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Abstract. Over the years, many successful applications of case-based
reasoning (CBR) systems have been developed in different areas. The
performance of CBR systems depends on several factors, including case
representation, similarity measure, and adaptation. Achieving good per-
formance requires careful design, implementation, and continuous op-
timization of these factors. In this paper, we propose a maintenance
technique that integrates an ensemble of CBR classifiers with spectral
clustering and logistic regression to improve the classification accuracy
of CBR classifiers on (ultra) high-dimensional biological data sets.

Our proposed method is applicable to any CBR system; however, in
this paper, we demonstrate the improvement achieved by applying the
method to a computational framework of a CBR system called TA3. We
have evaluated the system on two publicly available microarray data sets
that cover leukemia and lung cancer samples. Our maintenance method
improves the classification accuracy of TA3 by approximately 20% from
65% to 79% for the leukemia and from 60% to 70% for the lung cancer
data set.

1 Introduction

Case-based reasoning (CBR) has been successfully applied to a wide range of ap-
plications, such as classification, diagnosis, planning, configuration, and decision-
support [1]. CBR can produce good quality solutions in weak-theory domains,
such as molecular biology, where the number and the complexity of the rules
affecting the problem are very high, there is not enough knowledge for formal
representation, and the domain understanding evolves over time [2]. In addition,
similarly as other learning systems, CBR systems can suffer from the wtility prob-
lem, which occurs when knowledge learned in an attempt to improve a system’s
performance degrades it instead [3].

These issues can be addressed by continuous case-based reasoner mainte-
nance (CBRM) [4, 5], where the contents of one or more knowledge containers



are revised in order to improve future reasoning for a particular set of perfor-
mance objectives [6]. According to Richter’s definition, there are four containers
in which the knowledge could be stored in a CBR system: the vocabulary used,
the similarity measure, the solution transformation, and the case-base [7]. Dur-
ing maintenance, the contents of each of the four knowledge containers may
be revised in order to improve the performance objectives, e.g., improving the
quality of the proposed solution.

Although several methods have been proposed for revising the case-base to
reduce the number of stored cases [8, 9, 10], relatively little work has been
carried out on revising the case-base to reduce the number of attributes ! of
stored cases. The problem, known as the “curse of dimensionality”, occurs in
(ultra) high-dimensional domains with tens of thousands of attributes and only
a few hundred cases (samples). Such domains include microarray data sets, which
measure the activity of tens of thousands of genes simultaneously. Microarrays
are used in medical domains to produce molecular profiles of diseased and normal
tissues, and thus increase the level of detail that can be stored about every
patient. That is useful for understanding various diseases, and the resulting
patient profiles support more accurate analogy-based diagnosis, prognosis, and
treatment planning. Microarray data sets are represented by an N x M matrix,
where M is the number of genes for the N samples, and they are labeled using
clinical profiles (or phenotypes).

Clustering and feature selection techniques have been applied to many do-
mains including microarrays [11, 12, 13]. Clustering groups samples (cases) into
partitions, such that samples within a cluster are similar to one another and
dissimilar to samples in other clusters. Clustering techniques can be catego-
rized into partitional and hierarchical methods [14]. Partitional-based clustering
techniques attempt to break a data set into k clusters, such that each cluster
optimizes a given criterion, e.g., minimizes the sum of squared distance from
the mean within each cluster. Hierarchical clustering proceeds successively by
either merging smaller clusters into larger ones (agglomerative approach), or by
splitting larger clusters (divisive approach).

The goal of feature selection is to identify “informative” features among
thousands of available features, i.e., relevant features that improve CBR perfor-
mance for a given reasoning task. In microarray data sets, “informative” features
comprise genes with expression patterns that have meaningful biological rela-
tionships to the classification labels of samples (analogously, it could represent
sample vectors that have meaningful biological relationship to the classification
labels of genes). For microarray data sets, mining a subset of genes that distin-
guishes between cancer and normal samples can play an important role in disease
pathology and drug discovery. Removing “non-informative” features helps over-
come the “curse of dimensionality” and improves the prediction accuracy of
classifiers.

! In this paper, we use attributes and features interchangeably, unless otherwise spec-
ified.



