
BIOINFORMATICS Vol. 00 no. 00 2003
Pages 1–7

Biological Network Comparison Using Graphlet
Degree Distribution

Nataša Pržulj

Computer Science Department, University of California, Irvine, CA 92697-3425, USA

ABSTRACT
Motivation: Analogous to biological sequence comparison,
comparing cellular networks is an important problem that could
provide insight into biological understanding and therapeutics.
For technical reasons, comparing large networks is compu-
tationally infeasible, and thus heuristics, such as the degree
distribution, clustering coefficient, diameter, and relative gra-
phlet frequency distribution have been sought. It is easy to
demonstrate that two networks are different by simply sho-
wing a short list of properties in which they differ. It is much
harder to show that two networks are similar, as it requires
demonstrating their similarity in all of their exponentially many
properties. Clearly, it is computationally prohibitive to analyze
all network properties, but the larger the number of constraints
we impose in determining network similarity, the more likely it
is that the networks will truly be similar.
Results: We introduce a new systematic measure of a net-
work’s local structure that imposes a large number of similarity
constraints on networks being compared. In particular, we
generalize the degree distribution, which measures the num-
ber of nodes “touching” k edges, into distributions measuring
the number of nodes “touching” k graphlets, where graphlets
are small connected non-isomorphic subgraphs of a large net-
work. Our new measure of network local structure consists
of 73 graphlet degree distributions of graphlets with 2, 3, 4,
and 5 nodes, but it is easily extendible to a greater number of
constraints (i.e, graphlets), if necessary, and the extensions
are limited only by the available CPU. Furthermore, we show
a way to combine the 73 graphlet degree distributions into a
network “agreement” measure which is a number between 0

and 1, where 1 means that networks have identical distributi-
ons and 0 means that they are far apart. Based on this new
network agreement measure, we show that almost all of the
fourteen eukaryotic PPI networks, including human, resulting
from various high-throughputexperimental techniques, as well
as from curated databases, are better modeled by geome-
tric random graphs than by Erdös-Rény, random scale-free, or
Barabási-Albert scale-free networks.
Availability: Software executablesare availableupon request.
Contact: natasha@ics.uci.edu

1 INTRODUCTION
Understanding cellular networks is a major problem in current
computational biology. These networks are commonly mode-
led by graphs (also called networks) with nodes representing
biomolecules such as genes, proteins, metabolites etc., and
edges representing physical, chemical, or functional interac-
tions between the biomolecules. The ability to compare such
networks would be very useful. For example, comparing a
diseased cellular network to a healthy one may aid in finding
a cure for the disease, and comparing cellular networks of
different species could enable evolutionary insights. A full
description of the differences between two large networks is
infeasible because it requires solving the subgraph isomor-
phism problem, which is an NP-complete problem.Therefore,
analogous to the BLAST heuristic (Altschul et al., 1990) for
biological sequence comparison, we need to design a heuristic
tool for the full-scale comparison of large cellular networks
(Berg and Lassig, 2004). The current network comparisons
consist of heuristics falling into two major classes: 1) global
heuristics, such as counting the number of connections bet-
ween various parts of the network (the “degree distribution”),
computing the average density of node neighborhoods (the
“clustering coefficients”), or the average length of shortest
paths between all pairs of nodes (the “diameter”); and 2) local
heuristics that measure relative distance between concentra-
tions of small subgraphs (called graphlets) in two networks
(Pržulj et al., 2004).

Since cellular networks are incompletely explored, global
statistics on such incomplete data may be substantially biased,
or even misleading with respect to the (currently unknown)
full network. Conversely, certain neighborhoods of these net-
works are well-studied, and so locally based statistics applied
to the well-studied areas are more appropriate.A good analogy
would be to imagine that MapQuest knew details of the streets
of New York City and Los Angeles,but had little knowledge of
highways spanning the country. Then, it could provide good
driving directions inside New York or L. A., but not between
the two. Similarly, we have detailed knowledge of certain
local areas of biological networks, but data outside these well-
studied areas is currently incomplete, and so global statistics
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are likely to provide misleading information about the biolo-
gical network as a whole, while local statistics are likely to be
more valid and meaningful.

