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ABSTRACT
Hyperbolic spaces offer a rich setup to learn embeddings with supe-
rior properties that have been leveraged in areas such as computer
vision, natural language processing and computational biology. Re-
cently, several hyperbolic approaches have been proposed to learn
robust representations for users and items in the recommendation
setting. However, these approaches don’t capture the higher order
relationships that typically exist in the recommendation domain.
Graph convolutional neural networks (GCNs) on the other hand
excel at capturing higher order information by applying multiple
levels of aggregation to local representations. In this paper we com-
bine these frameworks in a novel way, by proposing a hyperbolic
GCN model for collaborative filtering. We demonstrate that our
model can be effectively learned with a margin ranking loss, and
show that hyperbolic space has desirable properties under the rank
margin setting. At test time, inference in our model is done us-
ing the hyperbolic distance which preserves the structure of the
learned space. We conduct extensive empirical analysis on three
public benchmarks and compare against a large set of baselines.
Our approach achieves highly competitive results and outperforms
leading baselines including the Euclidean GCN counterpart. We fur-
ther study the properties of the learned hyperbolic embeddings and
show that they offer meaningful insights into the data. Full code for
this work is available here: https://github.com/layer6ai-labs/HGCF.
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1 INTRODUCTION
A central task in recommender systems is to accurately capture user
preferences and item attributes to correctly predict whether a user
will prefer a given item. Collaborative filtering (CF) approaches
utilize past user-item interaction data to drive recommendations.
Recent research has largely focused on the implicit feedback setting
as implicit interactions can typically be collected in much larger
quantity and at low cost. A prominent direction in CF is latent mod-
els that learn compact representations of users and items, distances
between these representations are then used to infer preference.
The most popular latent CF approach is matrix factorization where
user-item interaction matrix is approximated by a product of two
low-rank matrices that are taken as user and item representations.
An alternative direction is to view the interaction matrix as a bi-
partite graph, with edges representing interactions between user
and item nodes. Graph-based methods can then be applied to pass
messages along the edges and learn representations that summarize
neighbourhood information for each node.

A key advantage of the graph oriented approach is the explicit
ability to model higher order relationships (neighbors-of-neighbors)
between users and items. Recent work on applying graph convolu-
tion networks (GCNs) to CF has demonstrated the importance of
exploring higher order relationships for user-itemmodeling [14, 36].
These approaches have achieved state-of-the-art performance on
many public benchmarks by applying multiple levels of neighbor-
hood aggregation under the graph convolutional setting to produce
the final representations. Similarly strong performance from graph
learning has been achieved in other domains such as computer
vision [23, 38, 39], natural language processing [1, 19, 26] and com-
putational biology [8, 10, 17].

In parallel, it has been shown that many real-world datasets ex-
hibit the prototypical characteristics of complex networks such as
the power-law degree distribution [31], including user-item graphs
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in CF datasets [3]. These properties are related to the underly-
ing hierarchical structure [31] which is well modelled by hyper-
bolic geometry [20]. This has motivated representation learning
in hyperbolic space to more effectively capture the structure of
the user-item graph. Proposed methods in this area have recently
demonstrated that a considerable improvement in accuracy can be
achieved by adapting variants of the traditional matrix factoriza-
tion approach to the hyperbolic setting [3, 27, 35]. Furthermore, the
learned hyperbolic representations were found to naturally capture
both hierarchy and similarity through their norm and hyperbolic
distance [24, 28].

Motivated by these advances, we propose a new hyperbolic GCN
model for CF. We refer to our approach as the Hyperbolic Graph
Collaborative Filtering (HGCF), and to the best of our knowledge
this is the first successful combination of GCN and hyperbolic
learning in recommender systems. HGCF learns user and item rep-
resentations in the hyperbolic space by aggregating neighborhood
information through a GCN module on the tangent space of a refer-
ence point. By taking advantage of the exponential neighborhood
growth in the hyperbolic space, we show that our model can be
effectively learned using a margin ranking loss based on hyperbolic
distances optimized with the Riemannian Gradient Descent. We an-
alyze margin learning under hyperbolic distance, and demonstrate
that it has more capacity to distribute the items within a given
margin than the equivalent Euclidean representation. Additional
capacity can in turn alleviate the problem of dissimilar items being
pushed closer together that was shown to affect margin learning in
CF [22].

Extensive experiments on public benchmarks show that our ap-
proach outperformsmany leading baselines including the Euclidean
GCN counterpart, and is more robust to changes in embedding di-
mensionality. Further analysis of the item representations learned
by our model reveals a natural hierarchical structure. In summary,
our contributions are as follows:
• We propose a hyperbolic GCN architecture for CF and conduct an
investigation into GCN layer designs to better facilitate learning
in deeper models that explore higher order relationships.

