
algorithm, which maximizes network lifetime by using a
probabilistic model to control which SNs are functional and
which are sleeping.

B. Relay node placement

In two-tiered networks, the connectivity and fault tolerance
of the network depends on the placement of the RNs. The
main objective is to minimize the number of RNs needed to
connect the SNs to the base station. This problem has been
studied in wireless area networks [38], IEEE 802.16j [23]

and WiMAX [53]. We assume k is the required connectivity
between the RNs, and r and R are the respective radio ranges
of the SNs and RNs. It has been proven that for k = 1 and
r = R the RN placement problem is NP-hard [25]. While
some previous studies [18], [57] have a secondary objective
of achieving k-connected networks where k > 1, we require
only k = 1.

One motivation for the use of RNs is to increase network
lifetime. Based on the application, different studies use dif-
ferent definitions for lifetime. It could be the time when the
first node dies, the time by which a specific number of nodes
have died, or the time before loss of coverage occurs [9]. Pan
et al. [31] maximize the topological lifetime of a multi-tiered
WSN by deploying base stations and hierarchical clusters with
application nodes at specific locations functioning as RNs. By
maximizing topological lifetime they mean maximizing the
time from network initialization to the time when the WSN
cannot maintain enough application nodes alive to continue
its given mission. Additionally, they provide upper and lower
bounds for the maximal topological lifetime.

Tang et al. [43] present a method for minimizing the number
of RNs in networks where the SNs are distributed uniformly.
The SNs are either one-connected or two-connected to an RN,
and the RNs are either one-connected or two-connected to each
other. Using r and R to denote the communication range of the
SNs and RNs respectively, they study the case where R ≥ 4r.
Their solution is a 4.5-approximation algorithm for both one-
connected and two-connected networks. That is, their solution
is guaranteed to be within a factor of 4.5 of the optimal.
They concentrate on guaranteeing connectivity and ensuring
reliability in case of node failure, rather than increasing the
total network lifetime.

Lloyd and Xue [26] present an improved algorithm that
only has a constraint of R ≥ r. Based on whether the SNs
forward data or not, they propose two algorithms for single-
tiered and multi-tiered networks, respectively. For the single-
tiered case, their solution is based on finding a minimum
spanning tree; a polynomial-time 7-approximation algorithm
is proposed. For the two-tiered case where the RNs should be
strongly connected, the algorithm finds a Steiner tree with a
minimum number of Steiner points. The minimum geometric
disk cover algorithm is used to connect the SNs to the RNs.
The objective of the minimum geometric disk cover algorithm
is to find the minimum number of unit disks whose union
covers a given set of input points. The algorithm provided by
Lloyd and Xue for the two-tiered case is a polynomial time
(5+ε)-approximation algorithm. Furthermore the NP-hardness
of the second problem is proved.

Inspired by Lloyd and Xue’s work, Zhang et al. [57] develop
a polynomial 14-approximation algorithm for fault-tolerant
networks that aims to deploy the minimum number of RNs
while providing two-connectivity among RNs. They propose
a (20+ε)-approximation algorithm that includes placement of
base stations.

Srinivas et al. [39] propose an improved two-stage approx-
imation algorithm with the assumption that R ≥ 2r. They



formulate this as the connected disk cover problem for mobile
backbone networks. In their study, every regular node should
be connected to a backbone node. In the first stage, a strip
cover algorithm is used to associate SNs to RNs. In the second
phase, they connect the RNs by creating a Steiner tree and
using a minimum number of Steiner points.

In [10], Cheng et al. tackle the problem of relay placement.
Their objective is to deploy RNs to maintain connectivity
between every pair of SNs, under the assumption that the SNs
can also communicate with each other. They assume the RNs
have the same communication range as the SNs, i.e. R = r.
They formulate the problem as a Steiner tree with a minimum
number of Steiner points and bounded edge length (SMT-
MSPBEL). This problem was previously proved NP-hard by
Lin and Xue [25].

Chen and Cui [8] propose a polynomial time (5 + ε)-
approximation algorithm for the RN placement problem in
WSNs with a base station. To find the positions of the RNs,
they first turn the problem into a 1-geometric disk cover
problem [17] where each SN needs to be covered by one RN.
Then they design an algorithm similar to that used by Cheng
et al. for solving the SMT-MSPBEL problem. The objective
is to efficiently connect the RNs deployed during the previous
stage to the base station.

