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Abstract

We study the random composition of a small family of O(n3) simple permutations on {0, 1}n.
Specifically we ask what is the number of compositions needed to achieve a permutation that
is close to k-wise independent. We improve on a result of Gowers [7] and show that up to
a polylogarithmic factor, n3k3 compositions of random permutations from this family suffice.
Additionally, we introduce a new notion analogous to closeness to k-wise independence against
adaptive adversaries and show the constructed permutation has the stronger property. This
question is essentially about the rapid mixing of the random walk on a certain graph which
we establish using a new approach to construct the so called canonical paths, which may be of
independent interest. We also show that if we are willing to use a much larger family of simple
permutations then we can guaranty closeness to k-wise independence with fewer compositions
and fewer random bits.

1 Introduction

A question that occurs naturally in cryptography is how well the composition of permutations drawn
from a simple distribution resembles a random permutation. Although this type of construction is
a common source of security, the mathematical justification for it is troubling, and is one of the
motivations of this work. This motivation is discussed in more detail in Section 6.

A source is pseudo-random if it is random in the computational sense, namely no computationally
bounded machine can distinguish it from a truly random one. Another natural and well studied
measure for randomness, although lacking an obvious linkage to computational considerations, is
the notion of almost k-wise independence. In the context of permutations it means that the values
of any k distinct elements in the domain, is approximately uniformly distributed among the sets
of k distinct elements. We can now form the following question. Consider a small set of simple
permutations, which we call basic permutations, on binary strings of length n, and compose random
elements of this set T times to get a permutation f . Is this permutation pseudo-random? How
far is f from a k-wise independent permutation? The second question is the focus of this paper;
specifically we bound from above the number of times T we need to compose the basic permutations
in order to get a good enough approximation to a k-wise independent permutation.

In [7] T. Gowers studied this question. The basic permutations he considered were the ones that
fix all but three coordinates of the n-bit strings, namely a set of size O(n3) (which is a tiny
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fraction of the 2n! possible permutations). Gowers managed to show that when composing 1

Õ(n3k(n2 +k)(n3 +k)) basic permutations randomly, the result is a distribution over permutations
that is close to k-wise independent, provided a certain divisibility condition regarding n and k
applies. Here we show that by using this set of permutations (or in fact even a more restricted
set) and without any additional conditions, that it is enough to compose the basic permutation
Õ(n3k3) times to get the above guarantee.

Our question is essentially one of the mixing rate of a random walk on the graph whose vertices are
k-tuples of distinct n-bit strings, and whose edges are induced by the obvious operation of basic
permutations on the vertices. The mixing rate of this graph is exactly that minimal number of
composition T we seek. Using the well known connections between the combinatorial/algebraic
properties of graphs to the mixing rate of random walks on them, our goal is to show proper
expansion/conductance/spectral gap for our graphs. In the course of showing that we improve
Gowers’ upper bound on the diameter of this graph from O(kn2) to Õ(kn) which is tight. For
estimating the conductance of the graph we present a new and general way to construct the so
called canonical paths in a wide class of graphs (Cayley graphs or more generally Schreier graphs)
and provide an “algorithmic” flavour to showing mixing. We believe that this technique (essentially
Lemma 4) can be useful in showing rapid mixing for other Markov chains.

Another contribution of this work is the notion of strong closeness to k-wise independence which is
a strengthening of the usual closeness to k-wise independence. Given a permutation f drawn from
a partricular distribution, how well can a computationally unbounded machine that is allowed to
query f k times, distinguish it from a truly random permutation. We show an upper bound on the
number of compositions needed to satisfy this stronger property.

To state our results we need to define our basic permutations. We look at permutations that change
just one bit of their input, by XORing it with a function on few other bits. Formally, for 0 < w < n
we define Fw to be the set of permutations fi,J,h where i ∈ [n], J = {j1, . . . , jw} is a size w index
set disjoint from i, and h is a boolean function on {0, 1}w. fi,J,h then maps (x1, . . . , xn) ∈ Ω
to (x1, . . . , xi−1, xi ⊕ h(xj1 , . . . , xjw), xi+1, . . . , xn). Clearly F2 is a subset of Gowers’ set of basic
permutations. Also note that |Fw| = n · (n−1

w

) · 22w
. Our main results are.

Theorem 1. Let k = O(2n/4), and let T be the minimal number of random compositions of
independent and uniformly distributed permutations from F2 needed to generate a permutation
which is strong ε-close to k-wise independent. Then T = Õ(n2k2 · (log(1/ε) + nk)).