• We analyze margin ranking optimization with hyperbolic dis-
tances and demonstrate that it has desirable properties for learn-
ing robust representations.

• We implement an optimization procedure for our model based
on Riemannian Gradient Descent that propagates information
through the GCN via the tangent space of a selected reference
point.

• We conduct extensive experiments demonstrating superior per-
formance and show that learned item representations capture
meaningful structure in the interaction data.

2 RELATEDWORK
In this section we review relevant previous work from the GCN
and hyperbolic learning literature.

2.1 Graph Convolutional Neural Networks
GCN-based methods have received increasing attention due to their
ability to learn rich node representations from arbitrarily structured
graphs [19, 30]. They have been effectively applied in a wide range

of domains such as computer vision [23, 38, 39], natural language
processing [1, 19, 26] and computational biology [8, 10, 17]. In
collaborative filtering, GCNs have been adapted for matrix factor-
ization [36] and diversified recommendation [32], demonstrating
leading performance. Subsequently, [14] empirically showed that
the essential GCN component for CF is the iterative neighborhood
aggregation. Other components such as feature transformation and
nonlinear activations have little effect and can be removed. [33]
proposes a neighbor interaction aware GCN approach that explic-
itly models the neighbor relationships in the user-item graph. [16]
expands the GCN architecture to multi-behavior setting where
several sources of user preference are available.

The majority of proposed GCN approaches embed nodes in the
Euclidean space. Recently, [24] and [5] propose to learn GCNs in the
hyperbolic space and show superior results on graph classification
problemswhere graphs have hierarchical structure.We build on this
work to bring the benefits of hyperbolic GCNs to the CF domain.

2.2 Hyperbolic Embedding Learning
Representation learning has taken an important role in extracting
information out of semi-structured and unstructured data such as
text or graphs. This type of data often contains an underlying hier-
archical structure that is difficult to capture with representations in
Euclidean space. To mitigate this problem [28] proposes learning
representation in the Poincaré ball formulation of hyperbolic space
that naturally captures hierarchical structure. Expanding on that
work, [29] finds that learning representations based on the Lorentz
formulation of the hyperbolic space is more efficient. Recently, hy-
perbolic representation learning has been applied to a variety of
problems in different areas [4, 7, 12, 18], including CF [3, 9, 27, 35].
In CF, [27] uses a single layer autoencoder in hyperbolic space to
learn user-item embeddings. [35] studies metric learning in hy-
perbolic space and its connection to CF. [3] proposes a weighted
margin rank batch loss to learn a hyperbolic model and generates
user representation by item aggregation in hyperbolic space via
Einstein midpoint. Finally, [9] applies hyperbolic learning for point
of interest recommendation. Our approach is related to these works
in that we also learn user and item representations in hyperbolic
space. However, a key difference is that our approach captures
higher order information in user-item interactions by incorporat-
ing multiple levels of neighborhood aggregation through a GCN
module.

3 PRELIMINARIES
Our aim is to learn d-dimensional user and item embeddings in the
hyperbolic space. A number of equivalent mathematical formula-
tions have been derived for the hyperbolic space. Here, we use the
Lorentz formulation to define the model which is found to be more
stable for numeric optimization [29]. We then use the Poincaré
formulation to visualize the learned embeddings as it provides an
intuitive way to lay out the points on the sphere. This property
is particularly useful to visualize the hierarchical structure as dis-
tances stretch exponentially towards the sphere boundary. In this
section we summarize the main properties of both formulations.

We recall that a d-dimensional hyperbolic space is a Riemannian
manifold M with a constant negative curvature, which we denote
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Figure 1: HGCF model architecture. Input user embedding θu is projected into the tangent space ToHd using o as the reference point in the
hyperbolic space. The resulting representation z(0)u is passed through multiple layers of SkipGCN to encode higher order neighborhood
information. Output of SkipGCN zu is then projected back to the hyperbolic space via an exponential map to get the final user embedding
ψu which is used to compute the loss. Analogous derivation is done for item embeddings.

by c . Let k = −1/c denote the negative reciprocal of the curvature
such that k > 0. The tangent space TxM at point x on M is a
d-dimensional Euclidean space that best approximates M around
x. The elements of TxM are referred to as tangent vectors. The
Lorentz and Poincaré formulations are equivalent mathematical
representations of the hyperbolic space, and each is determined by
an underlying set and a metric tensor. The Lorentz representation
is defined by the pair Ld = (Hd ,дL):

