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Abstract

Some crowdsourcing platforms ask workers to express their opinions by approv-
ing a set of k good alternatives. It seems that the only reasonable way to aggregate
these k-approval votes is the approval voting rule, which simply counts the num-
ber of times each alternative was approved. We challenge this assertion by propos-
ing a probabilistic framework of noisy voting, and asking whether approval voting
yields an alternative that is most likely to be the best alternative, given k-approval
votes. While the answer is generally positive, our theoretical and empirical results
call attention to situations where approval voting is suboptimal.

1 Introduction

It is surely no surprise to the reader that modern machine learning algorithms thrive on large
amounts of data — preferably labeled. Online labor markets, such as Amazon Mechanical Turk
(www.mturk.com), have become a popular way to obtain labeled data, as they harness the power
of a large number of human workers, and offer significantly lower costs compared to expert opin-
ions. But this low-cost, large-scale data may require compromising quality: the workers are often
unqualified or unwilling to make an effort, leading to a high level of noise in their submitted labels.

To overcome this issue, it is common to hire multiple workers for the same task, and aggregate their
noisy opinions to find more accurate labels. For example, TurKit [17] is a toolkit for creating and
managing crowdsourcing tasks on Mechanical Turk. For our purposes its most important aspect
is that it implements plurality voting: among available alternatives (e.g., possible labels), workers
report the best alternative in their opinion, and the alternative that receives the most votes is selected.

More generally, workers may be asked to report the k best alternatives in their opinion; such a vote
is known as a k-approval vote. This has an advantage over plurality (1-approval) in noisy situations
where a worker may not be able to pinpoint the best alternative accurately, but can recognize that
it is among the top k alternatives [23].1 At the same time, k-approval votes, even for k > 1, are
much easier to elicit than, say, rankings of the alternatives, not to mention full utility functions. For
example, EteRNA [16] — a citizen science game whose goal is to design RNA molecules that fold
into stable structures — uses 8-approval voting on submitted designs, that is, each player approves
up to 8 favorite designs; the designs that received the largest number of approval votes are selected
for synthesis in the lab.

So, the elicitation of k-approval votes is common practice and has significant advantages. And it
may seem that the only reasonable way to aggregate these votes, once collected, is via the approval
voting rule, that is, tally the number of approvals for each alternative, and select the most approved
one.2 But is it? In other words, do the k-approval votes contain useful information that can lead to

1k-approval is also used for picking k winners, e.g., various cities in the US such as San Francisco, Chicago,
and New York use it in their so-called “participatory budgeting” process [15].

2There is a subtle distinction, which we will not belabor, between k-approval voting, which is the focus of
this paper, and approval voting [8], which allows voters to approve as many alternatives as they wish. The latter
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significantly better outcomes, and is ignored by approval voting? Or is approval voting an (almost)
optimal method for aggregating k-approval votes?

Our Approach. We study the foregoing questions within the maximum likelihood estimation (MLE)
framework of social choice theory, which posits the existence of an underlying ground truth that pro-
vides an objective comparison of the alternatives. From this viewpoint, the votes are noisy estimates
of the ground truth. The optimal rule then selects the alternative that is most likely to be the best
alternative given the votes. This framework has recently received attention from the machine learn-
ing community [18, 3, 2, 4, 21], in part due to its applications to crowdsourcing domains [20, 21, 9],
where, indeed, there is a ground truth, and individual votes are objective.

In more detail, in our model there exists a ground truth ranking over the alternatives, and each voter
holds an opinion, which is another ranking that is a noisy estimate of the ground truth ranking. The
opinions are drawn i.i.d. from the popular Mallows model [19], which is parametrized by the ground
truth ranking, a noise parameter ϕ ∈ [0, 1], and a distance metric d over the space of rankings.
We use five well-studied distance metrics: the Kendall tau (KT) distance, the (Spearman) footrule
distance, the maximum displacement distance, the Cayley distance, and the Hamming distance.

When required to submit a k-approval vote, a voter simply approves the top k alternatives in his
opinion. Given the votes, an alternative a is the maximum likelihood estimate (MLE) for the best
alternative if the votes are most likely generated by a ranking that puts a first.