Due to the noise and incompleteness of cellular network
data, local approaches to analyzing and comparing cellular
network structure that involve searches for small subgraphs
have been successful in analyzing, modeling, and discovering
functional modules in cellular networks (Milo et al., 2002;
Shen-Orr et al., 2002; Milo et al., 2004; Pržulj et al., 2004).
Note that it is easy to show that two networks are different
simply by finding any property in which they differ. Howe-
ver, it is much harder to show that they are similar, since it
involves showing that two networks are similar with respect to
all of their properties. Current common approaches to show
network similarity are based on listing several common pro-
perties, such as the degree distribution, clustering, diameter,
or relative graphlet frequency distribution.The larger the num-
ber of common properties, the more likely it is that the two
networks are similar. But any short list of properties can easily
be mimicked by two very large and different networks. For
example, it is easy to construct networks with exactly the
same degree distribution whose structure and function differ
substantially (Pržulj et al., 2004; Li et al., 2005; Doyle et al.,
2005).

In this paper, we design a new local heuristic for measu-
ring network structure that is a direct generalization of the
degree distribution. In fact, the degree distribution is the first
in the spectrum of 73 graphlet degree distributions that are
components of this new measure of network structure. Thus,
in our new network similarity measure, we impose 73 highly
structured constraints in which networks must show similarity
to be considered similar; this is a much larger number of cons-
traints than provided by any of the previous approaches and
therefore it increases the chances that two networks are truly
similar if they are similar with respect to this new measure.
Moreover, the measure can be easily extended to a greater
number of constraints simply by adding more graphlets. The
extensions are limited only by the available CPU.

Based on this new measure of structural similarity between
two networks, we show that the geometric random graph
model shows exceptionally high agreement with twelve out of
fourteen different eukaryotic protein-protein interaction (PPI)
networks. Furthermore, we show that such high structural
agreements between PPI and geometric random graphs are
unlikely to be beaten by another random graph model, at least
under this measure.

1.1 Background
Large amounts of cellular network data for a number of
organisms have recently become available through high-
throughput methods (Ito et al., 2000; Uetz et al., 2000; Giot
et al., 2003; Li et al., 2004; Stelzl et al., 2005; Rual et al.,
2005). Statistical and theoretical properties of these networks
have been extensively studied (Jeong et al., 2000; Maslov and

Sneppen, 2002; Shen-Orr et al., 2002; Milo et al., 2002; Vaz-
quez et al., 2004; Yeger-Lotem et al., 2004; Pržulj et al., 2004;
Tanaka, 2005) due to their important biological implications
(Jeong et al., 2001; Lappe and Holm, 2004).

Comparing large cellular networks is computationally
intensive. Exhaustively computing the differences between
networks is computationally infeasible, and thus efficient heu-
ristic algorithms have been sought (Kashtan et al., 2004; Pržulj
et al., 2006). Although global properties of large networks are
easy to compute, they are inappropriate for use on incomplete
networks because they can at best describe the structure pro-
duced by the biological sampling techniques used to obtain the
partial networks (Han et al., 2005). Therefore, bottom-up or
local heuristic approaches for studying network structure have
been proposed (Milo et al., 2002; Shen-Orr et al., 2002; Pržulj
et al., 2004). Analogous to sequence motifs, network motifs
have been defined as subgraphs that occur in a network at fre-
quencies much higher than expected at random (Milo et al.,
2002; Shen-Orr et al., 2002; Milo et al., 2004).Network motifs
have been generalized to topological motifs as recurrent “simi-
lar” network sub-patterns (Berg and Lassig, 2004). However,
the approaches based on network motifs ignore infrequent
subnetworks and subnetworks with “average” frequencies,
and thus are not sufficient for full-scale network comparison.
Therefore, small connected non-isomorphic induced subgra-
phs of a large network, called graphlets, have been introduced
to design a new measure of local structural similarity between
two networks based on their relative frequency distributions
(Pržulj et al., 2004).