It is interesting to note that in some sense F2 or the set of basic permutations Gowers used are
minimal in order for the graph decribed above is connected for k ≥ 4 2. As Gowers notes, the
connectedness for these sets is not immedaitely obvious; it does in fact follow from older results, eg
[5]. If instead of striving to achieve the minimal set of basic permutations we want to use as little
as possible true random bits in order to get k-wise independence, it is interesting to check other
candidates to be our sets of basic-permutations. This number of random bits is simply the log2 of the
number of basic permutations times the number of times we compose them. Therefore, Theorem 1
tells us Õ(n3k3) random bits suffice to get the desired property. It follows from the next theorem
that one can use as little as Õ(n2k2) such bits, when insted of F2 we take F2 log k+log n+log log n+8.

1the tilde suppresses polylogarithmic factors in n and k
2connectedness of the graph is clearly a necessary condition for generating almost k-wise independent distribution

of permutations
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Theorem 2. Let T be the minimal number of random compositions of independent and uniformly
distributed permutations from Fw for w ≥ 2 log k + log n + log log n + 8, needed to generate a
permutation which is ε-close to k-wise independent. Then

T = O(log(1/ε) · n · log n · (log k + log n)).

If instead we consider strong ε-closeness to k-wise independence, then

T = O(log(1/ε) · n2k · log n · (log k + log n)).

2 Preliminaries

Let f be a random permutation on some base set X. Denote by X(k) the set of all k-tuples of distinct
elements from X. We say that f is ε-close to k-wise independent if for every (x1, . . . , xk) ∈ X(k)

the distribution of (f(x1), . . . , f(xk)) is ε-close to the uniform distribution on X(k). We measure
the distance between two probability distributions p, q by the total variation distance, defined by

d(p, q) =
1
2
||p− q||1 =

1
2

∑
ω

|p(ω)− q(ω)| = max
A

∑

ω∈A

p(ω)− q(ω).

We sometimes abuse notation, and replace p or q by a random variable having this distribution.

Assume a group H is acting on a set X and let S be a subset of H closed under inversion. Then
the Schreier graph G = sc(S, X) is defined by V (G) = X and E(G) = {(x, xs) : x ∈ X, s ∈ S}.
Also, for a sequence ω = (s1, . . . , sl) ∈ Sl we denote xω = xs1 · · · sl. We will sometimes refer by
xω also to the walk x, xs1, . . . , xs1 · · · sl.

The random walk (X0, X1, . . .) assoicated with a d-regular graph G is defined by the transition
matrix Pvu = Pr(Xi+1 = u|Xi = v) which is 1/d if (v, u) ∈ E(G) and zero otherwise. The uniform
distribution π is stationary for this Markov process. If G is connected and not bipartite, we know
that given any initial distribution of X0, the distribtion of Xt tends to the uniform distribtion. We
define the mixing time of G as τ(ε) = maxv∈V (G) min{t : d(P (t)(v, ·), π) < ε}, where P (t)(v, .) is the
probability distribution of Xt given that X0 = v.

It is not hard to prove (see for example Lemma 20 in [1]) that

τ(2−l−1) ≤ l · τ(
1
4
). (1)

3 Strong closeness to k-wise independence

Let F be a distribution of permutations f : Ω → Ω. We can think of k-wise independence in the
following terms: a (computationally unbounded) adversary chooses a tuple ~x ∈ Ω(k); it is then
given either an element at random from Ω(k) or the element f(~x) for a random f ∈ F ; and finally
it is asked to distinguish the two distributions. To say that a distribution is k-wise independent
(resp. ε-close k-wise independent) is to say that the distinguishing probability is 0 (resp. less than
ε) for all adversaries. One can strengthen the notion of adversary to permit it to adaptively choose
~x. Such an adversary is a tuple A = (α1, ..., αk, A), where αi : Ω(i−1) → Ω and A : Ω(k) → {0, 1}.
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The adversary iterates through k steps, where in the ith step it requests αi(r1, .., ri−1) and gets
response ri. After the kth step it outputs A(r1, ..., rk).

In the case of (strict) k-wise independence it can be shown that such a strengthening cannot help
the adversary distinguish the distributions. This is not the case for ε-close k-wise independence.
Consider the uniform distribution over the set F of permutations f : Ω → Ω where f = f−1,
and the case k = 2. For every (x1, x2) ∈ Ω(2), the process of choosing a random f ∈ F and
outputting (f(x1), f(x2)) results in a distribution close to the uniform one over Ω(2). In contrast,
consider an adaptive adversary A distinguishing the same distributions: let A = (α0, α1, A), where
α0 = 0n, α1(x) = x and A(r1, r2) outputs 1 if r2 = 0n and outputs 0 otherwise. Note that if
(r1, r2) = (f(0n), f(f(0n))) then A outputs 1. Alternatively if (r1, r2) is chosen uniformly from Ω(2)

then A outputs 0 w.h.p.. Therefore, A effectively distinguishes between the two distributions.

