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ABSTRACT
We initiate the study of minimum average time broadcast graphs - those graphs on n
vertices with the fewest edges in which every vertex can broadcast in minimum average
time. We find minimum average time broadcast graphs for all even n and for more than
half of all odd n. In addition, we give some upper and lower bounds on the number of
edges in such graphs for all n.
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1. Introduction and Definitions

Given a graph G = (V, E) and a vertex u € V, broadcasting is the process of
disseminating a piece of information from vertex u (called the originator) to every
other vertex in the graph where, in each time unit, any vertex which knows the
information can pass the information to at most one of it’s neighbors. The set of
calls used to disseminate the information is called a broadcast scheme.

A broadcast graph on n vertices is a graph which allows any vertex to broadcast in
time [logn]. A minimum broadcast graph on n vertices is a broadcast graph with the
minimum number of edges over all broadcast graphs on n vertices. This minimum
number of edges is denoted B(n). The study of minimum broadcast graphs and
B(n) has a long history. See [6] for a survey on this and related problems and [5]
for a recent reference on the construction of minimum broadcast graphs.

In this paper, we are interested in broadcasting under a slightly different time
constraint. In particular, we wish to minimize the average time at which a vertex is
informed during a broadcast. Broadcasting in a tree under this model was studied
by Koh and Tcha [T7].

A broadcast scheme can be represented by a spanning tree T, of G rooted at
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the originator v with each vertex v labeled with ¢(v), the time that v receives the
message under that scheme. We assume that ¢(u) = 0 for originator u. The average
time of a broadcast scheme is bo(Ty) = (3_,cy t(v)) / |V]. For each originator
u, we want to determine minb,(7,) over all possible broadcast trees rooted at u,
that i1s we want to determine the minimum average broadcast time for originator
u, bg(u) = min{by(7Ty)}. We define the minimum average broadcast time for graph
G to be by(G) = maxyev{bqa(u)}, that is, the largest minimum average broadcast
time for any originator in G. Since b4(K,) is the minimum of b,(G) for all graphs
G on n vertices, we let G4(n) = by(K,) and say that B4(n) is the minimum average
broadcast time for n vertices.

A minimum average time broadcast graph (matbg) is a graph on n vertices for
which b,(G) = B4(n) and such that for any G’ on n vertices with b,(G) = b (G'), G
has no more edges than G'. In other words, matbg’s are those graphs on n vertices
with the fewest edges which allow broadcasting in minimum average time from any
originator. We use Bg(n) to denote the number of edges in a minimum average
time broadcast graph on n vertices.

In Section 2, we determine a formula for 3,(n) and give some general bounds
on Bg(n). In Section 3, we present exact values of By(n) for some n.

2. Bounds

We begin by determining the minimum average broadcast time for n vertices.
Lemma 2.1 Forn = 2%+4i, where k = [logn| and 0 < i < 2%, B,(n) = k—l—i—%‘
Proof. To minimize the average time a vertex is informed, it suffices to minimize
the sum of the times that all of the vertices are informed. Since the number of
informed vertices is 1 at time 0 and can at most double in each time unit after that,
the sum of the times that vertices are informed in any broadcasting scheme must
be at least 25:1 32 ik +1) = (k—1)28 4 1) +i(k + 1). This can be achieved
in a complete graph on n vertices, so the minimum average broadcast time for n
vertices is Bq(n) = ((k_1)2ktll)+i(k+1) =k—1+ QZH—'H O

The value of B(n) provides a simple lower bound on B,(n).
Lemma 2.2 For any n > 1, Bs(n) > B(n).
Proof. A broadcast scheme that completes in minimum average time must in-
form its last vertices at time [logn]. Thus, such a scheme is also a minimum time
broadcast scheme and any graph that allows minimum average time broadcast must
also allow minimum time broadcast. The result follows. a

Another simple lower bound on B,(n) is obtained by considering the shape of
broadcast trees.
Theorem 2.1 For n = 2% 4+ i, where k = |logn| and 0 <i < 2%, B,(n) > [’%"]
Proof. To broadcast in minimum average time, it is necessary that the number
of informed vertices double in each of the first £ time units and that the remaining



Minimum Average Time Broadcast Graphs 3

vertices are informed in the following time unit. A minimum average time broadcast
scheme from vertex u must correspond to a spanning subtree of the graph G rooted
at u which consists of a “core” binomial tree of 2F vertices plus n — 2% additional
edges, each connecting a new vertex to a distinct vertex of the core binomial tree.
The root of this tree must have degree at least k. Since there must exist such a
tree rooted at every vertex in the graph, By(n) > an In fact, since the number of
edges must be an integer, By(n) > [an] O

We can improve this lower bound when n is one less than a power of 2.
Theorem 2.2 B, (28+! — 1) > (28! = Dk + [ 1, for k> 1.