The earliest attempts to model real-world networks include
Erdös-Rény random graphs (henceforth denoted by “ER”) in
which edges between pairs of nodes are distributed uniformly
at random with the same probability p (Erdös and Rényi,
1959, 1960). This model poorly describes several properties
of real-world networks, including the degree distribution and
clustering coefficients, and therefore it has been refined into
generalized random graphs in which the edges are randomly
chosen as in Erdös-Rény random graphs, but the degree dis-
tribution is constrained to match the degree distribution of
the real network (henceforth we denote these networks by
“ER-DD”). Matching other global properties of the real-world
networks to the model networks, such as clustering coeffi-
cients, lead to further improvements in modeling real-world
networks including small-world (Watts and Strogatz, 1998;
Newman and Watts, 1999a,b) and scale-free (Simon, 1955;
Barabási and Albert, 1999) network models (henceforth, we
denote by “SF” scale-free Barabási-Albert networks). Many
cellular networks have been described as scale-free (Barabási
and Oltvai, 2004). However, this issue has been heavily deba-
ted (de Aguiar and Bar-Yam, 2005; Stumpf et al., 2005; Han
et al., 2005; Tanaka, 2005). Recently, based on the local
relative graphlet frequency distribution measure, a geometric
random graph model (Penrose, 2003) has been proposed for
high-confidence PPI networks (Pržulj et al., 2004).
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2 APPROACH
In section 2.1, we describe the fourteen PPI networks and the
four network models that we analyzed. Then we describe how
we generalize the degree distribution to our spectrum of gra-
phlet degree distributions (section 2.2); note that the degree
distribution is the first distribution in this spectrum, since it
corresponds to the only graphlet with two nodes. Finally, we
construct a new measure of similarity between two networks
based on graphlet degree distributions (section 2.3). We des-
cribe the results of applying this measure to the fourteen PPI
networks in section 3.

2.1 PPI and Model Networks
We analyzed PPI networks of the eukaryotic organisms yeast
S. cerevisiae, frutifly D. melanogaster, nematode worm C.
elegans, and human. Several different data sets are available
for yeast and human, so we analyzed five yeast PPI net-
works obtained from three different high-throughput studies
(Uetz et al., 2000; Ito et al., 2000; von Mering et al., 2002)
and five human PPI networks obtained from the two recent
high-throughput studies (Stelzl et al., 2005; Rual et al., 2005)
and three curated data bases (Bader et al., 2003; Peri et al.,
2004; Zanzoni et al., 2002). We denote by “YHC” the high-
confidence yeast PPI network as described by von Mering
et al., 2002, by “Y11K” the yeast PPI network defined by
the top 11, 000 interactions in the von Mering et al., 2002
classification, by “YIC” the Ito et al., 2000 “core” yeast PPI
network, by “YU” the Uetz et al., 2000 yeast PPI network, and
by “YICU” the union of Ito et al., 2000 core and Uetz et al.,
2000 yeast PPI networks (we unioned them as did Han et al.,
2005 to increase coverage). “FE” and “FH” denote the fruit-
fly D. melanogaster entire and high-confidence PPI networks
published by Giot et al., 2003. Similarly, “WE” and “WC”
denote the worm C. elegans entire and “core” PPI networks
published by Li et al., 2004. Finally, “HS”, “HG”, “HB”,
“HH”, and “HM” stand for human PPI networks by Stelzl
et al., 2005, Rual et al., 2005, from BIND (Bader et al., 2003),
HPRD (Peri et al., 2004), and MINT (Zanzoni et al., 2002),
respectively (BIND, HPRD, and MINT data have been down-
loaded from OPHID (Brown and Jurisica, 2005) on February
10, 2006). Note that these PPI networks come from a wide
array of experimental techniques; for example, YHC and
Y11K are mainly coming from tandem affinity purifications
(TAP) and high throughput MS/MS protein complex identi-
fication (HMS-PCI), while YIC, YU, YICU, FE, FH, WE,
WH, HS, and HG are yeast two-hybrid (Y2H), and HB, HH,
and HM are a result of human curation (BIND, HPRD, and
MINT).