Misra et al. [29] study two problems in the category of
constrained RN placement in single-tiered networks where
RNs can only be placed at a set of candidate locations.
They propose polynomial-time approximation algorithms for
solving the problem of connecting each SN to the base station
using a bidirectional path through the RNs. They also consider
the problem of connecting each SN through the RNs to at least
two base stations by creating a Steiner tree with minimum
Steiner points (STP-MSP).

The aforementioned studies assume homogeneous connec-
tions between nodes, and identical node transmission ranges.
For more realistic networks, Han et al. [16] address the prob-
lem of deploying RNs to provide fault-tolerance with higher
network connectivity in heterogeneous wireless sensor net-
works. They assume a transmission range of [Tmin, Tmax]
for SNs and a range of Trelay for RNs. They use both one-
way and two-way links in their model. Their main result is
an O(k3)-approximation algorithm under the constraints that
R ≥ r and k ≥ 2.

Many of the studies discussed above are analytical, and the
methods proposed have not been implemented or tested, either
in real networks or by simulation. This means that aspects
such as the communication quality among nodes in different
scenarios, or the network lifetime that results from the use
of particular techniques have not been studied. Also, all of
these studies assume that all nodes of the same type have
the same transmission range. Assuming heterogeneous radio
ranges for SNs and RNs makes the problem significantly more
difficult but also more realistic. In our framework, we allow for
transmission range to vary as a result of varying propagation
conditions in the area being sensed. Furthermore we aim to
improve the efficiency of the network by placing both SNs

Fig. 1. Sample map

and RNs, rather than considering just one of these problems.
We also determine the communication quality between nodes.

C. Problem model

None of the studies discussed in the previous section con-
sider the problem of SN or RN placement in areas with non-
uniform communications for both types of nodes. However,
several studies that actually measured the RF path loss in
environments such as forests [6], [28], [36] have found highly
variable and heterogeneous conditions. Caldeirinha et al. find
that the receiving signal is affected by trees and vegetation
that add attenuation and also scatter the signal in various
ways. Dias at el. studied the path loss of links in a Brazilian
rain forest [[12]. These measurement studies motivate us to
consider spatially-varying RF conditions in the area of interest.

We use a grid Γ to subdivide the geographical area of
interest, and then we attribute a value of a path loss exponent
α to each cell in Γ. In the simplest case, Γ is a uniform
rectangular grid. However any arbitrary tessellation of the
geographical area of interest can be used by our algorithm. A
sample map of a boreal forest area in Alberta [13] is depicted
in Figure 1, along with a simple rectangular grid. Using maps
derived from remote sensing, the number, type and density of
trees and other vegetation in each cell can be used to select
the value of α for each cell. More accurate values for α result
in better modelling of the area and a more realistic version of
the map. For our current experiments, we use synthetically-
generated values and maps; the use of real data is proposed
as future work. Similar models that divide an area based on
environmental characteristics have previously been proposed
in [37] where a region in Australia with different vegetation
characteristics was divided into 2000 zones.

In general, increasing the number of the cells increases



the accuracy of the algorithm we propose in the following.
However splitting the map into smaller cells results in more
computation and requires more detailed knowledge of the area.

D. Signal propagation model

Spatial variation of the path loss exponent has previously
been used in empirical models such as Lee et. al’s [21]
path loss prediction method for flat terrain, as well as in
Grimlund and Gudmundson’s empirical street corner path loss
model [40]. Inspired by these models we have extended the
basic model for free space path loss [32] to account for the
attenuation of the transmitted signal as it propagates through
cells with varying values of α.

The basic equation for free space path loss is:

Pr(d) = Pt ×G1G2(
λ

4πd
)2 (1)

where Pt is the transmitted power in mW, Pr is the received
signal strength in mW, d is the distance from the transmitter
in meters, G1 and G2 are the gain of the transmit and receive
antennas and λ is the wavelength in meters. We define the
constant K = G1G2(λ/4π)2, so that:

Pr(d) = KPt/d
2 (2)

Following this approach, we calculate the path loss for a signal
crossing portions of two cells as:

