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What type of connectivity structure are we seeing in protein-protein interaction networks?
A number of random graph models have been mooted. After fitting model parameters to
real data, the models can be judged by their success in reproducing key network properties.
Here, we propose a very simple random graph model that inserts a connection according to
the degree, or “stickiness”, of the two proteins involved. This model can be regarded as a
testable distillation of more sophisticated versions that attempt to account for the presence of
interaction surfaces, or binding domains. Computing a range of network similarity measures,
including relative graphlet frequency, we find that our model outperforms other random graph
classes. In particular, we show that given the underlying degree information, fitting a stickiness
model produces better results than simply choosing a degree-matching graph uniformly at
random. The results therefore lend support to the basic modelling methodology.
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1. INTRODUCTION AND MODEL

A protein-protein interaction (PPI) network is com-
monly viewed as an unweighted, undirected graph. Each
node in the graph represents a protein and an edge
between a pair of nodes indicates that those proteins
have been observed to interact physically [23, 43, 18, 26,
37, 41]. The types of connectivity patterns that arise are
neither completely random, in the classical Erdös-Rényi
sense, nor completely deterministic [20].

In an attempt to understand and describe the PPI
connectivities, a number of models, that is, formulas
for generating edges in some probabilistic sense, have
been proposed and tested against observed networks
[24, 27, 3, 36, 9]. Much work has focussed on matching
degree distributions and recovering a scale-free law
[24, 27, 3, 38] although whether PPI networks are really
scale-free is still the subject of debate [12, 16, 25, 21, 36].
Our aim here is to present a new, pared-down, but bio-
logically motivated model that simplifies previous work
to the extent that fitting parameters and comparing
local and global graph properties becomes meaningful
and revealing.

Among the few existing models that incorporate
some biological justification are those of Caldarelli et
al. [8], Thomas et al. [42] and Deeds et al. [10]. These
related models have in common the idea that proteins
interact because they share complimentary physical
aspects, a concept that is consistent with the under-
lying biochemistry. Following [42] we will refer to these
physical aspects as binding domains. The approach in
those papers is to generate graphs by assigning binding
domain information to the nodes at random and then

†Author for correspondence (natasha@ics.uci.edu).

inserting links probabilistically according to some pair-
wise matching criterion. The aim is then to reproduce
properties observed in real PPI networks, most notably
the degree distribution. We also mention that a refined
“lock-and-key” version of the model from [42] has been
used to extract protein-level detail from real data sets
[30], further justifying the modelling approach.

Currently, it would be a very challenging task to infer
from a real PPI network the number and distribution of
distinct binding domains [4, 11], not least because the
networks are known to be noisy [40]. For this reason,
it is difficult to decide whether the models from [8, 10,
42] are being tested under realistic parameter ranges.
We therefore propose a simplified model that attempts
to summarize the abundance and popularity of binding
domains on a protein as a single number based on its
normalized degree; we call this number the stickiness
index. The model has the benefit of being tunable to
the given degree structure of a PPI network. In this
way, a benchmark model that captures the essence of
[8, 10, 42] can be tested.

Our work can be motivated by two main assump-
tions.

Assumption 1. Having a high degree implies that a
protein has many binding domains and/or its bind-
ing domains are commonly involved in interactions.

Assumption 2. A pair of proteins is more likely to
interact (share complementary binding domains) if
they both have high stickiness indices, and corre-
spondingly less likely to interact if one or both have
a low stickiness index. We thus take the product of
the two stickiness indices to define the probability
of interaction—this borrows from the concept of
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an AND gate in Boolean logic [5] and the idea of
a rank-one approximation in dimension reduction
[13].