This motivates the following definition: a distribution F is said to be strongly ε-close k-wise inde-
pendent if it is ε-close to k-wise independent against adaptive adversaries. We will now show that
any distribution of functions that is ε-close to k-wise independent using a strong distance measure
is also strongly ε-close to k-wise independent. The distance notion we have in mind is relative
pointwise distance. The relative pointwise distance, or drp, between probability distributions p and
q over Ω is: drp(p, q) = maxω∈Ω |p(ω)− q(ω)|/p(ω).

Suppose that in an experiment an adversary, A = (α1, ..., αk, A), has adaptively chosen ~x as its
queries and received ~r as its replies. Note that ~r and (α1, ..., αk) fix ~x, and therefore there exists
an associated function α : Ω(k) → Ω(k) that maps replies ~r to the corresponding queries ~x.

Let p~r and q~r denote the probabilities of A = (α1, ..., αk, A) selecting ~x and receiving ~r in the
respective experiments where ~r is chosen uniformly in Ω(k) and where ~r = f(~x) for f chosen
uniformly in F . Let I = {~r|A(~r) = 1}. Then:

Pr
~r∈Ω(k)

[A(~r) = 1]− Pr
f∈F

[A(~r) = 1] =
∑

~r∈I

(p~r − q~r) ≤
∑

~r∈I(p~r − q~r)∑
~r∈I p~r

≤ max
~r∈I

|p~r − q~r|
p~r

≤ max
~r

|p~r − q~r|
p~r

= v

Let ~s be a tuple attaining the last maximum, and let ~y = α(~s). Now let q′ be the distribution f(~y)
where f is chosen uniformly on F . Observing that q′~y = q~y we see that:

v =
|p~y − q~y|

p~y
=
|p~y − q′~y|

p~y
≤ drp(p, q′).

Finally, we note that if a distribution is ε
|Ω(k)| -close to k−wise independent then it is strongly ε-close

to k-wise independent.

4 Mixing with width two permutations

One method to prove that the random walk on G mixes rapidly is to use the Canonical Paths
method of Jerrum and Sinclair [9, 10, 8] to obtain a lower bound on its conductance

Φ(G) = min
A⊆V (G), |A|≤|V |/2

|E(A, A)|
d · |A| , (2)
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where A = V (G) \ A, and E(A, A) = {(v, u) ∈ E(G) : v ∈ A and u 6∈ A}. A fundamental result
relating conductance and rate of mixing is the following. We say that a random walk is lazy if for
some constant δ > 0 we have Pr[Xt+1 = v|Xt = v] ≥ δ for all v ∈ V (G).

Theorem 3. (Jerrum and Sinclair [9]) If the random walk on G is lazy then τ(ε) = O
(
Φ−2 · log(|V (G)|/ε)

)
.

One method to derive a lower bound on the conductance is the cannonical path technique of Jerrum
and Sinclair [8]. This technique essentially states the following simple mincut ≥ maxflow fact. If
one thinks of a d-regular graph as a network where edges have capacity Λ and it is possible to
transfer one unit of flow between every pair of vertices, then the conductance of the graph is at
least |V |

2dΛ . That is, in order to bound the conductance one can show a valid flow that requires a
small value of Λ (this is sometimes referred to as the load of the flow).

Being a Schrier graph, our graph lends itself to a special type of flow that we now introduce. Let
G = sc(S,X) and consider a probability distribution µ over finite sequences of elements of S. For
any x ∈ X, the distribution µ induces a distribution µx of the end points of paths starting at x,
where the probability of the path xs is µ(s). Assume first that µx is the uniform distribution over
X. Then for each x, y ∈ X we can build the following flow. For any sequence s of elements from
S, assign a flow µ(s) from x to the path xs, and to y for ys. We get a valid flow for G, where the
load of the edge e = (u, us) is 2 ·∑y

∑
x ηx,u,s = 2 · |X| ·∑x ηx,u,s, with ηx,u,s being the expected

number of occurences of e in a random path xω where ω has distribution µ. The factor of 2 follows
since the first and second halfs contribute the same load to e.