Hd = {x ∈ Rd+1 : ⟨x, x⟩L = −k,x0 > 0} (1)

where ⟨x, y⟩L is the Lorentz inner product given by ⟨x, y⟩L =
−x0y0 +

∑d
i=1 xiyi for x, y ∈ Rd+1, and the metric tensor is дL =

diag[−1, 1, 1, · · · , 1]. The metric дL induces a distance function for
any pair of points x, y ∈ Hd given by:

dL(x, y) =
√
k arcosh

(
−
⟨x, y⟩L

k

)
(2)

The tangent space centered at the point x in the Lorentz manifold
is then defined by:

TxH
d = {v ∈ Rd+1 : ⟨v, x⟩L = 0} (3)

The Poincaré representation Bd has the open sphere {x ∈ Rd :
∥x∥ < k} as the underlying set, with curvature c = −1/k < 0
and where ∥.∥ denotes the Euclidean norm. Distances in Bd are
measured via the function :

dB(x, y) =
√
k arcosh

(
1 + 2k

∥x − y∥2(
k − ∥x∥2

) (
k − ∥y∥2

) ) (4)

It is important to note here that for a fixed point x the distance
dB(x, y)will increase exponentially towards infinity as y gets closer
to the sphere boundary. To map between Lorentz and Poincaré
formulations we apply the following transformation:

pL→B(x) = pL→B(x0,x1, . . . ,xd ) =
√
k
(x1, . . . ,xd )

x0 +
√
k

(5)

4 OUR APPROACH
In this section we present our HGCF approach. We consider the
standard implicit CF set-up with m users U = {u1, ..,um } and n
items I = {i1, ..., in }. Interactions between users and items are
given in a sparse m × n binary interaction matrix R where Rui
is 1 if user u interacted with item i and 0 otherwise. We denote
Nu = {i ∈ I : Rui = 1} as the set of items that user u interacted
with and refer to this set as the user neighborhood. Similarly, the
item neighborhood is given by Ni = {u ∈ U : Rui = 1}.

To apply HGCF, we first initialize embeddings for all users and
items in the hyperbolic space. Then, given a user u with corre-
sponding embeddings θu ∈ Hd , we map θu to the tangent space
of a reference point where it is passed through several layers of
graph convolutions. The updated embedding, with encoded neigh-
bor information, is mapped back toHd where a hyperbolic margin
ranking loss is applied. The signal from the loss is back-propagated
to update relevant parameters and the process is repeated. An analo-
gous procedure is applied to item embeddings. Figure 1 summarizes
the HGCF architecture and we describe each component in detail
below.

4.1 Embeddings in Hyperbolic Space
We use the Lorentz representation for both user and item embed-
dings. We fix the origin o = (

√
k, 0, · · · , 0) ∈ Hd and use it as a

reference point. Note that k = −1/c is the reciprocal of the curva-
ture c that is considered a hyper-parameter here and set empirically.
The embeddings are initialized by sampling from the Gaussian
distribution on the tangent space ToHd of the reference point o.
Formally, given a user u and an item i , we first sample from the
multivariate Gaussian:

θ ′u ,θ
′
i ∼ N (0,σId×d )

and then set:
θ ′′u = [0;θ ′u ] θ ′′i = [0;θ ′i ]

where [; ] denotes concatenation. Note that both θ ′′u and θ ′′i satisfy
⟨θ ′′u ,o⟩L = 0 and ⟨θ ′′i ,o⟩L = 0 and therefore belong to ToH

d . To
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Figure 2: Graph convolution architectures, G represents the graph
convolution layer. PlainGCN is the original GCN architecture, and
the other three architectures have different structures of skip con-
nections.

obtain the corresponding embeddings in Hd we project into the
hyperbolic space via the exponential map expo : ToHd → Hd ,
defined as [5]:

expo(v) = cosh
(
∥v∥L
√
k

)
o +

√
k sinh

(
∥v∥L
√
k

)
v

∥v∥L
(6)

where v ∈ ToH
d and ∥v∥L =

√
⟨v,v⟩L . We then get user and

item embeddings inHd :

θu = expo(θ
′′
u ) θ i = expo(θ

′′
i ) (7)

These hyperbolic embeddings are used to initialize the model for
all users {θu }u ∈U and items {θ i }i ∈I .

4.2 Skip-connected Graph Convolution
Networks

The main idea behind GCNs is to learn node representations within
a graph by iteratively aggregating local information from multi-
hop neighbors. The aggregation process typically involves feature
transformations and non-linear activation at each stage. However,
recent work found that the gain from feature transformation and
non-linearity is minimal over the simpler approach of mean aggre-
gation [14]. Moreover, non-linearity adds considerable representa-
tional power to the model and can lead to significant over-fitting
on highly sparse CF datasets [14]. In light of these findings, we opt
to remove feature transforms and non-linearities to both reduce
model complexity and speed up training and inference.