Proof. In a minimum average time broadcasting scheme on 2¢+! — 1 vertices,

2k+l_q
k+2

2% vertices must be informed by time k and the remaining 2F — 1 vertices must be
informed at time k£ + 1. This implies that either the originator or the vertex that it
calls at time 1 must be of degree > k£ + 1 and the other of these two vertices must
have degree > k. Thus, in an matbg on 2F+1 — 1 vertices, every vertex must be
of degree > k and any vertex of degree k£ must be adjacent to a vertex of degree
> k4 1. Let n = 2841 — 1 and let wy, ws, ..., wy, denote the vertices of degree
greater than k, where n’ < n in some matbg on n vertices. Let ¢; = deg(w;) — k
for 1 < i< n’. Each vertex w; of degree greater than k can be adjacent to at most
k + e; vertices of degree k. Thus, the number of vertices of degree k£ can be at most
Yicicn(k+e) >n—n'. It follows that > ;¢ e > n—n'(k+1). Since each
e > 1, > i<icn: € > n'. Combining these two inequalities and the fact that the e;
are integers, we obtain Elgz’gn' €; > [k”ﬁ] The number of edges in such a graph

must be at least %(nk+21gign' e;). Thus, By(2F+1-1) > %((2k+1_1)k+[2k’:2_1]).
Oa

A simple construction provides an upper bound on B,(n) for all n.

Theorem 2.3 For n = 2F + i, where k = [logn]| and 0 < i < 2¥, B,(2F +4) <
k(281 +14).
Proof. To construct a graph G, on n vertices with k(2*~! 4 i) edges in which
we can broadcast in minimum average time from any originator, begin by labeling
the vertices ai,as,...asx and by, by, ...b;. Construct an matbg A on the vertices
ayi,as,...asx. (Such an matbg has £2%~! edges, as will be shown in Theorem 3.5. Tt
is also important to note that the edges of A comprise k& complete matchings.) For
every edge (aj,any) in A, where 1 < j <iand 1 < m < 2%, add the edge (b;, am)
to G.

To broadcast from vertex a; of G in minimum average time, broadcast first in
A according to a minimum average time scheme for A and then, at time k£ + 1,
the b; vertices can be informed by edges corresponding to a single matching in A.
If the originator of the broadcast is b;, broadcast according to the scheme for A
substituting b; for a; and, at time k£ + 1, complete the broadcast using the edges
corresponding to a single matching in A. a
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3. Exact Values
For n less than 9 and for n = 2¥, it is easy to show that the minimum broadcast
graphs on n vertices are also minimum average time broadcast graphs.
Theorem 3.4 For 1 <n <8, By(n) = B(n).
Proof. For these small values of n, minimum average time broadcast schemes can

be easily constructed for minimum broadcast graphs. (These graphs can be found
in [4].) The result follows. O

Theorem 3.5 B,(2%) = B(2%) = k281, for k > 1.
Proof. For n = 2% a minimum time broadcast scheme is also a minimum av-

erage time broadcast scheme since 2/ vertices must be informed at each time j for
J=1,2,.. k. O

The known minimum broadcast graphs for n which is 1 less than a power of 2
are also matbg’s.
2k+l_q

Theorem 3.6 B, (28! — 1) = (28! — 1)k + [25551]), for 1 <k <5.

Proof. Theorem 2.2 gives the lower bound. The matching upper bound comes

from the known minimum broadcast graphs on 3, 7, 15, 31, and 63 vertices. For
3, 7, and 15, minimum average time broadcast schemes can be easily constructed
for the minimum broadcast graphs given in [4]. Tt is also easy to verify that the
broadcast schemes given for the minimum broadcast graphs on 31 and 63 vertices
(which are can be found in [2] and [8], respectively) are minimum average time
schemes. a