More generally, assume that that for all x the distrubution µx is ε-close to uniform in total variation
distance . Then for any vertex z, we compare µy(z) and µx(z). We define the same flow from x to
y as in the uniform case except that to get a valid flow we multiply the flow in the paths from x
to z by min(1, µy(z)/µx(z)), and the flow from z to y by min(1, µx(z)/µy(z)). This will result in a
flow of at least 1− 2ε from x to y. By scaling back to 1, we get a valid flow, where the load of e is
bounded by (1− 2ε)−1 · 2 · |X| ·∑x ηx,u,s.

Lemma 4. If µ, µx, Λ are as above, and for every x ∈ X the distribution µx is ε-close to uniform,
then Λ ≤ (1−2ε)−1 · |X| ·2L, where L = maxs∈S L(s) and L(s) is the expected number of occurences
of s in a random sequence with distribution µ.

Proof. Since the load on the edge e = (u, us) is bounded by (1 − 2ε)−1 · 2 · |X| · ∑x ηx,u,s, it is
sufficient to show that

∑
x ηx,u,s ≤ L for every u, s. Indeed, consider the process where we start

from a randomly chosen x ∈ X and follow a random sequence from µ. Notice that 1
|X| ·

∑
x ηx,u,s is

the expected number of times we hit e in this process. Since the initial vertex is chosen according
to the stationary distribution, the distribution of the vertex we traverse in the l’th move is always
uniform. Hence

∑
x ηx,u,s = |X| · 1

|X| · L(s) ≤ L.

From Lemma 4 we get the desired lower bound on the conductance:

Φ ≥ |X|
2dΛ

≥ 1− 2ε

4 · |S| · L. (3)

Note 5. It is possible to improve (3) by a factor of two, if, rather than constructing a valid flow,
we assign flow µ(s) to the path xs for all x and s. It is easy to see that for every vertex subset
Y ⊂ X, the flow from Y to its complement Y is at least |Y | · (|Y |/|X| − ε).
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Denote by L(G, ε) the minimal L achievable by any distribution on sequences of elements from S
such that for every x ∈ X the distribution of xω is ε-close to the uniform distiribution. Theorem 3
together with inequality 3 give

Corollary 6. τ(ε) ≤ O(|S|2 · L(G, 1/4)2 · log(|X|/ε)) whenever the random walk is lazy.

In order to prove that the composition of elements from F2 approaches k-wise independence quickly
we construct the Schreier graph Gk,n = sc(F2, Ω(k)), where Ω(k) is the set of k-tuple with k distinct
elements from the base set Ω = {0, 1}n. It is convenient to think of Ω(k) as the set of k by n
matrices with distinct rows. A basic permutation acts on Ω(k) by acting on each of the rows.

Our goal now is to define a distribution over sequences of permutations from F2 with the following
properties: (i) the application of a random sequence to any x ∈ Ω(k) yields a matrix that is almost
uniformly distibuted over Ω(k) and (ii) the load (the expected number of occurences) is small for
every s ∈ F2. More specifically, we want to show that

L(Gk,n, 1/4) = Õ(
kn

|F2|) = Õ(
k

n2
), (4)

which by Corollary 6 proves Theorem 1.

For brevity, we denote L(Gk,n, ε) by L(k, n, ε). Note that by (1) we have

L(k, n, ε) ≤ dlog(1/ε)e · L(k, n, 1/4). (5)

The rest of this section is devoted to proving (4). Here is an overview. A naive way to get a
random sequence that will turn any matrix to random would be to go over all its entries one by
one and to flip each entry independently with probability half. Such an approach ignores the fact
that whenever we apply an element s ∈ F2 on the matrix we act simultaneously on all the rows, so
independence is highly unlikely. But what if we apply what we call a characteristic permutatuions,
which is a permutation that flips a bit exactly when a specified set of a other bits have the values
~ν = (ν1, ν2, . . . , νa)? Intuitively most of the rows will not be affected by such a permutation. This
leads to a way of approximating the naive scheme. Here is how. First notice that since characteristic
permutatuions do not belong to F2 we need to compose elements of F2 in order to get them. To
this end we adapt a theorem of Cleve [4] and show (Appendix A) that any such permutation is a
composition of O(a2) elements from F2. We start our sequence by a relatively short sequence of
elements from F2 achieving almost 2-wise independence. Therefore, taking a set of a columns for
sufficiently large a, we get that whp any string ν of length a cannot occur in more than one row,
and we get our required handle on the rows. This is done in Lemma 9. Unfortunatly the value
of a needed turns out to be big, making the length of the resulting sequences long. This issue is
overcome in Lemmas 10 that bootstraps Lemma 9.