The four network models that we compared against the
above fourteen PPI networks are ER, ER-DD, SF, and 3-
dimensional geometric random graphs (henceforth denoted
by “GEO-3D”). Model networks corresponding to a PPI net-
work have the same number of nodes and the number of edges
within 1% of the PPI network’s (details of the construction of

model networks are presented by Pržulj et al., 2004). For each
of the fourteen PPI networks, we constructed and analyzed
25 networks belonging to each of these four network models.
Thus, we analyzed the total of 14 + 14 · 4 · 25 = 1, 414 net-
works. We compared the agreement of each of the fourteen
PPI networks with each of the corresponding 4 · 25 = 100
model networks described above (our new agreement mea-
sure is described in section 2.3). The results of this analysis
are presented in section 3.

2.2 Graphlet Degree Distribution (GDD)
We generalize the notion of the degree distribution as follows.
The degree distribution measures, for each value of k, the
number of nodes of degree k. In other words, for each value
of k, it gives the number of nodes “touching” k edges. Note
that an edge is the only graphlet with two nodes; henceforth,
we call this graphlet G0 (illustrated in Figure 1). Thus, the
degree distribution measures the following: how many nodes
“touch” one G0, how many nodes “touch” two G0s, . . ., how
many nodes “touch” k G0s. Note that there is nothing special
about graphlet G0 and that there is no reason not to apply
the same measurement to other graphlets. Thus, in addition
to applying this measurement to an edge, i.e., graphlet G0,
as in the degree distribution, we apply it to the twenty-nine
graphlets G1, G2, . . .G29 presented in Figure 1 as well.
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Fig. 1. Automorphism orbits 0, 1, 2, . . . , 72 for the thirty 2, 3, 4,
and 5-node graphlets G0, G1, . . . , G29. In a graphlet Gi, i ∈
{0, 1, . . . 29}, nodes belonging to the same orbit are of the same
shade.

When we apply this measurement to graphlets G0, . . . , G29,
we need to take care of certain topological issues that we first
illustrate in the following example and then define formally.
For graphlet G1, we ask how many nodes touch a G1; howe-
ver, note that it is topologically relevant to distinguish between
nodes touching a G1 at an end or at the middle node. This is
due to the following mathematical property ofG1: aG1 admits
an automorphism (defined below) that maps its end nodes to
each other and the middle node to itself. To understand this
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phenomenon, we need to recall the following standard mathe-
matical definitions. An isomorphism g from graph X to graph
Y is a bijection of nodes of X to nodes of Y such that xy
is an edge of X if and only if g(x)g(y) is an edge of Y ; an
automorphism is an isomorphism from a graph to itself. The
automorphisms of a graph X form a group, called the auto-
morphism group of X , and commonly denoted by Aut(X).
If x is a node of graph X , then the automorphism orbit of x is
Orb(x) = {y ∈ V (X)|y = g(x) for some g ∈ Aut(X)},
where V (X) is the set of nodes of graph X . Thus, end
nodes of a G1 belong to one automorphism orbit, while the
mid-node of a G1 belongs to another. Note that graphlet G0