In hyperbolic space the analog of mean aggregation is the Fréchet
mean which has no closed form solution [11]. To deal with this
problem, we perform aggregation in the tangent space ToHd . To
this end we first project the embeddings θu , θ i to ToHd via the log-
arithmic map logo : Hd → ToH

d . For the Lorentz representation
this logarithmic map is defined as [5]:

logo(x) =
√
k arcosh

(
−
⟨o, x⟩L

k

) x + 1
k ⟨o, x⟩Lo

∥x + 1
k ⟨o, x⟩Lo∥L

(8)

where x ∈ Hd , o ∈ Hd and x , o. The resulting vectors serve as
input to the first GCN layer and we denote them as z(0)u and z(0)i :

z(0)u = logo(θu ) z(0)i = logo(θ i ) (9)

Given the user and item neighborhoods Nu and Ni , each graph
convolutional layer is computed by aggregating neighborhood rep-
resentations from the previous layer:

z(l+1)u = z(l )u +
∑
i ∈Nu

1
|Nu |

z(l )i z(l+1)i = z(l )i +
∑
u ∈Ni

1
|Ni |

z(l )u

(10)

We apply normalization by degrees |Nu | and |Ni | to ensure that the
scale of embeddings does not increase with the number of layers.
Each layer aggregates over increasingly higher order neighbors
allowing to explicitly model long range relationships between users
and items.

To fully exploit higher order relations we need to stack multi-
ple graph convolutional layers together. However, previous work
has found that stacking layers often results in significant drop in
performance (even after several layers) due to gradient vanishing
or over-smoothing [40]. To mitigate the depth limitation we ex-
plore architectures that contain skip connections motivated by the
residual networks [13] and related work on deep GCNs [21]. The ar-
chitectures that we consider are shown in Figure 2. Here, PlainGCN
is the original model and SkipGCN, ResGCN, and DenseGCN have
different structures of skip connections. SkipGCN contains skip
connections from each layer to the final layer, ResGCN has residual
connections between consecutive layers and DenseGCN combines
SkipGCN and ResGCN. Empirically we find that SkipGCN performs
the best in the hyperbolic setting and adopt this architecture for
HGCF. Empirical comparison of these architectures is shown in
Section 5.3.

Under SkipGCN the last layer aggregates representations from
all intermediate layers and we get zu = z(L)u + z(L−1)u + ... + z(1)u ,
and zi = z(L)i + z(L−1)i + ... + z(1)i , where L is the total number of
layers. The final embedding for each user and item is obtained by
applying the exponential map in Equation 6 to project the output
of SkipGCN back into the hyperbolic space:

ψu = expo(zu ) ψi = expo(zi ) (11)

The updated embeddings now encode rich neighbor information,
and we use the hyperbolic distance dL(ψu ,ψi ) to estimate similar-
ity between user-item pairs.

4.3 Hyperbolic Margin Ranking Loss
The margin ranking loss has proven to be highly effective for
distance-based recommender models [15, 34]. This loss aims to
separate positive and negative user-item pairs up to a given margin.
Once the margin is reached the pairs are considered well separated
and no longer contribute to the loss. This enables optimization to
continuously re-focus on difficult pairs that violate the margin. We
adopt this loss in our model and optimize for margin separation in
the hyperbolic space. Formally, for each useru we sample a positive
item i with Rui = 1 and a negative item j with Ruj = 0, the goal is
to separate i from j by their distance to u:

L(u, i, j) = max
(
dL(ψu ,ψi )

2 − dL(ψu ,ψ j )
2 +m, 0

)
(12)

where dL is the hyperbolic distance (see Equation 2) andm is the
margin. Note that once the difference dL(ψu ,ψi )

2 − dL(ψu ,ψ j )
2
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(a) (b)

Figure 3: Margin ranking loss analysis in hyperbolic and Euclidean spaces. (a) Positive items are pushed closer to user while negative items
are pushed outside the margin. Items in the hyperbolic space can be more concentrated while maintaining desired separation from each other
since distances grow exponentially as we get closer to the sphere boundary. (b) Number of points that can be placed in two dimensional
hyperbolic and Euclidean spaces at a given radius r from the user while maintaining a distance of at least s = 0.1 between each other.

is larger than the margin the loss becomes 0 and the item pair stops
contributing to the gradient.