Feature selection techniques are classified into filter and wrapper methods
[15]. The filter approach selects feature subsets that are independent of the
induction algorithm, while the wrapper approach evaluates the subset of features
using the inducer itself.

Our main challenge is to interpret the molecular biology data to find similar
samples to eventually use them in case-based medicine, and to identify those
genes whose expression patterns have meaningful relationships to their classifi-
cation labels. Clustering and feature selection techniques have been successfully
applied to CBR maintenance [16, 10]; however, in this paper, we show how those
techniques can further improve the prediction accuracy of a CBR classifier when
combined with mixture of experts to analyze microarray data sets.

Our CBR maintenance approach has three main components: ensemble of
CBR systems, clustering, and feature selection. We use an ensemble of CBR
systems, called mizture of experts (MOE) to predict the classification label of
a given (input) case. A gating network calculates the weighted average of votes
provided by each expert. The performance of each CBR expert is further im-
proved by using clustering and feature selection techniques. We apply spectral
clustering [17] to cluster the data set into k groups, and the logistic regression
model [18] is used to select a subset of features in each cluster. Each cluster is
considered as a case-base for the k¥ CBR experts, and the gating network learns
how to combine the responses provided by each expert.

Although the proposed method is applicable to any CBR system, we demon-
strate the improvement achieved by applying it to a specific implementation of
a CBR system, called TA3 [19]. TA3 is a computational framework for CBR
based on a modified nearest-neighbor technique and employs a variable context,
a similarity-based retrieval algorithm, and a flexible representation language.

The rest of the paper is organized as follows. Section 2 reviews case-based rea-
soner maintenance techniques. In Section 3, we present the MOE4CBR method
that uses a mixture of experts of CBR to classify high-dimensional data sets.
Also, we discuss the proposed maintenance method in terms of Leake and Wil-
son’s case-base maintenance framework [20]. Section 4 introduces the TA8 CBR,
system, which is used as a framework for evaluating MOE4CBR. In Section 5,
we demonstrate experimental results of the proposed method on two publicly
microarray data sets.

2 Related Work

In this section, we explain the algorithms employed to maintain the contents
of the four knowledge containers — vocabulary used, the similarity measure, the
solution transformation, and the case-based knowledge container — introduced
by Richter [7].

Case-base maintenance (CBM) policies differ in the approach they use and
the schedule they follow to perform maintenance. Leake and Wilson categorize
maintenance policies in terms of how they gather data relevant to maintenance,



how they decide when to trigger maintenance, the types of maintenance opera-
tions available, and how selected maintenance operations are executed [20].

Smyth and McKenna propose a method, that edits the case-base, such that
the range of the problems that can be solved remains unchanged while the size
of the case-base is minimized [8]. Their method is based on condensed nearest
neighbor (CNN). This method builds up an edited set of training examples by
incrementally adding examples to the set if they cannot be correctly classified
by the current edited test [21].

In the CBM method proposed by Shiu and Yeung, a large case-base is trans-
formed to a small case-base together with a group of adaptation rules that are
generated by fuzzy decision trees [9]. These adaptation rules play the role of
complementing the reduction of cases. Yang and Wu propose a method that
does not remove cases from the case-base as they may be useful in the long run.
Instead, the method reduces the size of case-base by creating small case-bases
that are located on different sites [10].

DRAMA is an example of an interactive CBR, system for vocabulary main-
tenance [22]. The cases in the system are conceptual aircraft designs, and the
designers have freedom in defining new features to describe design cases. Each
time before a new case is added to the case-base, the system examines the vocab-
ulary container and suggests appropriate features that have been used previously.
In this way, the vocabulary is built in parallel with the case-base.

Learning feature weights can be considered as an example of similarity main-
tenance. The system asks the user(s) to adjust feature weights for a set of cases,
and applies the weights during case retrieval. Zhang and Yang propose a method
for continually updating a feature-weighting scheme based on interactive user re-
sponses to the system’s behavior [23].

Aha and Bankert discuss how using filter and wrapper techniques improve
the classification accuracy of their case-based classifier on the cloud data set
with 204 features and a few thousands data points [16]. Their results show that
a wrapper FS method (called BEAM) applied to a nearest neighbor classifier
IB1 improves its classification accuracy from 73% to 88%.