We can now reformulate our question in slightly more technical terms:

Is approval voting (almost) a maximum likelihood estimator for the best alterna-
tive, given votes drawn from the Mallows model? How does the answer depend
on the noise parameter φ and the distance metric d?

Our results. Our first result (Theorem 1) shows that under the Mallows model, the set of winners
according to approval voting coincides with the set of MLE best alternatives under the Kendall tau
distance, but under the other four distances there may exist approval winners that are not MLE best
alternatives. Our next result (Theorem 2) confirms the intuition that the suboptimality of approval
voting stems from the information that is being discarded: when only a single alternative is approved
or disapproved in each vote, approval voting — which now utilizes all the information that can be
gleaned from the anonymous votes — is optimal under mild conditions.

Going back to the general case of k-approval votes, we show (Theorem 3) that even under the four
distances for which approval voting is suboptimal, a weaker statement holds: in cases with very high
or very low noise, every MLE best alternative is an approval winner (but some approval winners
may not be MLE best alternatives). And our experiments, using real data, show that the accuracy of
approval voting is usually quite close to that of the MLE in pinpointing the best alternative.

We conclude that approval voting is a good way of aggregating k-approval votes in most situations.
But our work demonstrates that, perhaps surprisingly, approval voting may be suboptimal, and, in
situations where a high degree of accuracy is required, exact computation of the MLE best alternative
is an option worth considering. We discuss our conclusions in more detail in Section 6.

2 Model

Let [t] , {1, . . . , t}. Denote the set of alternatives by A, and let |A| = m. We use L(A) to denote
the set of rankings (total orders) of the alternatives in A. For a ranking σ ∈ L(A), let σ(i) denote
the alternative occupying position i in σ, and let σ−1(a) denote the rank (position) of alternative a
in σ. With a slight abuse of notation, let σ([t]) , {a ∈ A|σ−1(a) ∈ [t]}. We use σa↔b to denote
the ranking obtained by swapping the positions of alternatives a and b in σ. We assume that there
exists an unknown true ranking of the alternatives (the ground truth), denoted σ∗ ∈ L(A). We also
make the standard assumption of a uniform prior over the true ranking.

framework of approval voting has been studied extensively, both from the axiomatic point of view [7, 8, 13,
22, 1], and the game-theoretic point of view [14, 12, 6]. However, even under this framework it is a standard
assumption that votes are tallied by counting the number of times each alternative is approved, which is why
we simply refer to the aggregation rule under consideration as approval voting.
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Let N = {1, . . . , n} denote the set of voters. Each voter i has an opinion, denoted πi ∈ L(A),
which is a noisy estimate of the true ranking σ∗; the collection of opinions — the (opinion) profile
— is denoted π. Fix k ∈ [m]. A k-approval vote is a collection of k alternatives approved by a
voter. When asked to submit a k-approval vote, voter i simply submits the vote Vi = πi([k]), which
is the set of alternatives at the top k positions in his opinion. The collection of all votes is called
the vote profile, and denoted V = {Vi}i∈[n]. For a ranking σ and a k-approval vote v, we say that
v is generated from σ, denoted σ →k v (or σ → v when the value of k is clear from the context),
if v = σ([k]). More generally, for an opinion profile π and a vote profile V , we say π →k V (or
π → V ) if πi →k Vi for every i ∈ [n].

Let Ak = {Ak ⊆ A||Ak| = k} denote the set of all subsets of A of size k. A voting rule operating
on k-approval votes is a function (Ak)n → A that returns a winning alternative given the votes.3

In particular, let us define the approval score of an alternative a, denoted SCAPP(a), as the number
of voters that approve a. Then, approval voting simply chooses an alternative with the greatest
approval score. Note that we do not break ties. Instead, we talk about the set of approval winners.