The following pseudocode defines our model.

input {degi}
N
i=1, list of degrees of N nodes

output {wij}
N
i,j=1, adjacency matrix from model

for i = 1 to N

θi = degi/
√

∑N

j=1 degj

end

Initialize all wij = 0
for i = 1 to N

for j = i to N
compute a uniform (0, 1) sample, r
if r ≤ θiθj

wij = 1 and wji = 1
end if

end for

end for

This choice of stickiness index θi ensures that the ith
node in the model has expected degree degi. Moreover,
under Assumption 2, this definition of stickiness in
terms of degree is the only one that captures the correct
expected degree. Details are given in the appendix.

Our stickiness index coincides with the concept of
fitness in [8] with the notable distinction that fitness
in [8] is assigned at random, with a focus on the
resulting degree distribution, whereas stickiness above
is assigned deterministically, based on the unique choice
that matches expected degrees. Since we do not require
any other parameter fitting, this approach allows us to
perform a ‘proof of principle’ test of the basic idea that
links can be modelled via mutual compatibility.

Note that high degree proteins in current PPI net-
works may not necessarily contain a plentiful amount
of binding domains, as implied by our Assumption
1. Instead, their high connectivities may be artifacts
of technical false positives, auto-activators or “sticky”
proteins, or due to biological false positives, as some
PPIs can occur in the experimental procedure, but not
in vivo because protein pairs are not expressed at the
same time, in the same sub-cellular compartment, or
in the same tissue [21]. Thus, our Assumption 1 may
be a severe over-simplification for some proteins in
current PPI data sets. Nevertheless, as PPI detection
biotechnologies improve to produce cleaner, higher-
confidence PPI data, Assumption 1 will become more
descriptive of the observed networks.

A multitude of random graph models that repro-
duce scale-free degree distributions have been pro-
posed, although the relevance of scale-freeness to PPI
networks has been questioned [12, 16, 25, 21, 36].
The most notable such models are those based on
biologically motivated gene duplication and mutation
network growth principles [19, 46, 33, 44]. In these
models, networks grow by duplication of nodes (genes),
and as a node gets duplicated, it inherits most of
the neighbors (interactions) of the parent node, but
gains some new neighbors as well. Thus, a hybrid
model having properties of both a gene duplication–
mutation model and the stickiness index based model

is a promising future direction. In such a model, a
duplicated gene would inherit the parent’s stickiness
index along with many of the parent’s neighbors, as in
a gene duplication–mutation model and it would gain
new neighbors in proportion to its inherited stickiness
index and stickiness indices of the nodes already in the
network, as in our stickiness index based model.

We remark that early tests on low confidence data in
[27] suggest that PPI networks have a bias against con-
nections between high degree proteins. This is poten-
tially at odds with the models in [8, 10, 42], where
sets of proteins that share matching and commonly
occuring (high fitness) physical aspects will interact
and all have high degree. In our simple model we
assign edges independently, but it would be possible
to add a post-processing stage in which links were re-
wired in order to test for various types of correlation.
Hence, a further application of our model is in studying
correlation effects in PPI network topology.

2. EXPERIMENTS AND RESULTS

Comparing large real-world networks is computation-
ally intensive as it involves an NP-complete subgraph
isomorphism problem [47]. Thus, simple heuristics mea-
suring global and local network properties, have been
used. The most commonly examined global network
properties are the degree distribution, clustering coef-
ficient, and network diameter (see [32] for a detailed
survey). More recently, bottom-up local approaches
to studying a network structure have been proposed
[29, 39, 36]. Analogous to sequence motifs, network
motifs have been defined as subgraphs that recur in a
network at frequencies much higher than those found
in randomized networks [29, 39, 28]; they were used
to uncover basic functional units in various real-world
networks. To account for frequencies of occurence of
all small subgraphs rather than for only the over-
represented ones, graphlets were defined as small con-
nected non-isomorphic induced subgraphs of a large
network and their relative frequencies were used to
define a new distance measure between two networks
[36].

To examine the fit of our new stickiness index based
model of PPI networks, we use all of these standard
global and local network parameters. The relative
graphlet frequency distance is the most demanding
network similarity measure, imposing 29 different con-
straints on the networks being compared (details in
[36]), so we use it as our main comparison tool. We com-
pared fourteen large publicly available PPI networks
with sample networks from five models, including the
stickiness model.