Pr(d) = KPt ×
1

d1
α1d2

α2
(3)

where d1 is the distance the signal travels within the first cell
and d2 is the distance the signal travels in the second cell.
α1 and α2 are the values of the path loss exponent in the
first and second cell, respectively. K appears only once, rather
than as K2, because it expresses the effects of transmit and
receive antenna gains, and transmit frequency. The signal is
not being received and retransmitted when it crosses between
cells, nor is the frequency changing, so there is no motivation
for repeating the gain or frequency terms in the product. We
further note that in the generalization from Eq. 2 to Eq. 3 we
have changed the fundamental nature of the path loss model
from a mechanistic explanation of path loss in free space, to
an empirical model of path loss in a general environment. In
particular, once the value of α is changed to any value other
than the integer 2, the physical units on the right-hand side are
different from those on the left. This highlights the empirical
nature of this and similar models [21], [40].

To calculate the signal loss along a path that travels through
k cells, we further generalize Eq. 3 to the following:

Pr(d) = KPt ×Πk
i=11/di

αi (4)

Here
∑
di is the distance from the transmitter to the

receiver. The example in Figure 2 shows node A transmitting
a signal with a power of 100 mW at a frequency of 2.4 GHz.
The power of the received signal at B is:

}

}

}

}

Fig. 2. Path loss example

100× (1/442.7)

×(1/512.2)× (1/732.6)

×(1/602.3) = 7.44× 10−16

' −151dBm.

Also, we rely on the following definitions:

• RN to RN communication: If we consider a receiving
sensitivity threshold Ptr for RN B, then RN A can
connect to RN B if the power of the signal received from
A at B is at least Ptr.

• SN to RN communication: SN S is connected to RN A
if the signal originated at S has a minimum power of Pts
when it reaches A.

E. Simulated hardware

For the communications between nodes, we use the transmit
power and receive sensitivity of the Digi Xbee Pro R1 802.15.4
radios. These transmit at a frequency of 2.4 GHz, which is
0.125 m wavelength, and have a receive sensitivity of -70 dBm.
The SNs have a transmit power of 10 dBm, while the RNs have
a transmit power of 20 dBm.

III. MAX-COVER 1-CONNECTED ALGORITHM

In the previous section we noted that previous node place-
ment algorithms do not account for heterogeneous RF losses.
Here, we solve the problem of maximizing the area covered
by a given number m of SNs and n RNs in a heterogeneous
RF environment. We propose a three-stage solution for placing
both SNs and RNs. Our algorithm aims to fully utilize each
node so that sensing coverage is maximized while connectivity



is maintained. We call our proposed algorithm max-cover 1-
connected for reasons that will become clear in the following.
The algorithm is composed of three stages:

• greedy RN placement: First, we use iterative greedy
placement of RNs. In each round, an RN is placed where
it maximizes the number of candidate locations for SNs
and RNs in the next round. Each newly placed RN must
be connected to those previously deployed. The candidate
locations we maximize for SN placement are those where
an SN could communicate with an RN, and the candidate
RN locations are those where an RN could communicate
with another RN, or with a base station.

• improve RN placement with simulated annealing: Once
all the RNs have been initially deployed, we try to
improve the placement via simulated annealing. As the
objective is to maximize the area sensed by the given
number of SNs, any effective algorithm for adjusting
a given RN deployment must maximize the number of
candidate locations for SN deployment. To be effective,
the algorithm must also preserve connectivity between
the RNs and the base stations.

• SN placement: Last, we deploy SNs in locations made
feasible by the RN placement. We utilize a modified
version of the method presented by Pompili et al. [34].
The previous two steps guarantee that SNs placed in any
of the candidate locations will have the ability to establish
a connection to the base station through some sequence
of RNs.

A. Greedy RN placement

Unlike other node placement algorithms, our max-cover
1-connected method deploys both RNs and SNs, and does
so to create a two-tiered network deployed in an area of
heterogeneous path loss. To explain the first stage of our
algorithm, we need two definitions:

• RN-to-RN communication area: is the area in which RN
A can connect to RN or base station B. This means both
A and B should be able to receive signals from each
other that have a power greater than Ptr. In Figure 3,
node A can reach the base station. Nodes A and B can
communicate, but node B cannot reach the base station
directly. However, B can reach the base station indirectly
through A. If we define the communication areas of nodes
A and B as X(A) and X(B) then the communication
area of this pair of nodes is {X(A)∪X(B)}. This is the
area within which it is feasible to locate SNs, and have
their data routed to the base station through the RNs.