Next, with the benefit of foresight, we point out the following.

Observation 7. In Lemmas 8, 9 and 10 we will present distributions µ on sequences of elements
from F2 where certain f ∈ F2 seem to receive an undue load, as these permutations operate on
specified indices (columns) of interest. This is easy to overcome when we simly imagine the lemmas
applying over all possible permutations of the indices. Therefore, since there will always be three
indicies of interest, we get that the load on any particular permutation in F2 is at most O(λ/n3)
where λ is the maximal length of the sequences of µ.
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We turn to the lemmas establishing bounds on the needed load of the sequence distributions.

Lemma 8.

L(2, n, 1/4) = O(log n/n2).

Proof. Using Observation 7, it is enough to give a distribution over sequences ω of length O(n log n)
of elements from F2 that take any initial 2×n matrix with two distinct rows to a matrix 1/4-close to a
uniformly distributed matrix with two distinct rows. Lemma 11 shows that when we take sequences
of random elements from F2 (specified by the random walk) we get the desired distribution.

We now get to two lemmas that embed “algorithms” in the construction of the stochastic sequences.

Lemma 9. If k ≤ 2(n−8)/4 then

L(k, n, 1/4) ≤ L(2, n, 1/8k2) + O(k2 · log2 k/n2).

Proof. Let a be the integer satisfying 8k2 ≤ 2a < 16k2. We construct a random sequence ω by
starting with ω1 which is an L(2, n, 1/8k2) sequence. Given any k × n matrix x we know that the
rows of xω1 are 1/8k2-close to 2-wise independent. Let X be the expected number of pairs of rows
of xω1 that coincide in their first a coordinates. Then

E[X] ≤
(

k

2

)
· (2−a +

1
8k2

) ≤ k2

2
· 2
8k2

=
1
8
.

Therefore the probability that the first a columns of xω1 are do not have distinct rows is at most
1
8 . After ω1 we perform the following procedure ω2:

For i =a + 1, . . . , n
For α ∈ {0, 1}a

with probability 1
2 do gi,α,

where gi,α : {0, 1}n → {0, 1}n is the permutation that flips the i’th coordinate iff (x1, . . . , xa) is
equal to α. The permutation gi,α is implemented as a concatenation of O(a2) = O(log2 k) basic
permutations using lemma 12. If the first a columns of xω1 have distinct rows then the last n− a
columns of xω1ω2 have a uniform distribution.

We end the sequence ω by performing ω3

For i =1, . . . , a
For α ∈ {0, 1}a

with probability 1
2 do hi,α,

where hi,α flips the i’th coordinate iff the last a coordinates are equal to α. As before hi,α is
implemented as a concatenation of O(log2 k) basic permutations. After applying ω3, the first a
columns have uniform distribution if all the rows of the last a columns of xω1ω2 are distinct. Given
that the first condition holds, ie that all the rows of the first a columns of xω1 are distinct, the
second condition fails with probability bounded by k2

2 · 2−a ≤ 1
16 . Therefore, for ω = ω1ω2ω3, we

have that with probability at least 1 − 1
8 − 1

16 the distribution of xω is uniform. Therefore the
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distribution of xω is 3
16 -close to uniform. 3 The only condition we have to check is that the first

and last a columns are disjoint, ie 2a ≤ n. This is guaranteed if 16k2 ≤ 2n/2.

The length of the sequence ω2ω3 is bounded by O(k2n log2 k). By Observation 7 the load is
O(k2n log2 k/n3).

Lemma 10. If k ≤ 2(n−16)/4 then

L(k, n, 1/4) ≤ L(b, n, ε) + O(
k

n2
· log2 k),

where b = 2 + d1
3 log ke and ε = 1

32 · k−b−1.

Proof. Let a = 3 + dlog ke. Since 4a ≤ n, we can partition the columns of the matrix to four sets
C1, . . . , C4 of size a and the leftover C.

We start ω by ω1 which is an L(b, n, ε) sequence. For p ∈ {1, 2, 3, 4}, i 6∈ Cp and α ∈ {0, 1}a let
gi,α,p : {0, 1}n → {0, 1}n be the permutation that flips the ith bit of x if x|Cp

= α, where x|Cp

denotes the restriction of x to Cp. As before we implement gi,α,p as the concatenation of O(log2 k)
basic permutations.

Let ω2 be the following randomized procedure.

For i∈ [n] \ (C1 ∪ C2),
For α ∈ {0, 1}a with probability 1

2 do gi,α,C1

For β ∈ {0, 1}a with probability 1
2 do gi,β,C2 .

