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Abstract

Motivation: When studying the workings of a biological
cell, it is useful to be able to detect known and predict still
undiscovered protein complexes within the cell’s protein-
protein interaction (PPI) network. Such predictions may
be used as an inexpensive tool to direct biological exper-
iments. The increasing amount of available PPI data ne-
cessitates a fast, accurate approach to biological complex
identification.
Results: We have developed the Restricted Neighbour-
hood Search Clustering Algorithm (RNSC) to efficiently
partition networks into clusters using a cost function. We
applied this cost-based clustering algorithm to PPI net-
works of S. cerevisiae, D. melanogaster, andC. elegans
to identify and predict protein complexes. We also in-
vestigated functional and graph-theoretical properties of
known complexes in the MIPS database, and by filter-
ing clusters based on these properties, we attained a high
matching rate between filtered clusters and true protein
complexes.
Conclusions: Our application of the cost-based cluster-
ing algorithm provides a scalable, accurate, and efficient
method of detecting and predicting protein complexes
within a PPI network.
Availability: The RNSC and data processing code is
available upon request from the authors.
Contact: juris@cs.utoronto.ca
Supplementary Information: Supplementary data is
available on the web page:
http://www.cs.utoronto.ca/˜juris/data/ppi04/
Keywords: protein-protein interaction networks, protein
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complexes, graph theory, graph clustering

1 Introduction

Recent developments in the rapidly-expanding fields of
network biology and cell biology have resulted in a del-
uge of protein-protein interaction (PPI) data with accom-
panying data on protein complexes related to these PPI
networks (Uetzet al., 2000; Itoet al., 2000; Itoet al.,
2001; Giotet al., 2003; Liet al., 2004; Gavinet al., 2003;
Ho et al., 2003). An inevitable consequence of this wealth
of data is the need for efficient and accurate automated
tools to identify and quantify significant portions of this
data. Our method relies on modeling the PPI network with
a graph (defined below) and applying principles of both
graph theory and gene ontology to identify likely protein
complexes with scalable accuracy.

Modeling PPI networks with simple graphs has been
used for many applications, one of which is the predic-
tion of protein complexes within the PPI networks (Bader
& Hogue, 2003; Přzulj et al., 2004). Protein complexes
generally correspond to dense subgraphs in the PPI net-
work, that is, proteins in a given complex are highly in-
teractive with one other (Bader & Hogue, 2003; Pržulj
et al., 2004). Previous approaches to graph-theoretic clus-
ter prediction include simple clustering methods such as
identification ofk-cores (Bader & Hogue, 2003) and the
highly connected subgraph approach (Hartuv & Shamir,
2000; Přzulj et al., 2004).

We have developed and applied the Restricted Neigh-
bourhood Search Clustering algorithm (RNSC), which
partitions the network’s node set into clusters based on
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a cost function that is assigned to each partitioning. We
then filtered the RNSC output so that only clusters which
share characteristics of known protein complexes are con-
sidered. This method was applied to the same fourS. cere-
visiaePPI networks discussed in (Pržulj et al., 2004), as
well as twoD. melanogasterPPI networks (Giotet al.,
2003) and aC. elegansPPI network (Liet al., 2004). Our
criteria for filtering the clusters were cluster size, clus-
ter density, and functional homogeneity, all of which are
discussed later in this paper. We compared the results of
our method with known yeast protein complexes (Mewes
et al., 2002) and found that with appropriate choices for
filter cutoff values, high matching rates along with large
cluster sample sizes can be achieved.

For a deeper look at the application of graph theory to
cellular biology, see (Barabási & Oltvai, 2004; Newman,
2003; Albert & Barab́asi, 2002; Strogatz, 2001; Pržulj,
2004). The last one focuses specifically on PPI networks.

2 System and Methods

Our protein complex prediction method relies on model-
ing PPI data asgraphs(ornetworks). A graphG = (V,E)
is a setV of nodes(or vertices), representing proteins,
and a setE of links (or edges), representing interactions
between pairs of proteins. Each edge joins two nodes. We
also useG(V ) to denote the set of nodesV of G (West,
2001).