• RN-to-SN communication area: similarly, the RN to SN
communication area is the area where SN S can connect
to RN or base station A. The SN must be within the
communication area of the RN, and the RN must be
within the communication area of the SN. In Figure 3,
the shaded areas show where the SNs can connect to one
of the RNs, or to the base station.

• SN sensing area: we assume a disk covering model for the
sensing area covered by the SNs. The radius of the disk

is Sr. The full details of how this affects SN placement
is disclosed below, in Sec. III-C.

Note that. with these definitions, the communication ranges
of the SNs and RNs are not fixed constants. Both depend on
the transmit power of an SN or RN, the receive sensitivity,
the value(s) of the path loss exponent in the cell(s) a signal
traverses, and the distance traversed in each cell. Further, based
on the path loss map Γ and our communication model, the
shapes of the communication areas e.g. X(A) of individual
nodes are not necessarily circular. In fact circles are created
only when the path loss exponent is equal in all directions.
This is not the case when we have spatially varying values of
the path loss exponent. Given these definitions, the algorithm
operates as follows.

First a preprocessing step finds the places where SNs and
RNs can be deployed. We create a rectangular communication
grid Ψ of the same spatial extent as Γ, but with the number of
cells in Ψ typically larger than the number of cells in Γ. That
is, the spatial resolution of Ψ is typically finer than Γ. The
number of cells in Ψ is chosen depending on the accuracy
desired. Then, based on the nodes’ radio ranges, two sets
of points are obtained for each vertex of Ψ – one for the
RN-to-RN communication area and one for the SN-to-RN
communication area. We number the vertices of Ψ from 1
to N , as j = r × c where r is the row number of the vertex
and c is the column number of the vertex, with r and c both
starting at 1. Assuming we place an RN at vertex j, the set of
vertices at which another RN would be within communication
range is called ρ(j). With an RN placed at that same vertex j,
the set of vertices from which SNs would be able to reach it
is called σ(j). We note that ρ(j) and σ(j) are both functions
of the underlying, spatially varying path loss, as captured by
the grid Γ.

The complexity of preprocessing is O(N2M) where N is
the number of vertices in Ψ and M is the number of cells in Γ.
This is because we have to calculate the RF path loss between
every pair of vertices in Ψ, and each path traverses at most M
cells in Γ. There is no multiplicative term for the complexity
of finding the path between each pair of vertices because we
know the RF signal between any two vertices must follow
the shortest Euclidean path. This preprocessing is of relatively
high complexity, but we will need these results many times
in the following iteration, so the overall complexity of our
method is decreased.

Following preprocessing, we begin greedily placing RNs.
In each iteration, one RN is placed on the vertex in Ψ that
maximizes the incremental number of vertices where SNs
could be placed and communicate with an RN. The newly
placed RN must be within the communication area of at least
one of the base stations, or at least one other RN.

Formally, the algorithm is given Ψ, m and n, and the
locations on Ψ of the q base stations. It is also given the
sets ρ(j) and σ(j) for each vertex j in Ψ. Define:



Fig. 3. Radio range in a real environment

S = s1, s2, ..., sm

R = r1, r2, ..., rn

B = b1, b2, ..., bq

where S is the set of SNs, R is the set of RNs and B is the
set of base stations.

Without loss of generality, denote the RN placed in iteration
k as rk. Also without loss of generality, denote the vertex
where rk is placed as j(k). Then σ(j(1)) is the set of SN
locations made feasible by placing r1 at vertex j. We place
r1 at a vertex in Ψ that maximizes Υ(1), and rk is placed at
a vertex that maximizes the set difference:

σ(j(k))− {∪k−1
i=1 σ(j(i))}

The side constraint requiring connectivity with at least one
previously placed RN or base station can be expressed as:

Υ(Rk) ∪Υ(Bk) 6= ∅

where:

Υ(Rk) = {ρ(r1) ∪ ρ(r2) ∪ · · · ρ(rk−1)} ∩ ρ(rk)

Υ(Bk) = {ρ(b1) ∪ ρ(b2) ∪ · · · ρ(bq)} ∩ ρ(rk)

The algorithm continues until all n RNs have been placed.
Each step in the iteration has complexity O(N2) because all
the unoccupied vertices in Ψ must be examined to determine
the incremental number of candidate SN locations enabled by
placing an RN there. The first factor of N appears because,
although only those vertices within the communication area
of the base stations and the already placed RNs must be

examined, there are O(N) of these in the worst case. The
second factor of N appears because checking the incremental
number of candidate SN locations added has complexity
O(N).