In fact, minimum average time broadcast graphs can be found for all even n.
Theorem 3.7 B,(n) = []%”], for even n = 2% 4+ i, where k = |logn| and 2 < i <
2k
Proof. The lower bound comes from Theorem 2.1. KG,,, the modified Knodel
graph on n vertices, is a graph on n vertices with |-an-| edges which allows minimum
average time broadcast from any originator. The vertices of KG,, are labeled (z, j)
where z € Zz and j € Z5. In this paper, the values of z will be those representa-
tives of Zz between 0 and 5 —1, the values of j will be 0 and 1, and the operations
are modulo % or modulo 2. The edges of KG, are [(x,0), (x4 2',1)] for all z and
all i where 0 < ¢ < k— 1. The edges of the form [(z,0), (z + 2°,1)] compose a
perfect matching and are called edges of dimension i. To broadcast in KG,, from
any vertex in minimum average time, each informed vertex can call it’s dimension
j — 1 neighbor at each time 1 < j < k. This assures that 2% vertices are informed
at time k. Finally, at time k£ + 1, the remaining vertices can be called by their
dimension 0 neighbors. (See [5] or [1] for additional details.) The result follows. D
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Some additional values for B,(n) can be determined using different constructions
for matbgs.

Fig. 1. Minimum Average Time Broadcast Graphs on 9, 11, and 13 Vertices.

Theorem 3.8 For 9 < n < 13, By(n) = [32—”]
Proof. Theorem 2.1 gives B,(n) > [2*]. Minimum average time broadcast
graphs for odd n, 9 < n < 13, with f%] edges are shown in Figure 1.

For 9 < n < 12, the graphs are constructed by connecting matbg’s A and B on

[5] and [ 5| vertices, respectively, with [5] “cross” edges such that each vertex in
A is connected to a vertex in B and vice versa. To achieve minimum average time
broadcast in the resulting graph, at time 1 the originator sends the message to a
cross edge neighbor. Each matbg of “half” size can then broadcast in minimum
average time independently.

For n = 13, a slight modification is required to this method. For n = 13,
matbg’s on 6 and 7 vertices are joined by 6 “cross” edges as shown in Figure 1. If
the originator is any of the 11 vertices on a cross edge, at time 1 the message is sent
on a cross edge and then each smaller matbg can broadcast in minimum average
time independently. The other two vertices (which are isomorphic) can broadcast
in minimum average time using the scheme in Figure 2. In the figure, the two black
vertices represent the originator and the vertex it calls at time 1. The other vertices

are labeled with the time they receive the message. ad

For some values of n, we can construct matbg’s which are multiple fixed step
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Fig. 2. Broadcast Scheme on 13 Vertex matbg.

graphs. The undirected multiple fixed step graph G(n; s, s2, ..., sp) is a graph on
n vertices whose labels are integers modulo n. The edges of such a graph connect
each vertex ¢ to ¢ + s; (mod n) for each 1 < j < p. When describing broadcast
schemes for these graphs, we will refer to vertex i + s; (mod n) as vertex i’s +s;
neighbor and to vertex i — s; (mod n) as vertex i’s —s; neighbor. The edges arising
from a given s; are called the +s; edges. (See [3] for further information on these
graphs.)

Theorem 3.9 For 28 + 1 < n < 2% + 25~ with even k > 4, B,(n) = f’%”]
Proof. The lower bound comes from Theorem 2.1. For each n in this range, the
undirected multiple fixed step graph G(n;1,4,16,...,2572) is an matbg. To broad-
cast in minimum average time from any vertex ¢, ¢ calls ¢ + 1 at time 1. At time
2,4 callsi—1 and 7 + 1 calls i + 2. At time 3, all 4 informed vertices call their
+4 neighbors. Thus, the 8 consective vertices i — 1,4,2 4+ 1,...,2+ 6 are informed.
At time 4, the 4 most clockwise informed vertices (i + 3,7+ 4,...,i+ 6) each call
their 4+4 neighbors and the other informed vertices call their —4 neighbors. This
results in 16 consecutive informed vertices. By using the +16 edges similarly, in
two more time units we can obtain 64 consecutive informed vertices. (That is, all
of the informed vertices call their +16 neighbors at time 5. At time 6, the newly
informed vertices call their +16 neighbors while those informed before time 5 call
their —16 neighbors.) Continue this process until we have 2¥ consecutive informed
vertices at time k. The remaining n — 2 uninformed vertices can be informed at
time k + 1 using the +£2°~2 edges. An example is shown for n = 21 in Figure 3. In
the figure, the two black vertices represent the originator and the vertex it calls at
time 1. The other vertices are labeled with the time they receive the message. O