We used fourS. cerevisiaePPI networks originating
from (von Meringet al., 2002) comprising 2,455, 11,000,
45,000, and 78,390 interactions. We call these net-
worksY2k, Y11k, Y45k andY78k respectively, the small-
est one containing high confidence interactions only and
the larger ones having an increasing number of lower
confidence interactions. We used twoD. melanogaster
PPI networks, one derived from the entire fruitfly net-
work of interactions given in (Giotet al., 2003), and one
derived from those interactions with confidence greater
than 0.5; these have 20,007 and 4,637 interactions re-
spectively, and we call these networksF20k andF4k. We
also used aC. elegansPPI network,W5k, consisting of
5,222 interactions (Liet al., 2004) (also see (Kinget al.,
2004)). To analyze these networks, we first clustered them
using the RNSC algorithm, then we filtered the results
based on cluster size, density, and functional homogene-

ity. This two step approach preserves only those clusters
which have properties more likely present in true biologi-
cal complexes.

To evaluate how effective our algorithm is for detecting
protein complexes, we compared the filtered clusters of
the yeast PPI networks with known protein complexes in
the MIPS yeast complex database (Meweset al., 2002).
Whether or not a given cluster is deemed to match a given
MIPS complex depends on the matching criteria detailed
below.

2.1 Clustering

The bulk of the computation time was spent clustering the
PPI networks using RNSC algorithm, which is described
in Section 2.6. Results included very small clusters and
clusters which were either insufficiently dense, or whose
component proteins had too weak a concentration in a sin-
gle functional group. To achieve a high prediction rate, we
discarded these clusters. The appearance of these clusters
is not a problem with the algorithm, rather it is a product
of the fact that the networks are very sparse and that the
algorithm partitions the network, and thus each protein
mustbe assigned to a cluster (see Section 2.6).

2.2 Cluster Size

The notion that we want to discard small clusters comes
from two ideas: first, any overlap proportion between a
small predicted complex and a known complex is more
likely to be by chance than the same overlap propor-
tion involving a larger predicted complex; second, small
known complexes frequently have low density in current
PPI networks and are therefore difficult to detect using
a clustering algorithm. We experimentally determined a
lower bound for a cluster size and discarded all predicted
complexes with size below this lower bound. The size
bound is dependent on the PPI network in question.

2.3 Cluster Density

Protein complexes are wed to the ideal property that their
proteins have high interaction rates with each other. We
therefore consider lower-density clusters to be less likely
to correspond to known protein complexes. By discarding
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clusters whose densities lie below a certain threshold, we
can increase the prediction rate of our algorithm.

2.4 Functional Homogeneity

It has been observed that known protein complexes often
have high functional homogeneity (Buet al., 2003; Přzulj
et al., 2004). That is, a large proportion of proteins within
a known complex likely belongs to a common functional
group. This is also true for dense regions of PPI networks
(Bu et al., 2003; Přzulj et al., 2004). The functional ho-
mogeneityP -value is the probability that a given set of
proteins is enriched by a given functional group merely by
chance, following the hypergeometric distribution. The
P -value for a clusterC and a functional groupF is

P = 1−
k−1∑
i=0

(|F |
i

)(|V |−|F |
|C|−i

)(|V |
|C|
) (1)

whereC containsk proteins inF , and the entire PPI net-
work contains|V | proteins (also used in (Buet al., 2003;
Přzulj et al., 2004)). We consider theP -value of a clus-
ter to be its smallestP -value over all functional groups.
Functional group data is derived from (von Meringet al.,
2002) for the yeast networks.

We discarded all clusters withP -value above a given,
experimentally derived threshold (see Section 3.1). Al-
though our model of functional homogeneity is very sim-
ple, the fact that known protein complexes have lowP -
values indicates that taking such an approach to evalu-
ate PPI network clusters as potentail protein complexes
will be effective. Sensible cutoffs for the clusterP -values
range from10−2 to 10−8 for the networks. For our match-
ing data, we chose a cutoff of10−3 for each network,
because it offers a compromise between complex-cluster
matching rate and a cluster passing rate, i.e., we can get
a large sample of clusters with high matching rates (see
Section 3.2).

2.5 Matching Criteria

We need to develop matching criteria to decide whether
a given PPI network cluster matches a known biological
complex. From the standpoint of considering the practi-
cality of our results, it makes sense to consider a predicted
cluster and a known protein complex to be matched if a

large proportion of each protein (node) set overlaps, or if
the set of cluster nodes is nearly entirely contained within
a set of proteins in a complex. Having a large cluster con-
taining a small complex is not as useful in application to
a lab setting, so we do not consider this case.