B. Simulated annealing

Because of the greedy nature of the first stage, it is possible
for it to miss RN deployment locations that increase the
sensing area. For example if the method reaches a region that
has a high path loss exponent, it will prefer to go around it
rather than attempting to place RNs there.

To improve the performance of greedy RN placement, we
follow it with a Simulated Annealing (SA) stage [19], [44].
Simulated annealing can deliver near-optimal solutions on
combinatorial optimization problems. It is suitable for our
problem because of the large solution space. Solving problems
with SA is relatively simple to formulate and has low memory
requirements [41].

One of the most important properties of SA-based al-
gorithms is their ability to escape from local maxima and
minima by sometimes choosing worse moves. The probability
of accepting a worse move depends on the current state of
the system and the change in the cost function. SA algorithms
select a random move from the available neighbouring moves
rather than necessarily choosing the best available move. If
the move is better than the current position, then the move is
certainly taken. If not, worse moves are selected based on the
following probability [41]:

p(x) = e−(∆E(x)/T ) > R(0, 1) (5)

∆E(x) is the change in the evaluation function as a result of
choosing move x, T is the current temperature of the system
and R is a random number uniformly distributed between 0



and 1. We start from a relatively high temperature, T = 0.9,
and then use the following cooling function:

F (T ) = c/(1 + log(1 + k)) (6)

where c = 10 is a constant and k is the current iteration
number. In each step T = F (T ). Using the cooling function,
the temperature decreases as the algorithm progresses.

In each step the SA algorithm selects one RN at random
and moves it to a random neighbouring vertex. Then we
examine the change in the energy of the system. Maximizing
the number of points in the SN-to-RN communication areas
of all RNs and base stations is our objective. Therefore, we
define the current energy of the system E as the number of
points covered by the SN-to-RN communication area of the
RNs. The difference in E that results from choosing a move
to state x is ∆E(x). If the answer is better than the best result
yet achieved, then we update the best achieved result and move
on.

Maintaining connectivity among RNs and from the RNs to
the base stations is an important requirement. If connectivity
is broken in a particular step, re-establishing it might require
many further steps. Therefore, we do not allow RNs to move
to locations that would result in a loss of connectivity. In each
step we check connectivity by running a depth-first search
from the base stations. We also calculate the change in the
objective function by calculating the number of points covered
by the RNs.

The SA algorithm terminates when a specific number of
iterations have been performed, and the system has reached a
specific temperature Td. Other constraints can also be used to
limit the runtime, such as continuing until a specific level of
sensing coverage is achieved.

The complexity of each iteration of the SA algorithm is
O(n2 +N2n), where n is the number of RNs placed and N
is the number of cells in the grid Ψ. n2 appears because we
have to check the connectivity between the RNs and the base
station. The term N2n is for calculating the SN candidate
location set. We present the pseudocode for the SA algorithm
in Figure 4.

Once the SA algorithm is finished, we have obtained a set of
RNs that are connected to the base station and that maximize
the SN-to-RN communication area. In the next stage, we must
place the SNs. We have a set of candidate locations that are
suitable for SN placement and we need to choose among these
locations.

C. SN placement

At this point, we have a connected deployment of RNs and
base stations. In addition, we have maximized the number of
vertices at which SNs can be deployed and be within reach of
one or more RNs or base stations. If the number of available
SNs m is too small to make use of all these potential locations,
we should place the SNs sparsely to maximize the fraction of
the area sensed. If the number of available SNs is large relative
to the number of potential locations, we should place the SNs

1: B ← BaseStation {B the set of BNs}
2: R← RelayNodes {R the set of initially placed RNs}
3: T ← CurrentTemperature

4: Eold ← 0

5: while true do
6: r ← RN

7: SelectMove(r) {Move a relay node}
8: if CalculateNextEnergy() > 0 then
9: E ← CalculateNextEnergy

10: ∆E ← E − Eold

11: if ∆E > 0 then
12: Move(r)

13: else
14: if e−∆E/T > pmove then
15: Move(r)

16: Eold ← E

17: T ← CurrentTemperature

18: FUNCTION PreProcess
19: for all n ∈ Cells do
20: nRelayCover ← covering relay points
21: nSensorCover ← covering sensor points
22: for all r ∈ RelayNodes do
23: Move r to closest grid point
24: END FUNCTION
25: FUNCTION CalculateNextEnergy
26: if any relay node is not connected to a base station then
27: return −1

28: else
29: return Calculate number of covered points
30: END FUNCTION

Fig. 4. The Simulated Annealing Algorithm

more densely, to improve the sensing coverage of the area.
The third stage of our algorithm makes this trade-off.