A system for disaster response planning called DIAL is an example of solution
transformation maintenance [24]. The solution transformation container in DIAL
comprises a set of adaptation cases and rules, which can be adjusted over time.
In order to adapt a solution, the system checks for applicable adaptation case(s);
if no adaptation cases apply, new adaptation cases can be learned by recording
traces of rule-based or interactive manual adaptation.

Unlike speed-up learners that have first-principle problem solvers in addition
to control rules, pure CBR systems do not usually have first-principle rules. Thus,
without cases similar to a problem at hand, they cannot solve new problems.
Therefore, in maintaining CBR, systems, competence criteria (i.e., the range of
target problems that a given CBR, system can solve) should be considered, as well
as efficiency criteria, which is the main focus of maintaining speed-up learners.
However, based on which criterion had a higher optimization priority during



maintenance, different CBR maintenance methods can be categorized into two
groups [5]:

1. Competence-directed CBM methods attempt to maintain the case-base to
provide the same (or better) quality solution to a broader range of problems

2. Efficiency-directed methods consider the processing constraints, and mod-
ify knowledge containers to improve efficiency of storage or scalability of
retrieval.

3 The MOE4CBR Method

The goal of our maintenance method is to improve the prediction accuracy of
CBR classifiers, and at the same time reduce the size of the case-base knowledge
container. According to Smyth’s categorization [5], our maintenance method
— Mixture Of Experts for CBR systems (MOE4CBR) - is both competence-
directed, since the range of the problems the system can solve increases and
efficiency-directed, since the size of case-base decreases.

The performance of each expert in MOE4CBR is improved by using clus-
tering and feature selection techniques. Based on our initial analysis [25], we
selected spectral clustering [17] for clustering the case-base, and the logistic re-
gression model [18] as a filter feature selection for the TA3 classifier. Given a
labeled training data set, the system predicts labels for the unseen data (test
set) following the process described below.

3.1 Clustering

Of the many clustering approaches that have been proposed, only some algo-
rithms are suitable for domains with large number of features and a small num-
ber of samples. The two clustering approaches widely used in microarray data
analysis [26, 27] are k-means clustering [14] and self-organizing maps (SOMs)
[28]. Our earlier evaluation suggests that spectral clustering [17] outperforms
k-means clustering and SOMs [25]. The comparison was based on two criteria:

1. Dunn’s index [29], which does not require class labels and identifies how
“compact and well separated” clusters are. It is defined as follows:

dlc. c:
D= min { min (CMC].) )}
=1,k j=itl,..k max;=1,.. j diam(c;)

where k denotes the number of clusters and d(c;,c;) is the dissimilarity
function between two clusters ¢; and c; defined as:

d(ci,¢;) = min__ d(z,y)

The diameter of a cluster ¢, represented by diam(c), is considered as a mea-
sure of dispersion and is defined as follows:

diam(c) = max d(z,y)
z,y€c



2. Precision and recall [30] that compare the resulting clusters with pre-
specified class labels [25]. Precision shows how many data points are classi-
fied (clustered) correctly, and recall shows how many data points the model
accounts. They are defined as follows:
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where ¢; is the cluster output by a clustering algorithm for the it* data
point, and g; is the pre-specified classification label of that data point, and
1 < i < T, where T is the number of data points. Precision and recall of
clustering is defined as the weighted average of the precision and recall of
each cluster. More precisely:
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The classification error, FE, is defined as:

k
i=1

where | g; N f(g;) | denotes the number of data points in class g; which labeled
wrong, k shows the number of clusters, and f(g) is a one to one mapping
from classes to clusters, such that each class g; is mapped to the cluster

f(g4)-

Considering the results of our comparison, we apply spectral clustering, which
has been successfully used in many applications including computer vision and
VLSI [17]. In this approach, data points are mapped to a higher dimensional
space prior to being clustered. More precisely, the k eigenvectors associated with
the k largest eigenvalues of matrix X are clustered by k-means, where k repre-
sents the number of clusters and is set by the user. Matrix X is a transformation
of the affinity matrix — the matrix holding the Euclidean distance between any
two data points. In the next step, data point s; is assigned to cluster j if and only
if row 4 of the matrix X was assigned to cluster j, where 1 <i¢ < N, 1< j <k,
and N is the number of data points.