For a very large protein complex and a matching PPI
network cluster, a given overlap proportion is more signif-
icant than it would be in a small complex and a matching
cluster. For example, an overlap of five proteins between
a complex and a cluster each of size six is less signifi-
cant (i.e., more likely to occur at random) than an overlap
of fifty proteins between a complex and a cluster each of
size sixty. Bearing this in mind, we consider a clusterCl
to match a complexCo by overlap if both

|V (Cl) ∪ V (Co)|
|V (Cl)|

≥ Pcluster

log10(7 + |V (Cl)|)
(2)

and

|V (Cl) ∪ V (Co)|
|V (Co)|

≥
Pcomplex

log10(7 + |V (Co)|)
(3)

are satisfied, and we consider a cluster to match a complex
by containment if

|V (Cl) ∪ V (Co)|
|V (Cl)|

≥ Pcontain. (4)

For these three equations,Pcluster, Pcomplex, andPcontain

are all user-defined, experimentally derived proportions
between0 and1. Note that in matching analysis, we do
not consider proteins in a given protein complex if they
do not appear in the applicable PPI network. Adding 7
to |V (Cl)| in Equations 2 and 3 is done because it was
empirically found to yield good thresholds. In fact, Equa-
tions 2 to 4 are entirely the result of empirical results: the
equations generate sensible values such that a match is an
overlap that represents high statistical significance with-
out being too stringent a requirement (see Figure 1 and
Section 3.2).

2.6 The RNSC Algorithm

A clustering of a networkG(V,E) is a decomposition
of the set of nodesV into subsets of nodes that are
highly interconnected (i.e., these subsets of nodesin-
ducedense subgraphs). Our clustering algorithm is the
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Figure 1:The overlap requirements for a match between a
cluster and a complex. The x-axis is the larger of the com-
plex size and the cluster size, and the y-axis is the overlap
size needed to consider the complex and the cluster to be
matched. The lines y = 0.5x and y = 0.7x are given for
reference only.

Restricted Neighbourhood Search Clustering Algorithm
(RNSC), which is a cost-based local search algorithm
based loosely on the tabu search meta-heuristic (Glover,
1989). In the context of this algorithm, a clustering of
a networkG = (V,E) is equivalent to a partitioning of
the node setV . RNSC efficiently searches the space of
partitionings ofV , each of which is assigned a cost, for
a clustering with low cost. The algorithm searches us-
ing a simple integer-valued cost function (called thenaive
cost function) as a preprocessor before it searches using a
more expressive (but less efficient) real-valued cost func-
tion (called thescaled cost function). The initial cluster-
ing is random or user-input.

RNSC searches for a low-cost clustering by first com-
posing an initial random clustering, then iteratively mov-
ing one node from one cluster to another in a randomized
fashion to improve the clustering’s cost. A general move
is one that lowers the clustering cost by a near-optimal
amount. The common problem among local search al-
gorithms is their tendency to settle in poor local minima.
This problem can be largely avoided by using diversifica-
tion and multiple experiments. Thus, our algorithm makes
diversification moves, which shuffle the clustering by oc-
casionally dispersing the contents of a cluster at random.

In addition, RNSC maintains a list of tabu (forbidden)
moves to prevent cycling back to the previously explored
partitioning. Since RNSC is randomized, different runs
on the same input data will result in different output clus-
terings.

The algorithm maintains a multitude of data structures
and incurs a large memory cost for the sake of time-
efficiency. Ordinarily, maintenance of the data structures
for such a search algorithm would present a prohibitive
cost in computation. However, there are many problem-
specific properties related to both graph clustering and the
chosen cost functions that allow RNSC to perform very
efficiently (a more detailed explanation of the RNSC al-
gorithm can be found on the supplementary information
web page (Kinget al., 2004) and in (King, 2004)). Once
RNSC outputs a clustering, we must filter the clusters so
that we retain only those clusters which are very likely
to correspond to true protein complexes. We do this by
setting a maximumP -value for functional homogeneity,
a minimum density, and a minimum size. The clusters
which fall within these criteria are our predicted protein
complexes.