We assume a disk covering model for the SNs. This means
that the SNs either fully sense an area, or do not sense it at
all. One alternative is to assume a probabilistic model where
the probability of correctly sensing the variable of interest
decreases as a given function of the distance from the SN [11],
[56].

We modify the SN placement algorithm proposed by Pom-
pili et al [34]. Their method is presented for underwater
WSN applications, and is proposed for both two and three
dimensional space. They assert that if the distance d between
adjacent nodes in the grid is

√
3Sr, where Sr is the sensing

range of the SNs, then full sensing coverage of an area can
be achieved. Figure 5 illustrates such a deployment.

If the distance between the adjacent SNs in the grid is 2Sr
or more, then the sensing disks of neighbouring SNs will not
overlap, and the area covered by each SN will be maximized.
Figure 6 depicts a deployment where d = 2Sr.

Our goal is to find the distance d between adjacent SNs that
yields the densest possible placement of the available number
of SNs, while maximizing the sensing coverage. We test values
between d =

√
3Sr and d = 2Sr and select the smallest



Fig. 5. Full coverage at d =
√
3Sr

Fig. 6. Coverage is maximized at d = 2× Sr

value that maximizes the area covered by the SNs. If the step
size is w, then the total number of times that we need to
test a deployment is (2−

√
3)Sr/w. In each iteration, our SN

placement algorithm works as follows:
• Creating a grid: In iteration i we create a triangular sensor

grid T and set the distance of adjacent vertices to
√

3 +
(w×i). We align T with the communication grid Ψ used
for RN placement.

• Placing SNs: Based on the locations where RNs were
deployed by the previous stage, and the total number of
candidate locations thus created for SN placement, we
place SNs. If a vertex of the grid T is in the area covered
by the RNs, we select the vertex for SN deployment. All
candidate locations provided by the simulated annealing
step are guaranteed to be connected to at least one RN
or a base station, so additional side constraints can be
used to set a precedence order on the candidate locations
for SN placement. This process continues until all m SNs
have been deployed, or we run out of candidate locations.

• Examining the placement: Based on the deployed SNs,
we calculate the total sensing area covered by the SNs.
This is done by creating another grid τ that has smaller
cell sizes to increase the accuracy of the measurement.
We examine whether a point is in the smaller grid τ or
not. If a point is covered by two or more SNs, we only
consider that point covered once.

Fig. 7. Example SN placement

We keep the placement with the smallest value of d that
maximizes the sensing area covered, and return that placement
plus the locations of the RNs as the output of the max-cover
1-connected algorithm. If there is not enough room to place
all m SNs, even with d =

√
3Sr, then the algorithm returns

the number of surplus SNs. Figure 7 depicts an example
placement. The complexity of placing the SNs in each iteration
above is O(V ) where V is the number of candidate vertices
in Ψ where SNs can be placed.

One of the major benefits of our algorithm is that it consid-
ers RF path loss in both RN and SN placement. Theoretically,
there should not be any errors in communication between
nodes. Another benefit is that once the RNs have been placed,
a good estimate of the maximum number of SNs that can be
usefully placed can be developed. In other words, while we
currently solve the problem of using a given number of SNs
to maximize sensing coverage, the technique can easily be
modified to find the minimum number of SNs that achieve a
specified level of sensing coverage.

IV. EXPERIMENTAL RESULTS

In the previous section, we presented the max-cover 1-
connected algorithm. This algorithm takes given numbers of
SNs and RNs as input and maximizes the sensing area covered
by the SNs while maintaining connectivity of the SNs to the
base stations through the RNs. We presented a three-stage
algorithm that consists of greedy RN placement, a simulated
annealing step that improves the results of the first stage
and finally SN placement. We implemented our proposed
algorithm, and in this section we illustrate its performance.