We argue that for any k × n matrix x the distribution of the columns [n] \ (C1 ∪ C2) of xω1ω2 is
uniform with high probability.

Given the matrix xω1 we build a bipartite multi-graph H over the sets V1 and V2 where V1 = V2 =
{0, 1}a, and where H has k edges, one for each row of the matrix. The edge associated with a row
of xω1 is between s1 ∈ V1 and s2 ∈ V2 if its restriction to Cp is sp for p = 1, 2. For perspetive we
relate our schema here to the previous lemma. There, we essentially looked at a block of the size of
C1 ∪ C2 and went over all possible values to this number of bits, hence a range which is of size k2

instead of k here. In terms of H, the claim there was that whp it does not contain any multi edges
and for that we needed the pairwise independence of the rows. Here we need a stronger property,
namely that H is cycle-free, and this will be possible to show using the stronger condition on xω1,
namely that it is an almost b wise independent matrix.

We first argue if H is cycle free then the distribution of the columns not in C1 ∪ C2 of xω1ω2 is
uniform. Fix i to be the column of interest. Let rα,i and sβ,i be the 2 · 2a random bits used to
generate the part of ω2 that is responsible for column i. For any edge e = (α, β)

(xω1ω2)e,i = (xω1)e,i ⊕ rα,i ⊕ sβ,i. (6)

For a given xω1 the probability of having a certain fixed column v as the i’th column is therefore
the number of solutions in the varaibles rα,i, sβ,i. This number is the same for every v if the linear

3 This argument actually proves that xω is 3
16

-close to the uniform distribution on Ωk. However, the uniform

distribution on Ωk and Ω(k) are o(1)-close.
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system (6) is of full rank. It is easy to see that the matrix defining this system is exactly the
incidence matrix of H. We now only need to use the well known fact that this matrix has a full
rank iff H does not contain a cycle.

We now turn to show that H is cycle free whp. Recall that H is a random bipartite graph with
k edges that is close to b-wise independent in the sense that any event in which at most b edges
are involved happens with almost the same probability it happens in a completely random graph
with k edges. Let El be the expected number of l-cycles for 2 ≤ l < b in the graph. We have
k · (k − 1) · · · (k − l + 1) ways to choose the l edges of the cycle. The edges connect properly with
probability at most 2−al + ε. Thus

El ≤ kl · (2−al + ε) ≤ 8−l +
1
32
· kl−b−1.

For cycles longer than b we cannot use the b-wise independence in the same way. Instead we bound
the probabiliy of having b edges creating a path to get a bound on the expected number of all
cycles of length ≥ b which is kb · (2−a(b−1) + ε) ≤ k · 8−(b−1) + 1

32 ≤ 3
64 . Therefore the total number

of cycles is bounded by
3
64

+
b−1∑

l=2

8−l +
1
32
· kl−b−1 ≤ 1

8
,

for a sufficiently large k.

As in the proof of lemma 9, we continue with the sequence ω3, which uses the two column sets C3

and C4 to change the columns C1 and C2 to the uniform distribution. Assume that H had no cycle
and therefore that ω2 succeeded. Then the graph H ′ formed by the C3 and C4 columns of xω1ω2

has uniform distribution over all bipartite graphs with vertex sets of size 2a and k edges. Therefore
the probability that H ′ has a cycle is certainly smaller than 1

8 , and we get that with probability
at least 3

4 the matrix xω1ω2ω3 is uniform. Therefore its distance from the uniform distribution is
≤ 1

4 (see footnote 3). Yet again, by Observation 7 we conclude the contribution of ω1, ω2 to L is
O(k log2 k/n2) and we are done.

Proof. (of Theorem 1)

We combine lemmas 8, 9 and 10 with inequality (5) to get

L(k, n, 1/4) ≤ O(L(b, n, 1/4) log2 k +
k

n2
log2 k)

≤ O(L(2, n, 1/8b2) log2 k +
b2

n2
log2 b log2 k +

k

n2
log2 k)

≤ O((log n log2 k log log k + log4 k log log2 k + k log2 k)/n2)
≤ O((log n + k) log2 k/n2).

By corollary 6, the mixing time of Gn,k is bounded by

τ(2−nk) = O(n6 · ((log n + k) log2 k/n2)2 · nk) = O((log n + k)2 · log4 k · n3k) = Õ(n3k3).
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5 Mixing with logarithmic width

As before we construct the Schreier graph Gk,n = sc(Fw,Ω(k)).