3 Experiments and Results

Each network was clustered at least four times using the
RNSC algorithm running under Linux. Each run took be-
tween ten seconds and three hours on a 2.8GHz processor,
with Y2k being the fastest andF20k being the most time
consuming. We then took the lowest-cost clustering pro-
duced by these runs for each network. These clusterings
are available on the supplementary data page (Kinget al.,
2004).

The values that we chose for the matching thresholds
arePcluster = Pcomplex = .7 andPcontain = .9. The thresh-
olds for cluster size, density, and functional homogene-
ity are a matter of compromise: although increasing the
strictness of the thresholds generally increased the pre-
diction rate, it also reduced the number of passing pre-
dictions (see Section 3.1). In the case where few protein
complexes are known for the PPI network (e.g. fruitfly
and worm), this scalability is extremely useful: we can
make the thresholds very strict to begin with, and relax
them as we analyze the growing set of predicted protein
complexes (clusters).
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Network Minimum Total Passing
size clusters clusters

Y2k 4 393 48
Y11k 5 974 84
Y45k 7 1815 86
Y78k 8 1811 90

Table 1: Cluster size lower bounds for S. cerevisiae PPI
networks’ clusters, needed to pass through the filter. For
example, for Y2k network, out of 393 clusters in total, 48
were of size at least 4.

3.1 Filter Cutoffs

All of the three filter cutoffs (for cluster size, density, and
functional homogeneity) were chosen to yield reasonably
high sample sizes while ensuring that clusters passing
through the filter had a good chance of matching known
complexes. In the case of the yeast networks, the mini-
mum cluster size cutoff increased with the size of the net-
work accordingly. Table 1 shows the chosen size cutoffs
for the yeast PPI networks, along with the sizes of the
cluster sets that pass the size cutoff.

We imposed a lower bound on the density of predicted
complexes. As seen in Figure 2, a significant decrease in
the passing rate of RNSC clusters occurs when the cluster
density cutoff is between.65 and.75. In general, known
complexes tend to have high density in the PPI network,
but very few large complexes have density 1 (Kinget al.,
2004). A density cutoff in the range of.65 and.75 allows
a good compromise between passing sample size and pre-
diction rate, but a cutoff closer to.9 may give a very high
passing rate in a small sample size. For experimental re-
sults in the yeast networks, we used a cutoff of.7.

As with cluster size and density, for functional homo-
geneity (P -value) filtering we wish to maintain both a
reasonable sample size and a high matching rate among
passing clusters. Figure 3 shows the effect of changing
thresholds for both density andP -value (after filtering for
size) inY78k. Figure 4 shows the effect of these thresholds
on the sample size inY78k. For our experimental cluster
passing rates, we chose aP -value cutoff of10−3.
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Figure 2:The proportion of RNSC clusters which pass the
cluster density filter (i.e., cluster passing rate) and the pro-
portion of these passing clusters that match known com-
plexes (cluster matching rate) for yeast networks Y2k, Y11k,
Y45k, and Y78k. These rates are for clusters that have al-
ready been filtered for size, but not for functional homo-
geneity.

3.2 Results

Matching rates for the yeast networks are shown in Table
2 for density≥ .7 andP ≤ 10−3, using the size cutoffs
found to provide good passing sample sizes (described in
Table 1). The fact that all of the filter cutoffs can be ad-
justed means that there are countless samples of varying
size and matching rate. An example is presented in Fig-
ure 5, where each choice of filter cutoffs is represented as
a point. In spite of the noise, the results forY78k are the
best: for a given false positive rate, the true positive rate
for Y78k is the highest of the four. This may be because the
larger data set carries much more statistical significance,
in spite of it containing more noise.

Figure 6A shows an example of a predicted complex
(i.e., a RNSC cluster) and the true protein complex from
MIPS that it matches in the yeast networkY11k. The
RNSC cluster has size 8, density.964, and P -value
3.98×10−8. The known cluster, COPI, has size 8, density
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Figure 4:The effect of changing P -value and density cut-
offs on the sample size, i.e. the number of clusters that
pass the filter criteria for Y78k. Clusters are first filtered by
size, then by P -value and density. We chose .7 and 10−3

as our density and P -value cutoffs, respectively.