3.2 Feature Selection

The goal of feature selection is to improve the quality of data by removing re-
dundant and irrelevant features, i.e., those features whose values do not have
meaningful relationships to their labels, and whose removal improves the pre-
diction accuracy of the classifier. Feature selection techniques are classified into
filter and wrapper methods [31]. The main difference is that the latter use the
final classifier to evaluate the subset of features, while the former do not.



Fisher criterion and standard t-test are two statistical methods that have
been successfully applied to feature selection problem in (ultra) high-dimensional
data sets [32]. In order to select a suitable feature selection approach for CBM,
we have evaluated performance of Fisher criterion, t-test, and the logistic regres-
sion model [18] when used in a CBR classifier [25]. Namely, we have applied the
three feature selection techniques to the TA& classifier, and measured the im-
provement in accuracy and classification error. Accuracy measures the number
of correctly classified data points, and classification error counts the number of
misclassified data points. Based on our evaluation, logistic regression applied to
feature selection outperforms Fisher and standard t-test techniques [25].

Assuming that classifier z is the logistic of a linear function of the feature
vector, for two classes, the logistic regression model has the following form:

1
1+ewhe’

(1)

where w is a p + 1 column vector of weights, and p is the number of features
[18]. Logistic regression has been successfully applied to classifying (ultra) high-
dimensional microarrays [33]. However, we use logistic regression as a filter fea-
ture selection method. In order to select a subset of features (genes), the logistic
regression classifier is trained on the training set using the above formula, and
features corresponding to the highest ranking magnitude of weights are selected.
The data sets are normalized, such that all features (regressor variables) have
the same mean and the same variance. Since there are thousands of features
in the microarray data sets, features are eliminated in chunks; however, better
results might be obtained by removing one feature at a time, and training the
classifier on the remaining features.

Pr(y =0|z,w) =

3.3 Mixture of Experts

The mixture of experts approach is based on the idea that each expert classifies
samples separately, and individual responses are combined by the gating network
to provide a final classification label [18]. A general idea of the mixture of experts
approach is depicted in Fig. 1. In order to combine the responses of k experts,
the following formulas are used [18]:

k
Pr(y =Y|z;) =Y _ Pr(Cjlz;) x Pr(y = Y|Cj,xs), (2)
j=1
with the constraint that:
N
> Pr(Cjlz:) =1, 3)
7j=1

where z; represents the unseen data (test data), {C1, ..., C } denote the clusters,
and Y is the class label. Pr(Cj|x;) is calculated as follows. Given a test data



x;, the [ similar cases are retrieved from the case-base, where [ can be chosen
by the user. Then Pr(Cj|x;) is calculated by dividing the number of retrieved
cases belonging to C; (represented by S) by the total number of the retrieved
cases (which is I). Pr(y = Y|C}, ;) is the number of retrieved cases with class
label Y belonging to C; divided by S.

Pr(y=Ylz;)

Pr(Cilz;) Pr(Cylz)

Pr(y=Yla;, C) Pr(y =Yla;, Cy)

Fig. 1. Mixture of Experts: terminal nodes are experts, and the non-terminal
node is the gating network. The gating network returns the probability that the
input case x; belongs to class Y.

As Fig. 2 depicts, the MOE4CBR maintenance method has two main steps:
first, the case-base of each expert is formed by clustering the data set into &
groups, then each case-base is maintained “locally” using feature selection tech-
niques. Each of the k£ obtained sets will be considered as a case-base for our
k CBR experts. We use formulas 2 and 3 to combine the responses of the k
experts. Each expert applies the TA8 model to decide on the class label, and the
gating network uses TA3 to assign weights to each classifier, i.e., to determine
which class the input case most likely belongs to.

Cluster 1 Case-Base 1

Pr(C|z;)

Cluster 2 Case—Base 2

1 -

Gating | pr(y=Y|z)
Network

Training Set
(Case-Base)

Cluster k& Case-Base k

I I

Pr(Cglz:)

Fig. 2. Mixture of Experts for Case-Based Reasoning: training set is grouped
into k clusters, and after selecting a subset of features for each group (shown
with vertical bars), each group will be used as a case-base for the k experts of
CBR. The gating network combines the responses provided by each TA3 expert
considering the weights of each expert (weights are shown on the arrows that
connect TA3 experts to the gating network).