Lemma 11. For all w ≥ 1 the mixing time of G2,n is O(n log n).

Proof. Represent the state space of the walk by two vectors (s, u), where s is the first row of the
matrix and u is the mod 2 sum of the two rows. We describe the way we move in one step of the
random walk in this new representation. We choose a coordinate i at random, and then choose two
bits indpendently αs, αu with probability 1/2 and pl = (1 −∏w

j=1(1 − l
n−j ))/2 respectively, where

l is the number of ones in u not counting the ith bit. We then XOR to the ith bit of s and u the
bits αs and αu respectively. To see that this is indeed the resulting walk we observe the fact that
if s and t differ in one of the bits at which the random function h look at, then the value of the
ith coordinate of u and of t change independently with propability half. Otherwise they change
simultaniously with probability 1/2.

The u-component of this walk is a variant of the so called Aldous cube, and by the comment at
the end of [3] it follows that this walk mixes in O(n log n) time. We are left to show that in this
time the walk on both components mixes. The way to see it is to notice that in O(n log n) time the
event B where the indices i assume all possible values in 1, 2, . . . , n (coupon collector) occurs whp.
Even conditioning on B the walk on u gets close to uniform after O(n log n) steps. We now observe
that the walk on s conditioned on any set of indices i (satifying B) and on the bits αu, achieves
the exact uniform distribution, since the bits αs are independent of the bits αu and indices i.

Proof. (of Theorem 2)

To prove Theorem 2 it is enough to show that the mixing time of Gk,n is O(n · log n · (log k+log n)).
Consider a length T = T1 + T2 random walk ω = ω1ω2 on Gk,n, where |ω1| = T1 and |ω2| = T2.
We will choose T1, T2 so that for any x ∈ Ω(k), the matrix xω1 will be close to 2-wise independent,
and the distribution of the matrix xω will be close to uniform on Ωk, and so close to Ω(k). We let
T1 = cn log n · (log k + log n) for some absolute constant c and T2 = 2n log n and show the claimed
properties. By Lemma 11 we know that the mixing time of G2,n is O(n log n). Therefore by 1 we
can choose c so that after a length T1 walk in G2,n, we are δ-close to the uniform distribution, for
1/100k2T2.

Let ω2 = g1g2 · · · gT2 , where gt = fit,Jt,ht ∈ Fw. Given any x ∈ Ω(k), we know that the rows of the
matrix xω1 are δ-close to 2-wise independent. We argue that the distribution of xω1ω2 is close to
uniform on Ωk. Again, by coupon collector argument we know that the event that the indices i will
not assume all possible values after T2 steps is at most ε1 = 1/100. Instead of just proving that
the distribution of xω on Ωk is close to uniform, we prove something stronger. During the walk
ω2, at step t we change column it. Let Ct ∈ {0, 1}k be the new value of column it. We prove that
the distribution of C = (C1, . . . , CT2) on {0, 1}kT2 is close to uniform. We claim that conditioned
on any specific values of i = i1, . . . , iT2 and J = J1, . . . , JT2 such that the index set { i } is [n], the
distribution of C is ε2-close to uniform on {0, 1}kT2 , where ε2 = 1/5.

Once we prove this, we claim that d(xω, U) ≤ ε1 + ε2, where U is the uniform distribution over
Ω(k). First note that given i, J satisfying { i } = [n] there are n times t1, . . . , tn such that tl is the
last occurrence of l in the sequence i. Then xω = (Ct1 , . . . , Ctn) which means that xω is just a
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marginal of C and therefore is ε-close to uniform on Ωk. Therefore, for every subset A ⊂ Ωk,

Pr[xω ∈ A]− |A|
2kn

=
∑

i,J, { i }6=[n]

(Pr[xω ∈ A|i, J ]− |A|
2kn

) · Pr[i, J ] +

∑

i,J, { i }=[n]

(Pr[xω ∈ A|i, J ]− |A|
2kn

) · Pr[i, J ]

≤ ε1 + ε2 ≤ 1
4
.

We still have to prove that for any i, J satisfying { i } = [n], the distribution of C is ε2-close to U ′

which is the uniform distribution on {0, 1}kT2 . For the following argument, fix the value of i, J .
We would like to estimate Pr[C = y] for some y = (y1, . . . , yT2) ∈ {0, 1}kT2 , when the probability is
taken on the possible choices of ω1 and of the random permutations h = h1, . . . , hT2 . Since i, J are
known, for any t = 1, . . . , T2 we can determine which of the w indices in Jt refer to columns in xω1

and which refer to columns of C. Let A be the event that for all times t, the matrix referred to by
Jt has distinct rows. Therefore, given ω1 = α and C = y we can determine if A happened. Let Sy

be the set of all α such that A holds for α, y. Then

Pr[C = y|ω1 ∈ Sy] =
T2∏

t=1

Pr[Ct = yt|ω1 ∈ Sy, Ct′ = yt′ for all t′ < t] = 2−kT2 .