(i.e., an edge) has only one automorphism orbit, as does gra-
phlet G2; graphlet G3 has two automorphism orbits, as does
graphlet G4, graphlet G5 has one automorphism orbit, gra-
phlet G6 has three automorphism orbits etc. (see Figure 1).
In Figure 1, we illustrate the partition of nodes of graphlets
G0, G1, . . . , G29 into automorphism orbits (or just orbits for
brevity); henceforth, we number the 73 different orbits of gra-
phlets G0, G1, . . . , G29 from 0 to 72, as illustrated in Figure
1. Analogous to the degree distribution, for each of these 73
automorphism orbits, we count the number of nodes touching
a particular graphlet at a node belonging to a particular orbit.
For example, we count how many nodes touch one triangle
(i.e., graphlet G2), how many nodes touch two triangles, how
many nodes touch three triangles etc. We need to separate
nodes touching a G1 at an end-node from those touching it
at a mid-node; thus we count how many nodes touch one
G1 at an end-node (i.e., at orbit 1), how many nodes touch
two G1s at an end-node, how many nodes touch three G1s at
an end-node etc. and also how many nodes touch one G1 at a
mid-node (i.e., at orbit 2), how many nodes touch two G1s at a
mid-node, how many nodes touch three G1s at a mid-node etc.
In this way, we obtain 73 distributions analogous to the degree
distribution (actually, the degree distribution is the distribu-
tion for the 0th orbit, i.e., for graphlet G0). Thus, the degree
distribution, which has been considered to be a global network
property, is one in the spectrum of 73 “graphlet degree dis-
tributions (GDDs)” measuring local structural properties of a
network. Note that GDD is measuring local structure, since
it is based on small local network neighborhoods. The dis-
tributions are unlikely to be statistically independent of each
other, although we have not yet worked out the details of the
inter-dependence.

2.3 Network “GDD Agreement”
There are many ways to “reduce” the large quantity of num-
bers representing 73 sample distributions. In this section, we
describe one way; there may be better ways, and certainly
finding better ways to reduce this data is an obvious future
direction. Some of the details may seem obscure at first; we
justify them at the end of this section.

We start by measuring the 73 graphlet degree distributions
(GDDs) for each network that we wish to compare. Let G be

a network (i.e., a graph). For a particular automorphism orbit
j (refer to Figure 1), let dj

G(k) be the sample distribution of
the number of nodes in G touching the appropriate graphlet
(for automorphism orbit j) k times. That is, dj

G represents the
jth graphlet degree distribution (GDD). We scale dj

G(k) as

Sj
G(k) =

dj
G(k)

k
(1)

to decrease the contribution of larger degrees in a GDD (for
reasons we describe later that are illustrated in Figure 2), and
then normalize the distribution with respect to its total area1,

T j
G =

∞
∑

k=1

Sj
G(k). (2)

giving the “normalized distribution”

N j
G(k) =

Sj
G(k)

T j
G

. (3)

In words, N j
G(k) is the fraction of the total area under the

curve, over the entire GDD, devoted to degree k. Finally,
for two networks G and H and a particular orbit j, we
define the “distance” Dj(G, H) between their normalized jth

distributions as

Dj(G, H) =

(

∞
∑

k=1

[N j
G(k) − N j

H(k)]2

)
1

2

, (4)

where again in practice the upper limit of the sum is finite due
to the finite sample. The distance is between 0 and 1, where
0 means that G and H have identical jth GDDs, and 1 means
that their jth GDDs are far away. Next, we reverse Dj(G, H)
to obtain the jth GDD agreement:

Aj(G, H) = 1 − Dj(G, H), (5)

for j ∈ {0, 1, . . . , 72}. Finally, the agreement between two
networks G and H is either the arithmetic (equation 6) or
geometric (equation 7) mean of Aj(G, H) over all j, i.e.,

Aarith(G, H) =
1

73

72
∑

j=0

Aj(G, H), (6)

and

Ageo(G, H) =





72
∏

j=0

Aj(G, H)





1

73

. (7)

Now we give the rationale for designing the agreement mea-
sure in this way. There are many different ways to design a
measure of agreement between two distributions. They are all