Graph Minimum Passing Matched Prediction
size clusters clusters rate

Y2k 4 28 23 82.1%
Y11k 5 45 30 66.7%
Y45k 7 32 21 65.6%
Y78k 8 31 22 73.3%

Table 2: Matching data for density ≥ .7 and P ≤ 10−3.
Passing clusters are those that pass all filtering criteria,
and matching clusters are those passing clusters that sat-
isfy the matching criteria with at least one complex from
MIPS.

.786, andP -value3.29 × 10−10. They share 7 proteins.
COPI is a multimeric complex that contributes to the coat-
ing of membrane vesicles within the cell. Although the
protein Arf1, which is in COPI but not the predicted com-
plex, has the same gene ontological function as the rest
of the proteins in COPI, it is incident with only one edge
in the complex. Gpt2, which is contained in the predicted
complex but not the known complex, is incident with six
edges in the cluster. Gpt2 is glutamic pyruvate transami-
nase 2, and is responsible for transaminase and transferase
activity. Although Gpt2 is assigned a different functional
group by von Meringet al., according to MIPS, each of
these nine proteins is responsible for cellular transport,
transport facilitation, and transport routes (Meweset al.,
2002; von Meringet al., 2002). This suggests that Gpt2
likely belongs to the COPI complex.

Figure 6B shows an unmatched RNSC cluster inY11k.
In fact, this cluster has no more than one protein shared
with any known complex. However, it exhibits all of the
properties that we are looking for: it has sufficient size,
7, and high density,.810; its functional homogeneityP -
value is9.31 × 10−6, with six of its seven proteins con-
tributing to energy production. This suggests that biolog-
ical validation of this set of proteins forming a protein
complex may be worthwhile.

Figure 6C shows an RNSC cluster inY11k that is con-
tained within a MIPS complex. This is a good example of
a containment match; note that the cluster contains most
of the edges within the complex. Indeed, the nodes of the
complex that are not included in the cluster do not exhibit
the ideal graph-theoretic properties of protein complexes
at all. They are sparsely connected and largely heteroge-
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Figure 6:Examples of matched and predicted protein complexes: (A) MIPS complex COPI in the yeast network Y11k

and the matching complex predicted by RNSC. Each has size 8, and their overlap is 7. (B) An unmatched cluster in the
yeast network Y11k. The cluster has no overlap greater than one protein with any known complex. It passed through
the filter, and exhibits characteristics of a protein complex. (C) This RNSC cluster in Y11k is contained within a larger
MIPS complex. Note that the cluster contains most of the edges in the complex.
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neous. This MIPS complex is responsible for transcrip-
tion, DNA maintanance, and chromatin structure.

As in (Přzulj et al., 2004), Rib1-5, Rib7 is a function-
ally homogeneous cluster with density1.0 in Y11k. InY2k,
however, only Rib1, Rib3, and Rib5 exist, and they make
up a cluster of density .67. InY45k andY78k, Rib1-5 and
Rib7 have density1.0 among themselves, but the proteins
are highly interactive with other proteins. The result is
that Rib1-5, Rib7 is not a cluster in either of these two
PPI networks, in spite of the fact that they likely represent
a complex; rather, the Rib proteins are divided among sev-
eral clusters. This is a case in which hierarchical cluster
analysis may lend some insight, that is, considering all
four networks for yeast simultaneously. None of these
proteins is represented in the MIPS data, so there is no
match to be considered.

The results for the fly and worm networks are less
definitive. Because there are no comprehensive sources
for complexes and functional classifications for these net-
works, we could neither constructP -values for the clus-
ters nor compare them to a set of known complexes. In
these networks, we filtered clusters for size and density.

The predicted complexes are given in the supplementary
data (Kinget al., 2004). ForF20k, there are only 5 pre-
dicted complexes, the largest of which has size 5. This
is due to the fact that the current fruitfly network is ex-
tremely sparse. ForF5k, the less noisy data set for fruit-
fly, there are 42 predicted complexes, all of size 3 and 4.
ForW5k, there are 32 predicted complexes, including 3
of size≥ 10. In the future, more complete PPI data will
likely lead to a larger, more significant set of predicted
complexes for fly and worm.