The first stage of our method places RNs in a greedy,
iterative manner. This behaviour leads the algorithm to select
points that result in the maximum SN-to-RN communication
area. Figure 8 shows a 1000m by 1000m map, with the shaded
area in the middle representing a zone with a higher path loss
(α = 3). The rest of the map has a path loss exponent of
α = 2. A single base station is located at the top left corner.
In this figure, the dots represent the candidate locations of



Fig. 8. Greedy RN placement

SNs, and the small circles show the SN-to-RN communication
range of the SNs. All the dots within a given small circle
can communicate to the RN at the centre of that circle. The
large circles show the RN-to-RN communication range. Note
that the radio ranges that cross the border between the high-
loss and low-loss zone are not accurately depicted due to the
change in α. However, our algorithm accounts for the change
in α between zones.

As illustrated in Figure 8, the greedy algorithm selects
points that maximize the SN-to-RN communication area so
that a maximum number of SNs can be deployed. This leads
the algorithm to go around the shaded area and connect regions
that have lower path loss exponent.

The simulated annealing (SA) stage overcomes this be-
haviour, and reaches through the high path-loss region to
connect it with the rest of the map. As shown in Figure 9,
the SA easily finds a route across the high path-loss region.
The beginning of this path is illustrated in the top-left corner
of the figure. Note that the SN-to-RN communication ranges
are much smaller in the high loss region, as are the RN-to-RN
communication ranges. Using the same number of RNs, the
area provided for SN placement is significantly increased.

Once the SA algorithm has placed the RNs, candidate
locations are available for SN placement. We place SNs on
a triangular grid. Changing the distance d between vertices on
this grid may result in different deployments. We test different
values for d and select the smallest value that maximizes the
sensing area covered.

A. Comparing greedy alone with greedy plus SA

To determine the benefits of adding the SA step, we compare
the area covered by the deployed SNs, with and without SA.
To do so, we vary the number of RNs available from 10 to

Fig. 9. SA improving RN placement

Fig. 10. SA improves on greedy

190 in steps of ten, and run the two variations on a 1000m
by 1000m map. The geographic grid Γ is a 10x10 grid, where
each cell has a value of α randomly chosen between 2 and 3.
The grid Ψ used by the SA and greedy algorithms is 50x50.
In these experiments the SA algorithm improves the results of
the greedy algorithm by 3.15% on average (see Figure 10).

B. Comparison with the optimal solution

We also compare the results of max-cover 1-connected with
an exhaustive backtracking search that examines all possible
placements of the RNs and returns the best result. The purpose
of this test is to compare the greedy and greedy plus SA
algorithms with the optimal solution. Because of the huge
search space, the exhaustive search can only be tested on
smaller Ψ grids. The results are presented in in Table I. In
these tests, the number of RNs is varied from 4 to 7, and the
cells of Γ have values of α randomly selected between 2 and



TABLE I
COMPARING MAX-COVER 1-CONNECTED WITH EXHAUSTIVE SEARCH

Map area Ψ size RNs Optimal SA Greedy
200× 300 6× 8 4 39.4% 39.4% 37.01%
200× 300 6× 8 5 44.3% 44.3% 38.0%
200× 300 6× 8 6 48.2% 48.2% 43.6%
200× 300 6× 8 7 54.7% 54.7% 48.2%

250× 250 8× 8 5 58.5% 58.5% 56.5%
250× 250 8× 8 6 62.6% 62.6% 62.6%
250× 250 8× 8 7 69.0% 69.0% 67.2%

300× 300 9× 9 5 46.5% 46.5% 46.5%
300× 300 9× 9 6 54.9% 54.9% 45.2%
300× 300 9× 9 7 62.5% 61.2% 51.3%

3. We examine the performance of the three algorithms with
different sizes of the communication grid Ψ.

Greedy plus SA achieves the optimal result in all but one
case. In this case, exhaustive search gives a somewhat better
result, but it needs 37 minutes to do so. The SA algorithm only
requires 10 seconds to run, and by increasing the number of
iterations, we achieve the optimal result in this case also.

C. SN placement

We also present results for the third step in our algorithm,
of adjusting SN placement on a triangular grid. Table II
summarizes the results for different values of d for a sample
deployment of 10 RNs in a 1000m×1000m map with random
path loss exponents for its cells. Sr is the sensing radius of
each SN, which we assume is 10m in this test.