We used PPI networks of the following eukaryotic
organisms: yeast S. cerevisiae, fruitfly D. melanogaster,
nematode worm C. elegans, and human. Several differ-
ent data sets are available for yeast and human, so we
analyzed five yeast PPI networks of different confidence
levels obtained from three different high-throughput
studies [43, 23, 45], as well as five human PPI networks
obtained from the two recent high-throughput studies
[41, 37] and three curated data bases [1, 35, 48].
We denote by “YHC” the high-confidence yeast PPI
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network from [45], by “Y11K” the yeast PPI network
defined by the top 11, 000 interactions in the von Mering
et al. classification [45], by “YIC” the Ito et al. “core”
yeast PPI network [23], by “YU” the Uetz et al. yeast
PPI network [43], and by “YICU” the union of “YIC”
and “YU” yeast PPI networks (we unioned them as in
[21] to increase coverage). “FE” and “FH” denote the
fruitfly D. melanogaster entire and high-confidence PPI
networks from [18]. Similarly, “WE” and “WC” denote
the worm C. elegans entire and “core” PPI networks
from [26]. Finally, “HS”, “HR”, “HB”, “HH”, and
“HM” stand for human PPI networks from yeast two-
hybrid (Y2H) screens by Stelzl et al. [41] and Rual et al.

[37], and from curated databases BIND [1], HPRD [35],
and MINT [48], respectively (BIND, HPRD, and MINT
data were downloaded from OPHID [7] on February 10,
2006). Note that YHC and Y11K networks are mainly
coming from tandem affinity purifications (TAP) [17]
and high throughput mass spectrometry protein com-
plex identification (HMS-PCI) [22], while YIC, YU,
YICU, FE, FH, WE, WH, HS, and HR are yeast two-
hybrid, and HB, HH, and HM are a result of human
curation (BIND, HPRD, and MINT). Thus, we are
using PPI networks of different confidence levels that
come from a range of high throughput PPI detection
biotechnologies as well as from human curation.

We compared these PPI networks with the follow-
ing five model networks: Erdös-Rényi random graphs
[14, 15] (henceforth denoted by “ER”), random graphs
with exactly the same degree distribution as a PPI
network [6, 31] (denoted “R-SF” for “random scale-
free”), Barabasi-Albert scale-free networks [2] (denoted
by “BA-SF”), 3-dimensional geometric random graphs
[34] (denoted by “GEO-3D”), and the stickiness model
networks described above (denoted by “STICKY”).

For each of the fourteen PPI networks, and for each
of the five models, we compared the PPI network with
25 samples from the model. Each sample matched the
number of nodes and edges in the corresponding PPI
network.

Average relative graphlet frequency distances
between the PPI and the corresponding model
networks for each of the five network models are
presented in Figure 1. The stickiness model shows an
improved fit over all other network models with respect
to relative graphlet frequency distances in ten out of
the fourteen tested PPI networks (black squares in
Figure 1); it fits as well as the GEO-3D model (white
squares in Figure 1) in one and is outperformed by the
GEO-3D model in three PPI networks. In addition, this
model reproduces global network properties such as the
degree distribution (see the appendix), the clustering
coefficients (white circles in Figure 2, left), and the
average diameters of PPI networks (white circles in
Figure 2, right).

It is of particular note that the R-SF model does
not perform as well as the stickiness model. This means
that, given the degree distribution of a PPI network,

(a) simply drawing a network uniformly at random
from the class of all networks that match the
degree distribution is less successful at capturing
the underlying substructure than

(b) enhancing this degree information by using the
simple modelling insights summarized in Assump-
tions 1 and 2.

3. CONCLUSIONS

Overall, the stickiness framework produces a conve-
nient, parameter-free random network that is moti-
vated by transparent modelling arguments and may
be regarded as a simplified, testable, distillation of
more sophisticated models. The results give further
justification for the modelling approaches in [8, 10, 42].
Since the model accurately reproduces all widely used
quantitative measures it also provides a benchmark
against which others may be compared.