Despite strong performance, recent work has found that margin
ranking loss with Euclidean distance can have a drawback where
dissimilar items get pushed together [22]. One possible explana-
tion for this phenomenon is that there isn’t enough capacity to
lay out the items so that they are both a minimum distance away
from the user and from each other. We can analyze the number
of items that can be placed at a fixed distance r from the user
while also maintaining a separation of at least s from each other.
In the Euclidean space this is bounded by the growth of the hy-
persurface {x ∈ Rd : d(x ,u) = r }, which is a polynomial on r
of degree d − 1. In the hyperbolic space, the growth of the space
{x ∈ Hd : dL(u,x) = r } is exponential on r . For example, when
d = 2 the number of points is

⌊ 2π r
s

⌋
in the Euclidean space and⌊

2π sinh(r )
s

⌋
in the hyperbolic space with curvature c = −1. This

is illustrated in Figure 3 where we contrast the Poincaré hyper-
bolic space with its Euclidean analog in two dimensions. Points in
the hyperbolic space can be significantly more concentrated while
maintaining the desired separation since distances grow exponen-
tially near the sphere boundary. Our analysis indicates that margin
ranking learning in the hyperbolic space has more solutions that
adequately separate the items and avoid the undesirable collapse.
This property can be a significant advantage particularly for large
scale CF problems that have many users and items many of which
are similar.

4.4 Model Training and Inference
Our aim is to optimize the user and item embeddings {θu }u ∈U
and {θ i }i ∈I , and we apply the Riemannian SGD (RSGD) [2, 29, 37]
to learn these parameters. RSGD mimics the stochastic gradient
descent optimization while taking into account the geometry of
the hyperbolic manifold. Following [29] and [37], given a user
embedding θ (t )u at iteration t , our optimization procedure consists
of the following steps:

(1) Compute the gradient of the loss in Euclidean space ∇L =
∂L/∂θu , ∇L ∈ Rd+1. This gradient is computed by first finding

Table 1: Dataset statistics.

Dataset #User #Item #Interactions Density

Amazon-CDs 22,947 18,395 422,301 0.100%
Amazon-Books 52,406 41,264 1,861,118 0.086%
Yelp2020 91,174 45,063 1,940,014 0.047%

the partial derivative ∂L/∂ψu and then applying the chain rule
to back-propagate it through the SkipGCN.

(2) Compute the Riemannian gradient ∇Hd
L by first computing

h(t ) = д−1
L
∇L and then projecting h(t ) onto T

θ (t )
u
Hn :

∇Hd
L = h(t ) +

⟨θ (t )u ,h
(t )⟩L

k
θ (t )u

Here, ∇Hd
L is a vector on the tangent space ofHd that gives

the direction of steepest descent.
(3) Estimate the update step using the exponential map and update

the embedding with step size η (learning rate):

θ (t+1)u = exp
θ (t )
u

(
−η∇Hd

L
)

To prevent overfitting we additionally apply weight decay during
the update controlled by the hyper-parameter λ.

Once the model is trained we run run inference to recommend
new items to each user.We compute the squared hyperbolic distance
onHd between user u and every item in the dataset that is not in
the training set. We then select top items with the smallest distance
and output them as recommendations for u.

5 EXPERIMENTS
We conduct extensive experiments on public datasets and bench-
mark HGCF against leading CF baselines. We use the Amazon-CDs,
Amazon-Books and Yelp2020 datasets, and their statistics are sum-
marized in Table 1. These datasets vary in size and sparsity provid-
ing a robust performance measure. Each dataset is split into the
80-20 training and test sets, and all models are evaluated on the test
set using Recall and NDCG metrics. Following previous work, we
convert the ratings into binary preferences by applying a threshold
≥ 4 which simulates the implicit feedback setting [15, 25, 36].
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Table 2: Recall (top table) and NDCG (bottom table) results for all datasets. The best performing model on each dataset and metric is
highlighted in bold, and second best model is underlined. Asterisks denote statistically significant Wilcoxon signed rank test for the difference
in scores between the best and second best models.

Datasets BPRMF WRMF VAE-CF TransCF CML LRML SML NGCF LightGCN HAE HVAE Ours

Amazon-CD R@10 0.0779 0.0863 0.0786 0.0518 0.0864 0.0502 0.0475 0.0758 0.0929 0.0666 0.0781 0.0962*
R@20 0.1200 0.1313 0.1155 0.0791 0.1341 0.0771 0.0734 0.1150 0.1404 0.0963 0.1147 0.1455*

Amazon-Book R@10 0.0611 0.0623 0.0740 0.0407 0.0665 0.0522 0.0479 0.0658 0.0799 0.0634 0.0774 0.0867*
R@20 0.0974 0.0919 0.1066 0.0632 0.1023 0.0834 0.0768 0.1050 0.1248 0.0912 0.1125 0.1318*