Table II shows that, in this particular case, the maximum
coverage is achieved when d =

√
3Sr. We can deploy slightly

fewer SNs by using a vertex spacing of 1.78Sr. This requires
603 SNs and covers only 0.1% less of the area than the
maximum coverage placement of 626 SNs. The relatively low
coverage, about 1/6 of the total area, is the result of the
availability of only ten RNs for the large 100 ha. area. This
example also provides a very good illustration of some of the
non-obvious effects of adjusting d. In this case, increasing d
decreases the sensing coverage by decreasing the number of
candidate positions for SN placement more than it increases
the area covered by the SNs placed. The 15% increase in d
results in nearly a 24% decrease in the number of candidate
positions. Using this approach, the maximum coverage is
highest at the lowest value of d, but of course a larger number
of SNs is required for this larger coverage. An alternative
design approach is to keep the number of SNs fixed at the
smallest value found, i.e. 478. In this case, coverage behaves
as intuitively expected, and increases as a function of d.

D. Summary

In this section we presented the performance of our max-
cover 1-connected algorithm. The purpose of our algorithm is
to maximize the sensing area covered by SNs in a two-tiered

network by placing the RNs and SNs. The greedy stage of the
algorithm was augmented with simulated annealing, and the
benefits of adding SA were tested. We evaluated the overall
performance of our method by comparing it to the optimal
solution from exhaustive search. In the relatively small cases
where exhaustive search could find the optimum, our method
achieved results nearly identical to the optimal solution.

V. CONCLUSIONS AND FUTURE WORK

In this paper we study the problem of sensor and relay node
placement in an environment of heterogeneous RF path loss.
We suggest a simple model for signal propagation to account
for the attenuation of the signal in areas with different path
loss exponents. We model the area of interest as a geographic
grid Γ with a value for the path loss exponent as a property
of each cell in the grid.

We solve the problem of maximizing sensing coverage
while also maintaining connectivity from SNs to the base
stations through the RNs in the environment of heterogeneous
loss. We propose a three-stage algorithm that consists of
greedy RN placement, simulated annealing improvement and
then SN placement. We show how the simulated annealing
stage improves greedy RN placement in terms of the candidate
locations provided for the SN placement stage. We also
compare the performance of our three-stage algorithm with
the optimal results from exhaustive search. Our algorithm has
identical results compared to the exhaustive search for all our
test cases. Our results show that our method can find a high-
quality solution quickly.

We suggest the following improvements as future work:
• Based on real environments, real maps can be developed

with values for the path loss exponent in each cell based
on the properties of the vegetation and terrain in that cell.

• An RF loss model with parameter values based on the
types of vegetation in an area could be used to predict
how RF signals propagate through different types of
terrain.

• Other cooling functions can be tested for the SA stage.
In our work, the cooling function depends on the number
of iterations. If we increase the number of iterations,
more states are examined at higher temperatures. Also,
the constant in our cooling function can be tuned based
on the size of the communication grid Ψ and number of
RNs.

TABLE II
EFFECT OF VARYING GRID SIZE, d

d # SNs % Coverage Coverage
at 478 SNs√

3× Sr 626 16.80% 12.83%
1.78× Sr 603 16.66% 13.21%
1.83× Sr 563 16.30% 13.84%
1.88× Sr 520 15.56% 14.30%
1.93× Sr 503 15.30% 14.53%
2.0× Sr 478 14.86% 14.86%



• Our current method can be improved if we create the
sensor-placement grid T at different starting positions.
This means that rather than aligning the origins of our Ψ
and T grids, we can shift the triangular grid T by r/2
so that other SN deployments based on the shifted grid
can be examined too.

• Rather than using thermal functions, quantum fluctuations
can be utilized to find the global minima of our system.
Because of our discrete search space, using this method
may lead to faster and better results.

• To better escape local minima, stochastic tunnelling based
on Monte Carlo sampling can be used. In this way, instead
of only moving to neighbouring positions, we would be
able to jump to more distant states.

• Rather than always keeping the step size of one, dynamic
step sizes can be used for moving to neighbouring nodes.
If we are moving towards a better answer, we decrease
the step size and if we are far from a good solution, we
increase the step size.
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