Following the standard social choice literature, we model the opinion of each voter as being drawn
i.i.d. from an underlying noise model. A noise model describes the probability of drawing an opinion
σ given the true ranking σ∗, denoted Pr[σ|σ∗]. We say that a noise model is neutral if the labels
of the alternatives do not matter, i.e., renaming alternatives in the true ranking σ and in the opinion
σ∗, in the same fashion, keeps Pr[σ|σ∗] intact. A popular noise model is the Mallows model [19],
under which Pr[σ|σ∗] = ϕd(σ,σ

∗)/Zmϕ . Here, d is a distance metric over the space of rankings.
Parameter ϕ ∈ [0, 1] governs the noise level; ϕ = 0 implies that the true ranking is generated with
probability 1, and ϕ = 1 implies the uniform distribution. Zmϕ is the normalization constant, which
is independent of the true ranking σ∗ given that distance d is neutral, i.e., renaming alternatives in
the same fashion in two rankings does not change the distance between them. Below, we review five
popular distances used in the social choice literature; they are all neutral.

• The Kendall tau (KT) distance, denoted dKT , measures the number of pairs of alternatives
over which two rankings disagree. Equivalently, it is the number of swaps required by
bubble sort to convert one ranking into another.

• The (Spearman) footrule (FR) distance, denoted dFR, measures the total displacement (ab-
solute difference between positions) of all alternatives in two rankings.

• The Maximum Displacement (MD) distance, denoted dMD , measures the maximum of the
displacements of all alternatives between two rankings.

• The Cayley (CY) distance, denoted dCY , measures the minimum number of swaps (not
necessarily of adjacent alternatives) required to convert one ranking into another.

• The Hamming (HM) distance, denoted dHM , measures the number of positions in which
two rankings place different alternatives.

Since opinions are drawn independently, the probability of a profile π given the true ranking σ∗ is
Pr[π|σ∗] =

∏n
i=1 Pr[πi|σ∗] ∝ ϕd(π,σ

∗), where d(π, σ∗) =
∑n
i=1 d(πi, σ

∗). Once we fix the noise
model, for a fixed k we can derive the probability of observing a given k-approval vote v: Pr[v|σ∗] =∑
σ∈L(A):σ→v Pr[σ|σ∗]. Then, the probability of drawing a given vote profile V is Pr[V |σ∗] =∏n
i=1 Pr[Vi|σ∗]. Alternatively, this can also be expressed as Pr[V |σ∗] =

∑
π∈L(A)n:π→V Pr[π|σ∗].

Hereinafter, we omit the domainsL(A)n for π andL(A) for σ∗ when they are clear from the context.

Finally, given the vote profile V the likelihood of an alternative a being the best alternative in the true
ranking σ∗ is proportional to (via Bayes’ rule) Pr[V |σ∗(1) = a] =

∑
σ∗:σ∗(1)=a Pr[V |σ∗]. Using

the two expressions derived earlier for Pr[V |σ∗], and ignoring the normalization constant Zmϕ from
the probabilities, we define the likelihood function of a given votes V as

L(V, a) ,
∑

σ∗:σ∗(1)=a

∑
π:π→V

ϕd(π,σ
∗) =

∑
σ∗:σ∗(1)=a

n∏
i=1

[ ∑
πi:πi→Vi

ϕd(πi,σ
∗)

]
. (1)

The maximum likelihood estimate (MLE) for the best alternative is given by argmaxa∈A L(V, a).
Again, we do not break ties; we study the set of MLE best alternatives.

3Technically, this is a social choice function; a social welfare function returns a ranking of the alternatives.
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3 Optimal Voting Rules

At first glance, it seems natural to use approval voting (that is, returning the alternative that is
approved by the largest number of voters) given k-approval votes. However, consider the following
example with 4 alternatives (A = {a, b, c, d}) and 5 voters providing 2-approval votes:

V1 = {b, c}, V2 = {b, c}, V3 = {a, d}, V4 = {a, b}, V5 = {a, c}. (2)

Notice that alternatives a, b, and c receive 3 approvals each, while alternative d receives only a
single approval. Approval voting may return any alternative other than alternative d. But is that
always optimal? In particular, while alternatives b and c are symmetric, alternative a is qualitatively
different due to different alternatives being approved along with a. This indicates that under certain
conditions, it is possible that not all three alternatives are MLE for the best alternative. Our first
result shows that this is indeed the case under three of the distance functions listed above, and a
similar example works for a fourth. However, surprisingly, under the Kendall tau distance the MLE
best alternatives are exactly the approval winners, and hence are polynomial-time computable, which
stands in sharp contrast to the NP-hardness of computing them given rankings [5].
Theorem 1. The following statements hold for aggregating k-approval votes using approval voting.