1 in practice the upper limit of the sum is finite due to finite sample size
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Fig. 2. Examples of graphlet degree distributions (GDDs) for yeast high-confidence PPI network (von Mering et al., 2002) (solid red line)
and the average of 25 corresponding 3-dimensional geometric random networks (GEO-3D, dashed green line): A. Orbit 11. B. Orbit 16.
Most counts beyond about k = 20 are zero, with a few instances of 1 or (very occasionally) 2. This results in a large amount of red and green
ink which is mostly noise, as the distribution fluctuates frequently from 1 to 0 (which is −∞ on our log scale). The noise could be reduced by
applying a broad-band filter, but we have chosen to leave the data in its raw state, despite the deleterious effect on the aesthetics of the plot.

heuristic, and thus one needs to examine the data to design
the agreement measure that works best for a particular appli-
cation. The justification of our choice of the graphlet degree
distribution agreement measure can be illustrated by an exam-
ple of two GDDs for the yeast high-confidence PPI network
(von Mering et al., 2002) and the corresponding 3-dimensional
geometric random networks presented in Figure 2.This Figure
gives an illustration of the GDDs of orbit 11 of the PPI and
average GDD of orbit 11 in 25 model networks (panel A) being
“closer” than the GDDs of orbit 16 (panel B); this is accurately
reflected by our agreement measure which gives an agreement
of 0.89 for orbit 11 GDDs and of 0.51 for orbit 16. However,
note that the sample distributions extend in the x axis out to
degrees of 104 or even 105; we believe that most of the “infor-
mation” in the distribution is contained in the lower degrees
and that the information in the extreme high degrees is noise
due to bio-technical false positives caused by auto-activators
or sticky proteins (Han et al., 2005). However, without scaling
by 1/k as in equation (1), both the area under the curve (2)
and the distance (4) would be dominated by the counts for
large k. This explains the scaling in equation (1). The “nor-
malization”, equation (3), in performed in order to force both
distributions to have a total area under the curve of 1 before
they are compared. We can now compute, for each value of
k, the “distance” between two distributions at that value of k.
Formally k is unbounded but in practice it is finite due to the
finite size of the graph. We then treat the vector of distances as
a vector in the unit cube of dimension equal to the maximum
value of k. We compute the Euclidean distance between two
of these vectors, representing two networks, in equation (4).
Finally, we choose to switch from “distance” to “agreement”

in equation (5) simply because we feel agreement is a more
intuitive measure.

To gauge the quality of this agreement measure, we com-
puted the average agreements between various model (i.e.,
theoretical) networks. For example, when comparing net-
works of the same type (ER vs ER, ER-DD vs ER-DD,
GEO-3D vs GEO-3D, or SF vs SF), we found the mean
agreement to be 0.84 with a standard deviation of 0.07. To
verify that our “agreement” measure can give low values for
networks that are very different, we also constructed a “straw-
man” model graph called a circulant, and compared it to some
actual PPI network data. A circulant graph is constructed by
adding “chords” to a cycle on n nodes (examples of cycles
on 3, 4, and 5 nodes are graphlets G2, G5, and G15, respec-
tively) so that ith node on the cycle is connected to the [(i+j)
mod n]th and [(i− j) mod n]th node on the cycle. Clearly,
a large circulant with an equal number of nodes and edge
density as the data would not be very representative of a PPI
network, and indeed we find that the agreement between such
a circulant, with chords defined by j ∈ {6, 12}, and the data
is under 0.08. Note that in most of the fourteen PPI networks,
the number of edges is abut 3 times the number of nodes, so
we chose circulants with three times as many edges as nodes;
also, we chose j > 5 to maximize the number of 3, 4, and
5-node graphlets that do not occur in the circulant, since all
of the 3, 4, and 5-node graphlets occur in the data.