Acknowledgement We thank the referees for valu-
able feedback.

4. APPENDIX

Suppose A ∈ R
N×N is the PPI network adjacency

matrix, so aij = aji = 1 if proteins i and j are con-
nected and aij = aji = 0 otherwise. We are using degi :=
∑N

j=1 aij to denote the degree of protein i.

Suppose that some function of the degree, f [i](degi),
defines the stickiness index of protein i. Then, under
Assumption 2 (and independently for each distinct pair
of proteins)

P(i ↔ j) = f [i](degi) · f
[j](degj),

where i ↔ j denotes the event that i and j are con-
nected.

In order to match the PPI network degree with the
expected degree from the model, we require

degi = E[degree of node i in model]

=

N
∑

j=1

P(i ↔ j)

=

N
∑

j=1

f [i](degi) · f
[j](degj)

= f [i](degi)

N
∑

j=1

f [j](degj).

Let C =
∑N

j=1 f [j](degj). Then the formula above tells

us that degi = Cf [i](degi), and thus

f [i](degi) =
degi

C
.

Summing over i shows that C2 =
∑N

i=1 degi. We con-
clude that

f [i](degi) =
degi

√

∑N

j=1 degj

,

confirming that our stickiness index θi is uniquely
defined under our assumptions.
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Figure 1. Relative graphlet frequency distances (y-axis) between the fourteen PPI networks (x-axis) and their corresponding
model networks. The lower the number, the better the fit. Averages of distances between 25 sample networks and the
corresponding PPI network are presented for each random graph model and each PPI network. Points are joined for clarity
only. The error bar around a point spans one standard deviation above and below (in some cases, error bars are barely
visible, since they are of the size of the point). Labels on the horizontal axis are described in the text.
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Figure 2. Left: Clustering coefficients of fourteen PPI networks and averages of clustering coefficients of 25 model networks
corresponding to a PPI network. Right: Average diameters of the fourteen PPI networks and averages of average diameters
of 25 model networks corresponding to a PPI network. Error bars and labels are described in the legend of Figure 1.

We note that in order for all probabilities to be in the
range [0, 1], we require θiθj ≤ 1 for all i, j. (Assuming
that all proteins have at least one interaction, a suffi-
cient condition is that the product of the two largest
degrees is bounded by N). This property held for all
networks considered here.

As discussed in [8], an intuitively reasonable alterna-
tive to the multiplicative model is the additive version

P(i ↔ j) = g[i](degi) + g[j](degj).

However, copying the same style of analysis leads to the
conclusion that

g[i](degi) =
degi

N
−

1

2N

N
∑

k=1

degk,

so that

P(i ↔ j) =
1

N

(

degi + degj −
1

N

N
∑

k=1

degk

)

.
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Since many proteins have degree less than half the
network average, this model breaks down due to the
assignment of negative probabilities.
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[35] S. Peri, J. D. Navarro, T. Z. Kristiansen, R. Amanchy,
V. Surendranath, B. Muthusamy, T. K. Gandhi, K. N.
Chandrika, N. Deshpande, S. Suresh, B. P. Rashmi,
K. Shanker, N. Padma, V. N iranjan, H. C. Harsha, N. Tal-
reja, B. M. Vrushabendra, M. A. Ramya, A. J. Yatish,
M. Joy, H. N. S hivashankar, M. P. Kavitha, M. Menezes,
D. R. Choudhury, N. Ghosh, R. Saravana, S. Chandran,
S. Mohan, C. K. Jonnalagadda, C. K. Prasad, C. Kumar-
Sinha, K. S. Deshpande, and A. Pandey. Human protein
reference database as a discovery resource for proteomics.
Nucleic Acids Res, 32 Database issue:D497–501, 2004.
1362-4962 Journal Article.
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