Yelp2020 R@10 0.0325 0.0470 0.0429 0.0247 0.0363 0.0326 0.0319 0.0458 0.0522 0.0360 0.0421 0.0543*
R@20 0.0556 0.0793 0.0706 0.0424 0.0638 0.0562 0.0544 0.0764 0.0866 0.0588 0.0691 0.0884*

Datasets BPRMF WRMF VAE-CF TransCF CML LRML SML NGCF LightGCN HAE HVAE Ours

Amazon-CD N@10 0.0610 0.0651 0.0615 0.0396 0.0639 0.0405 0.0361 0.0591 0.0726 0.0565 0.0629 0.0751*
N@20 0.0974 0.0817 0.0752 0.0488 0.0813 0.0492 0.0456 0.0718 0.0881 0.0657 0.0749 0.0909*

Amazon-Book N@10 0.0594 0.0563 0.0716 0.0392 0.0624 0.0515 0.0422 0.0655 0.0780 0.0709 0.0778 0.0869*
N@20 0.0971 0.0730 0.0878 0.0474 0.0808 0.0626 0.0550 0.0791 0.0938 0.0789 0.0901 0.1022*

Yelp2020 N@10 0.0283 0.0372 0.0353 0.0214 0.0310 0.0287 0.0255 0.0405 0.0461 0.0331 0.0371 0.0458
N@20 0.0512 0.0506 0.0469 0.0277 0.0428 0.0369 0.0347 0.0513 0.0582 0.0409 0.0465 0.0585*

Table 3: Ablation analysis on the Amazon-CD and Amazon-Book
datasets. LM is the latent model in Euclidean space optimized with
margin ranking loss. LM+H is the hyperbolic version of LM, and
LM+GCN adds SkipGCN to LM in Euclidean space. Our HGCF
model is LM+GCN+H. Training and inference (top-k item retrieval)
times are also shown for each model.

Arch. Amazon-CD Amazon-Book

R@10 R@20 Train
(sec/epoch)

Inference
(ms/user) R@10 R@20

LM 0.054 0.086 0.37 ± 0.03 7.9 ± 1 0.041 0.069
LM+H 0.061 0.096 0.49 ± 0.06 11.3 ± 1 0.045 0.074
LM+GCN 0.086 0.131 1.04 ± 0.08 7.9 ± 1 0.077 0.117
HGCF 0.096 0.145 1.21 ± 0.02 11.3 ± 1 0.087 0.132

Experimental Settings We set the embedding dimension to
50 and adopt the same negative item sampling strategy across
all models to make comparison fair. For all methods we follow the
suggested settings in authors’ code repositories, and use grid search
with cross validation to select the best combination. Regularisation
weight has a significant effect on performance and is selected from
the same set of {0.00001, 0.0001, 0.001, 0.01, 0.1, 1} for each model.
For WRMF, we select the positive item weight from {1, 10, 100,
1000, 10000}. For VAE-CF, we select the corruption value from {0.2,
0.3, 0.4, 0.5}. For margin-base methods we sweep over margins in
[0.01, 2] and select 1.9 for CML and 1 for TransCF, LRML and SML.
Additionally, for SML the λ and γ parameters are set to their default
values of 0.01 and 10 which we found to work well. For HAE and
HVAE we set curvature to 0.005 and use one layer in the encoder
and decoder. Finally, for NGCF and LightGCN we set the number
of GCN layers to 3 after evaluating architectures with 1-4 layers.

For our model, we set learning rate to 0.001, curvature c = −1 and
use 3 graph convolution layers in SkipGCN for all datasets. Weight
decay and margin are chosen separately for each dataset from the
same base set as the baselines. All experiments are conducted with
PyTorch on a server with 40 Intel Xeon CPU@2.20GHz cores and
Nvidia Titan V GPU.

Table 4: Amazon-CD Recall@20 results for different GCN archi-
tectures (see Figure 2) as number of layers is varied from 1 to 4. All
models are trained in hyperbolic space.

Number
of layers PlainGCN SkipGCN ResGCN DenseGCN

1 0.1418 0.1418 0.1418 0.1418
2 0.1134 0.1440 0.1440 0.1440
3 0.0795 0.1455 0.1433 0.1265
4 0.0511 0.1457 0.1291 0.0980

5.1 Results
The results on all datasets are presented in Table 2. We see that
HGCF consistently outperforms all baselines on all datasets andmet-
rics except NDCG@10 on Yelp2020. The performance improvement
relative to the best baseline LightGCN is larger on the more dense
Amazon datasets. In particular, HGCF outperforms LightGCN by
8.5% in Recall@10 and 11.4% in NDCG@10 on the Amazon-Book
dataset. These results indicate that hyperbolic representation can
be effectively combined with GCNs in the recommendation setting,
and can outperform state-of-the-art Euclidean GCN models.