3 RESULTS AND DISCUSSION
We present the results of applying the newly introduced
“agreement” measure (section 2.3) to fourteen eukaryotic PPI
networks and their corresponding model networks of four dif-
ferent network model types (described in section 2.1). The
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Fig. 3. Agreements between the fourteen PPI networks and their corresponding model networks. Labels on the horizontal axes are described
in section 2.1. Averages of agreements between 25 model networks and the corresponding PPI network are presented for each random graph
model and each PPI network, i.e., at each point in the Figure; the error bar around a point is one standard deviation below and above the point
(in some cases, error bars are barely visible, since they are of the size of the point). As described in section 2.3, the agreement between a PPI
and a model network is based on the: A. arithmetic average of jth GDD agreements; B. geometric average of jth GDD agreements.

results show that 3-dimensional geometric random graphs
have exceptionally high agreement with all of the fourteen
PPI networks.

We undertook a large-scale scientific computing task by
implementing the above described new methods and using
them to compare agreements across the four random graph
models of fourteen real PPI networks. Using these new
methods, we analyzed a total of 1, 414 networks: fourteen
eukaryotic PPI networks of varying confidence levels descri-
bed in section 2.1 and 25 model networks per random graph
model corresponding to each of the fourteen PPI networks,
where random graph models were ER, ER-DD, SF, and GEO-
3D (described in section 2.1). The largest of these networks
had around 7, 000 nodes and over 20, 000 edges. For each of
the fourteen PPI networks and each of the four random graph
models, we computed averages and standard deviations of
graphlet degree distribution (GDD) agreements between the
PPI and the 25 corresponding model networks belonging to
the same random graph model. The results are presented in
Figure 3.

Erdös-Rény random graphs (ER) show about 0.5 agree-
ment with each of the PPI networks while scale-free networks
of type ER-DD and SF show a slightly improved agreement
(ER-DD networks are random scale-free, since the degree dis-
tributions forced on them by the corresponding PPI networks
roughly follow power law).Note that GEO-3D networks show
the highest agreement for all but one of the fourteen PPI net-
works (Figure 3). For HS PPI network, it is not clear which of
the GEO-3D, SF, and ER-DD models agrees the most with the
data, since the average agreements of HS network with these
models are about the same and within one standard deviation
from each other. GEO-3D and SF model are similarly tied

for the FE network. Since networks belonging to the same
random graph model have average agreement of 0.84 with a
standard deviation of 0.07 (shown in section 2.3), the agree-
ments of over 0.7, that most of the PPI networks have with
the GEO-3D model, are very good. Note that eight out of the
fourteen PPI networks have agreements with GEO-3D model
of over 0.75; since networks of the same type agree on ave-
rage by 0.84± 0.07, we conclude that the agreements of 0.75
are exceptionally high and are unlikely to be beaten by ano-
ther network model under this measure. Also, it is interesting
that GEO-3D model shows high agreement with PPI networks
obtained from various experimental techniques (Y2H, TAP,
HMS-PCI) as well as from human curation (see section 2.1).
Note that this does not mean that GEO-3D is the best possible
model. For example, it may be possible to construct a different
“agreement” measure that is more sensitive and under which
a model better than GEO-3D may be apparent. However, we
believe that the current “agreement” measure is sensitive and
meaningful enough to conclude that GEO-3D is a better model
than ER, ER-DD, and SF.

4 CONCLUSION
We have constructed a new measure of structural simila-
rity between large networks based on the graphlet degree
distribution. The degree distribution is the first one in the
sequence of graphlet degree distributions that are constructed
in a structured and systematic way to impose a large number
of constraints on the structure of networks being compared.
This new measure is easily extendible to a greater number
of constraints simply by adding more graphlets to those in
Figure 1, although this would add significantly to the cost of
computing agreements; the extensions are limited only by the

6



Graphlet Degree Distribution

available CPU. Based on this new network similarity mea-
sure, we have shown that almost all of the fourteen eukaryotic
PPI networks resulting from various high-throughput expe-
rimental techniques, as well as curated databases, are better
modeled by geometric random graphs than by Erdös-Rény,
random scale-free, or Barabási-Albert scale-free networks.
This suggests that a biological description of the (possibly
metric) space of PPIs may help us understand their evolution.
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