Next, we describe the proposed maintenance method in terms of the main-
tenance framework introduced by Leake and Wilson [20]:

— Type of data: none. The method does not collect any particular data to
decide when CBM is needed.

— Timing: ad hoc, conditional. The removal of “non-informative” attributes
from case representation is performed at irregular intervals. To make the
system more autonomous, we plan to make it conditional, i.e., whenever
there is a change in the task, or whenever new cases are added to the case-
base.

— Integration: offline. The maintenance is performed offline during a pause
in reasoning.

— Triggering: conditional. Maintenance will be triggered whenever there is a
change in the task, or new cases are added to the case-base.

— Revision level: knowledge level. Maintenance is mainly focused on removing
“non-informative” features.

— Execution: none. The system makes no changes when the maintenance is
needed, the maintenance method is invoked manually.

— Scope of maintenance: broad. The whole case-base is affected by the CBM
operations.

It should be noted that unlike in other CBR application domains, where cases
are usually added to the case-base one by one, cases are added in a batch mode
in molecular biology domains. Thus, the maintenance can be performed offline.
As a result, the complexity issues of the maintenance method are less important.

4 An Introduction to the TA3 Case-Based Reasoning
System

We used the TA3 CBR system as a framework to evaluate our method, although
our maintenance method can be applied to any CBR system. The TA& system
has been applied successfully to biology domains, such as in witro fertilization
(IVF) [34] and protein crystal growth [35]. We briefly describe the main features
of the TA3 CBR system.

4.1 Case Representation in TA3

A case C corresponds to a real world situation, represented as a finite set of
attribute/value pairs [34]:

C={<ap:Vy><a1:V1>,....,<an:V, >}

There are two types of cases: (1) an input case (target) that describes the
problem and is represented as a case without a solution; and (2) a source case,
which is a case stored in a case-base that contains both a problem description
and a solution.



Using the information about the usefulness of individual attributes and in-
formation about their properties, attributes are grouped into two or more Telos-
style categories [36]. This enhancement of case representations is used during
the retrieval process to increase the accuracy of classification and flexibility of
retrieval, and to improve system’s performance. In classification tasks, each case
has at least two categories: problem description and class. The problem descrip-
tion characterizes the problem and the class gives a solution to a given problem.
Additional categories can be used to group attributes into separate equivalence
partitions, and the system can treat each partition separately during case re-
trieval.

4.2 Case Retrieval in TA3

The retrieval component is based on a modified nearest-neighbor matching [37].
Its modification includes: (1) grouping attributes into categories of different pri-
orities so that different preferences and constraints can be used for individual
categories during query relaxation; (2) using an explicit context (i.e., set of at-
tribute and attribute value constraints) during similarity assessment; (3) using
an efficient query relaxation algorithm based on incremental context transfor-
mations [19].

Similarity in TA3 is determined as a closeness of values for attributes defined
in the context. Context can be seen as a view or an interpretation of a case, where
only a subset of attributes are considered relevant. Formally, a context is defined
as a finite set of attributes with associated constraints on their values:

N ={<ap: CVp>,...,<ay : CV} >},

where a; is an attribute name and the constraint C'V; specifies the set of “al-
lowable” values for attribute a;. By selecting only certain features for matching
and imposing constraints on feature values, a context allows for controlling what
can and what cannot be considered as a partial match: all (and only) cases that
satisfy the specified constraints for the context are considered similar and are
relevant with respect to the context. Machine learning and knowledge-mining
techniques may be applied to determine an optimal context: selecting features
which are most “relevant” for a given task and specifying characteristic values
for them.

4.3 Case Adaptation in TA3

Considering the characteristics of microarray data sets, the current implementa-
tion uses only simple adaptation. Namely, for case-base classification, the average
class label of the similar retrieved cases is considered as the class label for the
input case.

5 Experimental Results

Here we demonstrate the results of applying the MOE4CBR method to the TA3
classifier.