3.3 Discussion

Protein complexes have a number of inherent graph-
theoretical and gene-ontological properties. As seen in
the results, using size, density, and functional homogene-
ity as filtering criteria for network clusters is a reason-
able way to predict protein complexes. However, there
are some problems with the method. While protein com-
plexes are usually expected to have high density in PPI
networks, not all do. A related problem is the incomplete-
ness of current PPI networks. The more complete and
accurate our PPI and known protein complexes data sets
are, the better we will be equipped to analyze the PPI net-
works.

Further, the functional homogeneity, while accurate for
the most part, seems to be an incomplete, oversimplified
model. Many known complexes show very low functional
homogeneity. Also, many proteins belong to multiple
functional groups. In addition, many proteins are of un-
known function.

Even with such a simple filtering model and incomplete
data, we managed to achieve vary high matching rates be-
tween PPI network clusters and known protein complexes
(Table 2). In comparison, Bader and Hogue generate a set
of 209 predicted complexes, of which 54 match the MIPS
database in at least20% of their proteins in a yeast PPI
network of some 15,000 interactions (Bader & Hogue,
2003). In (Přzulj et al., 2004), a set of 31 predicted com-
plexes is given forY11k, of which 27 were reported to
have high overlaps with MIPS complexes. Jansenet al.
predict pairs of nodes to be in the same cluster; they, like
us, achieve low error rates (as low as0% for 5 predicted
pairs) that increase with the sample size. However, their
findings cannot easily be applied to predicting entire com-
plexes, but only interactions within them (Jansenet al.,
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2002). Our results complement these efforts to better un-
derstand protein complexes within networks or protein-
protein interactions.

4 Conclusions and Future Work

Using the RNSC algorithm to cluster PPI networks and
filtering based on graph-theoretic resemblance to typical
known protein complexes provides an effective method
for predicting protein complexes. In general, it is be-
coming more and more evident that employing graph-
theoretic techniques can be very useful in protein network
analysis, as also demonstrated by recent research (Pržulj
et al., 2004; Přzulj, 2004; Yuet al., 2004). Our results
suggest that we can predict protein complexes with high
confidence using RNSC algorithm with filtering. These
predictions can be used to make wet lab experiements
more focused, efficient, and inexpensive. Not only do the
results warrant investigation where predicted complexes
are unknown, but in some cases they warrant reexamina-
tion of current results. In order for this predictor (and
other graph-theoretic tools) to work best, our knowledge
of the networks needs to be improved. As more PPI data
becomes available, automated tools for their analysis will
need to become scalable and accurate..

There is a huge amount of further research to be done
in the area of PPI network analysis. On the side of
gene ontology, it will likely be helpful to investigate
improved functional homogeneity models. Clearly, the
mono-functional model of functional homogeneity that
we use stands to be improved, most likely at a cost of
simplicity. Just as protein function can be used to help
predict protein complexes, knowledge of complexes can
be used to predict previously unknown cellular function
(Bu et al., 2003).

On the side of clustering, it will likely be very instruc-
tive to investigate hierarchical complex predictions: In
the case of yeast, for example, we predicted protein com-
plexes using four PPI networks of increasing size. How
do the predicted complexes in one such network relate to
those in another network? Hopefully knowledge of this
will give us further insight to the nature of protein inter-
actions.

We have developed an accurate and scalable method
of predicting protein complexes from PPI network data.

Cellular research will inevitably continue to be led by bio-
logical experiments, but computational analysis methods,
such as ours, are likely to become indispensable for their
ability to identify areas of significance at an extremely low
cost.

5 Acknowledgements

This work was supported by the University of Toronto
(AK), OGS (NP), NIH P50 GM-62413 (NP, IJ), the Na-
tional Science and Engineering Research Council RGPIN
203833-02 (IJ). AK would like to thank Rudi Mathon for
his guidance and support.

References

Albert, R. & Barab́asi, A.-L. (2002) Statistical mechanics
of complex networks.Reviews of Modern Physics,
74, 47–97.

Bader, G. & Hogue, C. (2003) An autormated method for
finding molecular complexes in large protein inter-
action networks.BMC Bioinformatics,4 (2).

Barab́asi, A.-L. & Oltvai, Z. N. (2004) Network biology:
understanding the cell’s functional organization.Na-
ture Reviews Genetics,5, 101–113.