A slight modification of this technique allows us to obtain some additional values
for By(n).
Theorem 3.10 For 2% 4+ 28=1 4 1 < n < 28 4 25=1 1 3 with even k > 4, By(n) =
[

Proof. The lower bound comes from Theorem 2.1. For each n in this range, the
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Fig. 3. Broadcasting Scheme for 21 Vertices.

undirected multiple fixed step graph G(n; 1,4,16, ...,2¥=% 2¥=241) is an matbg. To
broadcast in minimum average time from any vertex i, use the +1, +4, +16, ..., +2% 4
edges to inform 2%~2 consecutive vertices by time k — 2 as in the proof of Theorem
3.9. At time k — 1, all informed vertices call their +(2¥=2 + 1) neighbors. This
leaves one isolated uninformed vertex between two groups of 2¥~2 consecutive in-
formed vertices. At time k, inform 2 more sets of 2¥~2 consecutive vertices using
the £(2%~2 4 1) edges. At this point, there are 3 isolated uninformed vertices di-
viding the four groups of 2°~2 consecutive informed vertices. There are n — 2% — 3
additional consecutive uninformed vertices between the two groups of 282 that
were informed at time k. Without loss of generality, let these vertices be labeled
clockwise by 0,1,2,...,n — 2% — 4. At time k + 1, the vertices 1,2,...,2* — 5 can
be informed using the +(2f~2 4+ 1) edges. The remaining vertices (0,n — 2% — 4,
and the three isolated uninformed vertices) can be informed using the +1 edges.
An example is shown for n = 25 in Figure 4. In the figure, the two black vertices
represent the originator and the vertex it calls at time 1. The other vertices are

labeled with the time they receive the message. a

We can use the technique used in Theorem 3.8 to construct matbgs for 9 < n <
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Fig. 4. Broadcasting Scheme for 25 Vertices.

12 combined with the results from Theorems 3.5, 3.9, and 3.10 to determine B,(n)
for some additional values of n.

Theorem 3.11 For 28 + 1< n <28 4+ 281 4 6 with odd k > 5, By(n) = [an]
Proof. The lower bound comes from Theorem 2.1. To show that B,(n) < [%‘],
we construct an matbg G with n vertices and [’%"] edges by connecting an matbg A
on [ %] vertices and an matbg B on | 5] vertices with [ 5] “cross” edges so that each
vertex of A is connected to a vertex of B and vice versa. From Theorems 3.5, 3.9,
and 3.10, we know that B,([2]) = [$=1/21] and that B,(|2]) = [Y=tlleial],
The resulting graph G has [E=10/21 y p(=1)in/20) 4 ra] = [E2] edges. To broad-
cast in minimum average time in G, at time 1 the originator sends the message to

its neighbor in the other matbg of “half” size. Each matbg of half size can then
broadcast in minimum average time independently. a

4. Summary

We have given some general bounds on B,(n) and have determined the exact
values of B,(n) for all even n. We have determined the exact values of By(n) for
odd n in the range 2¥ < n < 2F 4+ 251 1 3 when k > 4 is even and in the range
2F < < 2% 4251 1 6 when k > 5 is odd, and for some additional small values of
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n. It remains an open question to determine the value of B,(n) for the remaining
odd n.
Table 1 shows the known values of B,(n) and B(n) for 1 < n < 64.

Table 1. Known values of B,(n) and B(n) for 1 < n < 64

n Ba(n) B(n) n Ba(n) B(n) n Ba(n) B(n) n Ba(n) B(n)
1 0 0 17 34 22 33 83 ? 49 123 ?
2 1 1 18 36 23 34 85 ? 50 125 ?
3 2 2 19 38 25 35 88 ? 51 128 ?
4 4 4 20 40 26 36 920 ? 52 130 ?
5 5 5 21 42 28 37 93 ? 53 133 ?
6 6 6 22 44 31 38 95 ? 54 135 ?
7 8 8 23 46 ? 39 98 ? 55 ? ?
8 12 12 24 48 ? 40 100 ? 56 140 ?
9 14 10 25 50 ? 41 103 ? 57 ? ?
10 15 12 26 52 42 42 105 ? 58 145 121
11 17 13 27 54 44 43 108 ? 59 ? 124
12 18 15 28 56 48 44 110 ? 60 150 130
13 20 18 29 ? 52 45 113 ? 61 ? 136
14 21 21 30 60 60 46 115 ? 62 155 155
15 24 24 31 65 65 47 118 ? 63 162 162
16 32 32 32 80 80 48 120 ? 64 192 192
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