We also see that our model outperforms the other hyperbolic
baselines HAE and HVAE. Although both HAE and HVAE also learn
hyperbolic use-item representations, they do so through autoen-
coders that take the entire interaction matrix as input and apply
dense hyperbolic layers to encode and decode. This introduces sig-
nificant additional training parameters that can make these models
difficult to optimize on large datasets. Moreover, the autoencoder
is optimized with the cross-entropy loss that treats each user-item
pair separately, and can thus be a poor proxy for the target metrics
such as NDCG that are ranking based. In contrast, our approach
has no additional parameters beyond the user and item embed-
dings, and uses margin rank learning that optimizes the hyperbolic
embeddings for relative order.



HGCF: Hyperbolic Graph Convolution Networks for Collaborative Filtering WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

0 20 40 60
Iterations

994.62

994.98

995.34

995.71

996.07

Tr
ai

n 
Lo

ss

(a) PlainGCN

0 20 40 60
Iterations

221.6

364.9

508.2

651.5

794.8

Tr
ai

n 
Lo

ss

(b) SkipGCN

Figure 4: PlainGCN and SkipGCN training curves for the first 60
iterations. Y-axis shows the total margin ranking loss at the end of
each iteration.

5.2 Ablation Analysis
To asses the contribution from each component of HGCF to the
overall performance we conduct an extensive ablation study with
results shown in Table 3. Here, LM is the latent model that learns
user and item embeddings with margin ranking loss in Euclidean
space. LM+H is a hyperbolic version of LM where all embeddings
are in hyperbolic space and are optimized using hyperbolic mar-
gin ranking loss. LM+GCN adds the SkipGCN module to LM but
all learning is still done in Euclidean space. Finally, our model is
LM+GCN+H that has both the SkipGCN module and hyperbolic
representations. For each model we also show training and infer-
ence run time. Inference time denotes the time to retrieve top items
for each user. Note that before inference we make forward passes
through the GCN and cache the final user and item representations.

From the results in Table 3, we see that LM+H performs bet-
ter than LM indicating that margin learning in hyperbolic space
leads to better representations. This can be potentially attributed
to the additional capacity that the hyperbolic space provides for
margin separation towards the sphere boundary (as discussed in
Section 4.3). We also see that adding the SkipGCN module to LM
leads to a very significant improvement. This is consistent with pre-
vious work which shows that capturing higher order relationships
through GCN is highly beneficial for CF [14, 36]. Finally, combining
LM+GCN with hyperbolic learning produces the best results and
further supports the conclusion that hyperbolic learning can be
effectively combined with GCNs to maximize performance from
both components.

From runtime results we see that, as expected, each additional
component adds computational overhead during training. The most
expensive part is the GCN module which computes multiple levels
of embedding aggregation. Relative to that, the overhead from hy-
perbolic optimization is relatively minor. Overall, our HGCF model
is approximately 3x more expensive to train than the LM base-
line, but nearly doubles Recall@10 on the Amazon-CD and more
than doubles it on the Amazon-Book datasets. During inference the
GCN computation is cached so the difference is only in computing
the hyperbolic distance vs dot product or squared distance in the
Euclidean space. We see that the hyperbolic distance is around
40% more expensive than the Euclidean equivalent and inference
increases from 7.9ms to 11.3ms per user.

Table 5: Recall@20 on Amazon-CD and Amazon-Book datasets as
embedding dimensionality d is varied from 50 to 20.

Model Amazon-CD Amazon-Book
d=50 d=30 d=20 d=50 d=30 d=20

LightGCN 0.1406 0.1271 0.1155 0.1248 0.1074 0.0938
HGCF 0.1455 0.1360 0.1233 0.1318 0.1184 0.1042

Rel. Improv. 3.48% 7.00% 6.75% 5.60% 10.24% 11.08%

5.3 Comparison of GCN Architectures
We evaluate the effect that different residual and skip connection
GCN architectures have on model performance. Table 4 shows
Amazon-CD Recall@20 results for the architectures introduced in
Section 4.2. We see that PlainGCN suffers from significant drop
in performance even after 2 layers. This is consistent with previ-
ous work which also observed that stacking GCN layers quickly
degrades performance [6, 40]. We note here that previous analysis
was done in Euclidean space and our results show that this problem
also persists in hyperbolic space.