Bu, D., Zhao, Y., Cai, L., Xue, H., Zhu, X., Lu, H., Zhang,
J., Sun, S., Ling, L., Zhang, N., Li, G. & Chen, R.
(2003) Topological structure analysis of the protein-
protein interaction network in budding yeast.Nu-
cleic Acids Research,31 (9), 2443–2450.

Gavin, A. C., Bosche, M., Krause, R., Grandi, P.,
Marzioch, M. & Bauer, A. (2003) A functional orga-
nization of the yeast proteome by systematic analysis
of protein complexes.Nature, 415(6868), 141–147.

Giot, L., Bader, J. S., Brouwer, C., Chaudhuri, A., Kuang,
B., Li, Y., Hao, Y. L., Ooi, C. E., Godwin, B., Vi-
tols, E., Vijayadamodar, G., Pochart, P., Machineni,
H., Welsh, M., Kong, Y., Zerhusen, B., Malcolm, R.,

9



Varrone, Z., Collis, A., Minto, M., Burgess, S., Mc-
Daniel, L., Stimpson, E., Spriggs, F., Williams, J.,
Neurath, K., Ioime, N., Agee, M., Voss, E., Fur-
tak, K., Renzulli, R., Aanensen, N., Carrolla, S.,
Bickelhaupt, E., Lazovatsky, Y., DaSilva, A., Zhong,
J., Stanyon, C. A., Finley, R. L., Jr., White, K. P.,
Braverman, M., Jarvie, T., Gold, S., Leach, M.,
Knight, J., Shimkets, R. A., McKenna, M. P., Chant,
J. & Rothberg, J. M. (2003) A protein interaction
map of Drosophila melanogaster.Science, 302
(5651), 1727–1736.

Glover, F. (1989) Tabu search, part I.ORSA Journal on
Computing, 1 (3), 190–206. “ORSA” is called In-
forms today.

Hartuv, E. & Shamir, R. (2000) A clustering algorithm
based on graph connectivity.Information Processing
Letters, 76 (4–6), 175–181.

Ho, Y., Gruhler, A., Heilbut, A., Bader, G. D., Moore,
L., Adams, S. L., Millar, A., Taylor, P., Bennett,
K., Boutilier, K., Yang, L., Wolting, C., Donaldson,
I., Schandorff, S., Shewnarane, J., Vo, M., Taggart,
J., Goudreault, M., Muskat, B., Alfarano, C., De-
war, D., Lin, Z., Michalickova, K., Willems, A. R.,
Sassi, H., Nielsen, P. A., Rasmussen, K. J., An-
dersen, J. R., Johansen, L. E., Hansen, L. H., Jes-
persen, H., Podtelejnikov, A., Nielsen, E., Crawford,
J., Poulsen, V., Sorensen, B. D., Matthiesen, J., Hen-
drickson, R. C., Gleeson, F., Pawson, T., Moran,
M. F., Durocher, D., Mann, M., Hogue, C. W.,
Figeys, D., & Tyers, M. (2003) Systematic identifi-
cation of protein complexes in saccharomyces cere-
visiae by mass spectrometry.Nature, 415 (6868),
180–183.

Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M. &
Sakaki, Y. (2001) A comprehensive two-hybrid anal-
ysis to explore the yeast protein interactome.Proc.
Nat’l. Acad. Sci. USA,98 (8), 4569–4574.

Ito, T., Tashiro, K., Muta, S., Ozawa, R., Chiba, T.,
Mishizawa, M., Yamamoto, K. & S. Kuhara, a. Y. S.
(2000) Toward a protein-protein interaction map of
the budding yeast: a comprehensive system to exam-
ine two-hybrid interactions in all possible combina-

tions between the yeast proteins.Proc. Nat’l. Acad.
Sci. USA,97 (3), 1143–1147.

Jansen, R., Lan, N., Qian, J. & Gerstein, M. (2002) Inte-
gration of genomic datasets to predict protein com-
plexes in yeast.J. Struct. Funct. Genomics,2, 71–
81.
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Přzulj, N. (2004) Graph theory approaches to protein in-
teraction data analysis. InKnowledge Discovery in
High-Throughput Biological Domains, (Jurisica, I.
& Wigle, D., eds),. Interpharm/CRC.
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