5.1 Data Sets
The experiments have been performed on the following microarray data sets:

1. Leukemia: The data set contains data of 72 leukemia patients, with 7,129
expression levels for each sample! [26]. 46 samples belong to type I Leukemia
(called Acute Lymphoblastic Leukemia) and 25 samples belong to type II
Leukemia (called Acute Myeloid Leukemia).

2. Lung: The data set taken from the Ontario Cancer Institute 2 contains
39 samples, with 18,117 expression levels for each sample. Samples are pre-
classified into recurrence and non-recurrence. Missing values were imputed
using KNNimputed software, which is based on the weighted k-nearest neigh-
bor method [38].

5.2 MOE4CBR Results

Table 1 depicts the results of applying the MOE4CBR maintenance method
to the leukemia and lung data sets. When there is a tie, the TA3 classifier
cannot decide on the label of data points; resulting cases are categorized as
“undecided” in the table. As the table shows, before the maintenance method is
applied, the classification accuracy of the T A3 curemic ° and TA3Lung is 65%
and 60%, respectively. However, after our maintenance method selects a subset
of 712 out of 7129 genes for leukemia and a subset of 1811 out of 18117 genes
for the lung data sets, and combines TAS$ classifiers using mixture of experts,
the accuracy improves to 79% and 70%, respectively. In our experiments, the
number of clusters, k, was assigned to be the number of classification labels, i.e.,
k was set to be 2 for both the leukemia and lung data sets.

Table 1. Accuracy of TA8 before and after maintenance

Leukemia Data Set

Method Accuracy Error Undecided
No Maintenance| 65%  35% 0%
MOE4CBR 9% 21% 0%

Lung Data Set

Method Accuracy Error Undecided
No Maintenance| 60%  30% 10%
MOE4CBR 0%  30% 0%

We used the training and test data set suggested by the data set provider
for the leukemia data set (38 samples in the training and 34 samples in the test

! http://www.broad.mit.edu/ cgi-bin/cancer/publications/pub_menu.cgi
? http://www.cs.toronto.edu /juris/publications/data/CR0O2Data.txt
3 TA3x denotes application of TA8 into a domain X.



set). The leave-one-out cross-validation (LOOCV) method was used for the lung
data set, and results are averaged over 20 trials.

The lung data set has also been analyzed by Jones et al. [39]. They developed
a model-based clustering prior to using the SVM classifier. Their results show
that the classification accuracy of SVM prior to applying the proposed model-
based clustering is 72% using 10-fold cross-validation for evaluation. After the
proposed method is applied, which selects 20 meta-genes, the classification ac-
curacy drops to 67%. Considering that our method improves the classification
accuracy of TA8 on the lung data set from 60% to 70% after we reduce the size
of the data-set by 90%, our results are encouraging.

6 Conclusions

Molecular biology domain is a natural application for CBR systems, since CBR
systems can perform remarkably well on complex and poorly formalized domains.
However, due to the large number of attributes in each case, CBR classifiers,
similarly as other learning systems, suffer from the “curse of dimensionality”.
Maintaining CBR systems can improve the prediction accuracy of CBR classifiers
by clustering similar cases, and removing “non-informative” features in each
group.

In this paper, we introduced the TA3 case-based reasoning system, a com-
putational framework for CBR systems. We proposed the mixture of experts for
case-based reasoning (MOE4CBR) method, where an ensemble of CBR systems
is integrated with clustering and feature selection to improve the prediction ac-
curacy of the TAS8 classifier. Spectral clustering groups samples, and each group
is used as a case-base for each of the k experts of CBR. To improve the accuracy
of each expert, logistic regression is applied to select a subset of features that
can better predict class labels. We also demonstrated that our proposed method
improves the prediction accuracy of the TA3 case-based reasoning system on
two public lung and leukemia microarray data sets.

Although we have used a specific implementation of a CBR system, our
results are applicable in general. Generality of our solution is also not degraded
by the application domains, since many other life sciences problem domains
are characterized by (ultra) high-dimensionality and a low number of samples.
Further investigation may take additional advantage of Telos-style categories
in TAS for classification tasks, and perform more experiments on several other
data sets. The system may also benefit from new clustering approaches, and new
feature selection algorithms.
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