We additionally see that architectures with skip/residual connec-
tions perform better. Up to the first two layers these architectures
are all identical and don’t suffer from the same drop in perfor-
mance as PlainGCN. However, after 2 layers SkipGCN continues to
improve whereas ResGCN and DenseGCN start to drop in perfor-
mance, and this drop becomes worse as more layers are added. We
hypothesize that this happens because residual connections lead
to significant over-smoothing making some representations indis-
tinguishable. These results indicate that skip connections directly
to the last layer provide a simple way to deal with optimization
problems in deeper models, and work well in hyperbolic space.
Figure 4 further shows the training curves for the 3-layer PlainGCN
and SkipGCN models. The margin ranking loss barely decreases
in PlainGCN after 60 interactions which further demonstrates the
problem with deep GCN optimization. SkipGCN on the other hand
can make swift progress with nearly 4x loss reduction.

5.4 Dimensionality Robustness
From our hyperbolic margin ranking loss analysis in Section 4.3,
we concluded that hyperbolic space has more capacity to arrange
points such that they satisfy distance margin requirements. This
property is particularly important at lower dimensions where there
are fewer degrees of freedom available. We evaluate this by reduc-
ing the embedding dimension d and comparing the performance
of HGCF with the strongest Euclidean GCN baseline, LightGCN.
The results are shown in Table 5. We observe that as embedding
dimensionality is decreased from 50 to 20, both relative and abso-
lute performance improvement of HGCF over LightGCN widen. In
other words LightGCN suffers more from dimensionality reduction
than HGCF. This reflects the advantage of hyperbolic geometry
and the exponential expansion property of hyperbolic space [28].
Stronger performance with smaller embeddings can be highly rele-
vant for large-scale recommender systems where both storage cost
and retrieval speed are directly affected by embedding size.

5.5 Embedding Analysis and Visualization
The rich structure of hyperbolic space has been used to provide
meaningful insights into the underlying data structure [28]. In this
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(a) Item embeddings before the graph convolution layers.

(b) Item embeddings after the graph convolution layers.

Figure 5: HGCF item embedding visualisation in the Poincaré representation of hyperbolic space before and after the SkipGCN graph
convolutional layers. HGCF is trained with 4 graph convolutional layers and embedding dimension set to 2. Items are categorized into
quartiles by popularity with [75, 100] representing the most popular items.

section we use the Poincaré formulation of hyperbolic space to visu-
ally analyse the embeddings learned by our model. We use a 4-layer
HGCF model trained with embedding dimension set to 2 which al-
lows to visualize the learned embeddings. To understand the effect
of graph convolutions we plot item embeddings θ i andψi before
and after the SkipGCN module. The items are further segmented
by the number of interactions (popularity) and we separately color
each quartile.

Figure 5 shows these embedding plots for each of the three
datasets. Before the graph convolution layers, items are organized
in a circular region and are shuffled within that space. On the other
hand, after the graph convolution layers, a clear hierarchy appears
according to popularity. In the Amazon datasets this hierarchy is
reflected in an almost circular way with the most popular items
at the center and the less popular ones away from it. In the Yelp
dataset, the embeddings are able to leverage the homogeneity of
the hyperbolic space which leads to not only organization of items
according to their popularity but also creation of different clusters
of popular items.

We further visualize the differences between Euclidean and hy-
perbolic embeddings by plotting distance to the origin from each
item vs its popularity. Figure 6 shows this plot for the Euclidean
BPR and HGCF models trained on the Amazon-CD dataset with
embedding dimension set to 2. We observe that BPR tends to clus-
ter less popular items at specific distance from the origin. HGCF
on the other hand has a clear exponential trend where distance
to the origin increases exponentially for less popular items. This
demonstrates that our model takes advantage of the exponentially
growing volume in hyperbolic space and uses it to naturally cluster
the items.

(a) BPR (b) HGCF

Figure 6: Distance from item embedding to origin (0, 0) vs item
popularity for the Euclidean BPR model and HGCF. Both models
are trained on the Amazon-CD dataset with embedding dimension
set to 2.
6 CONCLUSION
In this paper, we propose a hyperbolic GCN collaborative filter-
ing model HGCF. Each user and item embeddings is defined on
hyperbolic space and then passed through multiple layers of skip-
connected graph convolutions to encode higher order neighbor
information. We adopt the margin ranking loss on the final embed-
dings produced by the GCN, and demonstrate that it has desirable
separation properties under the hyperbolic learning setting. Ex-
periments on three real-world datasets demonstrate that HGCF
produces competitive performances compared to many state-of-
the-art approaches and encodes meaningful structure in the learned
representations. Future work involves further investigation into
hyperbolic GCNs and in particular a direct way of modeling these
architectures in the hyperbolic space.
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