1. Under the Mallows model with a fixed distance d ∈ {dMD , dCY , dHM , dFR}, there exist a
vote profile V with at most six 2-approval votes over at most five alternatives, and a choice
for the Mallows parameter ϕ, such that not all approval winners are MLE best alternatives.

2. Under the Mallows model with the distance d = dKT , the set of MLE best alternatives
coincides with the set of approval winners, for all vote profiles V and all values of the
Mallows parameter ϕ ∈ (0, 1).

Proof. For the Mallows model with d ∈ {dMD , dCY , dHM } and any ϕ ∈ (0, 1), the profile from
Equation (2) is a counterexample: alternatives b and c are MLE best alternatives, but a is not.
For the Mallows model with d = dFR, we could not find a counter example with 4 alternatives;
computer-based simulations generated the following counterexample with 5 alternatives that works
for any ϕ ∈ (0, 1): V1 = V2 = {a, b}, V3 = V4 = {c, d}, V5 = {a, e}, and V6 = {b, c}.
Here, alternatives a, b, and c have the highest approval score of 3. However, alternative b has a
strictly lower likelihood of being the best alternative than alternative a, and hence is not an MLE
best alternative. The calculation verifying these counterexamples is presented in the online appendix
(specifically, Appendix A).

In contrast, for the Kendall tau distance, we show that all approval winners are MLE best alternatives,
and vice-versa. We begin by simplifying the likelihood function L(V, a) from Equation (1) for the
special case of the Mallows model with the Kendall tau distance. In this case, it is well known that
the normalization constant satisfies Zmϕ =

∏m
j=1 T

j
ϕ, where T jϕ =

∑j−1
i=0 ϕ

i. Consider a ranking
πi such that πi → Vi. We can decompose dKT (πi, σ

∗) into three types of pairwise mismatches:
i) d1(πi, σ∗): The mismatches over pairs (b, c) where b ∈ Vi and c ∈ A \ Vi, or vice-versa; ii)
d2(πi, σ

∗): The mismatches over pairs (b, c) where b, c ∈ Vi; and iii) d3(πi, σ∗): The mismatches
over pairs (b, c) where b, c ∈ A \ Vi.
Note that every ranking πi that satisfies πi → Vi has identical mismatches of type 1. Let us denote
the number of such mismatches by dKT (Vi, σ

∗). Also, notice that d2(πi, σ∗) = dKT (πi|Vi , σ∗|Vi),
where σ|S denotes the ranking of alternatives in S ⊆ A dictated by σ. Similarly, d3(πi, σ∗) =
dKT (πi|A\Vi , σ∗|A\Vi). Now, in the expression for the likelihood function L(V, a),

L(V, a) =
∑

σ∗:σ∗(1)=a

n∏
i=1

∑
πi:πi→V

ϕdKT (Vi,σ
∗)+dKT (πi|Vi ,σ

∗|Vi )+dKT (πi|A\Vi ,σ
∗|A\Vi )

=
∑

σ∗:σ∗(1)=a

n∏
i=1

ϕdKT (Vi,σ
∗)

 ∑
π1
i∈L(Vi)

ϕdKT (π1
i ,σ
∗|Vi )

 ·
 ∑
π2
i∈L(A\Vi)

ϕdKT (π2
i ,σ
∗|A\Vi )


=

∑
σ∗:σ∗(1)=a

n∏
i=1

ϕdKT (Vi,σ
∗) · Zkϕ · Zm−kϕ ∝

∑
σ∗:σ∗(1)=a

ϕdKT (V,σ∗) , L̂(V, a).
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The second equality follows because every ranking πi that satisfies πi → V can be generated by
picking rankings π1

i ∈ L(Vi) and π2
i ∈ L(A \ Vi), and concatenating them. The third equality

follows from the definition of the normalization constant in the Mallows model. Finally, we denote
dKT (V, σ∗) ,

∑n
i=1 dKT (Vi, σ

∗). It follows that maximizing L(V, a) amounts to maximizing
L̂(V, a). Note that dKT (V, σ∗) counts the number of times alternative a is approved while alternative
b is not for all a, b ∈ A with b �σ∗ a. That is, let nV (a,−b) , |{i ∈ [n]|a ∈ Vi ∧ b /∈ Vi}|.
Then, dKT (V, σ∗) =

∑
a,b∈A:b�σ∗a n

V (a,−b). Also, note that for alternatives c, d ∈ A, we have
SCAPP(c)− SCAPP(d) = nV (c,−d)− nV (d,−c).