We argue that for most values of y, the function f(y) = Pr[ω1 6∈ Sy] is small. Consider y ∈ {0, 1}kT2

picked uniformly at random, and assume that w′ of the w indices in Jt, refer to columns in xω1.
Since xω1 is δ-close to 2-wise independent and since y is uniformly distributed, the probability
that any two rows of this matrix are identical is bounded by (2−w′ + δ) · 2−(w−w′) ≤ 2−w + δ.
Therefore, the expected value of f(y) is bounded by (2−w + δ) · T2 · k2/2 ≤ 1/100. Therefore the
size of the set of bad y’s, YB = {y ∈ {0, 1}kT2 : f(y) > 1/10} is at most 2kT2/10. If y 6∈ YB then
Pr[C = y] = Pr[C = y|ω1 ∈ Sy] · Pr[ω1 ∈ Sy] ≥ 9

10 · 2−kT2 . From the last two it easily follows that
d(C, U ′) ≤ 1

5 = ε2.

6 More on Motivation, Cryptography and Possible Extensions

A principle motivation for this work is the philosophy behind the construction of ”permutation
generators” such as DES and its successors. The goal is that the permutation generated from a
random key should look like a randomly chosen permutation, when examined by a computationally
limited adversary; this property is called ”pseudo-randomness”. The idea used by DES is to start
with a very simple function generator G, and then compose functions independently and randomly
chosen from G. (Actually, in order to keep the key short, the functions are not chosen independently,
but we will ignore this for now.) Because the adversary is allowed much more time than was
taken to compute the function, (almost) k-wise independence is neither necessary nor sufficient in
order to achieve pseudo-randomness. Regardless, k-wise independence is a very natural measure of
randomness, and one appealing question is what can (almost) k-wise independence tell us about
pseudo-randomness.

Here is one possible conjecture. Let us assume that the generator G we start with is such that each
possible permutation is ”simple”, where ”simple” might mean that each output bit depends on a

11



constant number of input bits. Say that T compositions from G suffice to achieve almost 4-wise
independence. Then we conjecture that T compositions suffice to achieve pseudo-randomness. Of
course proving this would show P different from NP, so this is unlikely. The conjecture is, however,
susceptible to disproof.

Why do we choose ”4-wise” in the above conjecture? For one thing, it is not hard to find examples
where 3-wise is not good enough. Also, there is a theorem – proven using the classification of finite
simple groups – that any collection of permutations satisfying 4-transitivity will, when composed
together, eventually yield at least the alternating group [2, 6].
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A An Adaptation of Cleve’s Lemma

We showing that characteristic permutatuions are easy to construct. This follows as a special case
of the following lemma, which is an adaptation of Theorem 5 in Cleve [4] to our setting.
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Lemma 12. Let h be a boolean function on s ≤ n−3 variables expressed as a circuit using fanin-2
xor/and gates at the nodes and variables, with zero/one constants at the leaves. Let d be the depth
of the circuit. Also, let i be disjoint from {1, . . . , s}. Then we can concatenate O(4d) basic F2

permutations to form the permutation gi,h mapping

(x1, . . . , xn) → (x1, . . . , xi−1, xi ⊕ h(x1, . . . , xs), xi+1, . . . , xn).

Proof. By induction on d. If d = 0 then h is a variable or a constant and therefore gi,h is already a
basic permutation. If h = h1⊕h2 then gi,h = gi,h1 ◦ gi,h2 . Otherwise h = h1 ∧h2. It can be verified
that

gi,h = fi,j,k ◦ gj,h1 ◦ fi,j,k ◦ gk,h2 ◦ fi,j,k ◦ gj,h1 ◦ fi,j,k ◦ gk,h2 ,

where fi,j,k is the basic permutation mapping (x1, . . . , xn) to (x1, . . . , xi⊕xj∧xk, . . . , xn) and j 6= k
are two coordinates disjoint from {1, 2, . . . , s} ∪ {i}.
The length of the sequence l(d) satisfies the recurrence l(d) ≤ 4 + 4 · l(d− 1) for d > 0 and l(0) = 1
and therefore l(d) = O(4d).
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