Next, we show that L̂(V, a) is a monotonically increasing function of SCAPP(a). Equivalently,
L̂(V, a) ≥ L̂(V, b) if and only if SCAPP(a) ≥ SCAPP(b). Fix a, b ∈ A. Consider the bijection
between the sets of rankings placing a and b first, which simply swaps a and b (σ ↔ σa↔b). Then,

L̂(V, a)− L̂(V, b) =
∑

σ∗:σ∗(1)=a

ϕdKT (V,σ∗) − ϕdKT (V,σ∗a↔b). (3)

Fix σ∗ such that σ∗(1) = a. Note that σ∗a↔b(1) = b. Let C denote the set of alternatives positioned
between a and b in σ∗ (equivalently, in σ∗a↔b). Now, σ∗ and σ∗a↔b have identical disagreements with
V on a pair of alternatives (x, y) unless i) one of x and y belongs to {a, b}, and ii) the other belongs
to C ∪ {a, b}. Thus, the difference of disagreements of σ∗ and σ∗a↔b with V on such pairs is

dKT (V, σ
∗)− dKT (V, σ

∗
a↔b)

=
[
nV (b,−a)− nV (a,−b)

]
+
∑
c∈C

[nV (c,−a) + nV (b,−c)− nV (c,−b)− nV (a,−c)]

= (|C|+ 1) ·
(

SCAPP(b)− SCAPP(a)
)
.

Thus, SCAPP(a) = SCAPP(b) implies dKT (V, σ∗) = dKT (V, σ∗a↔b) (and thus, L̂(V, a) = L̂(V, b)),
and SCAPP(a) > SCAPP(b) implies dKT (V, σ∗) < dKT (V, σ∗a↔b) (and thus, L̂(V, a) > L̂(V, b)). �

Suboptimality of approval voting for distances other than the KT distance stems from the fact that
in counting the number of approvals for a given alternative, one discards information regarding
other alternatives approved along with the given alternative in various votes. However, no such
information is discarded when only one alternative is approved (or not approved) in each vote. That
is, given plurality (k = 1) or veto (k = m − 1) votes, approval voting should be optimal, not only
for the Mallows model but for any reasonable noise model. The next result formalizes this intuition.
Theorem 2. Under a neutral noise model, the set of MLE best alternatives coincides with the set of
approval winners

1. given plurality votes, if p1 > pi > 0,∀i ∈ {2, . . . ,m}, where pi is the probability of the
alternative in position i in the true ranking appearing in the first position in a sample, or

2. given veto votes, if 0 < q1 < qi,∀i ∈ {2, . . . ,m}, where qi is the probability of the
alternative in position i in the true ranking appearing in the last position in a sample.

Proof. We show the proof for plurality votes. The case of veto votes is symmetric: in every vote,
instead of a single approved alternative, we have a single alternative that is not approved. Note that
the probability pi is independent of the true ranking σ∗ due to the neutrality of the noise model.

Consider a plurality vote profile V and an alternative a. Let T = {σ∗ ∈ L(A)|σ∗(1) = a}.
The likelihood function for a is given by L(V, a) =

∑
σ∗∈T Pr[V |σ∗]. Under every σ∗ ∈ T , the

contribution of the SCAPP(a) plurality votes for a to the product Pr[V |σ∗] =
∏n
i=1 Pr[Vi|σ∗] is

(p1)
SCAPP(a). Note that the alternatives in A \ {a} are distributed among positions in {2, . . . ,m} in

all possible ways by the rankings in T . Let ib denote the position of alternative b ∈ A \ {a}. Then,

L(V, a) = p
SCAPP(a)
1 ·

∑
{ib}b∈A\{a}={2,...,m}

∏
b∈A\{a}

p
SCAPP(b)
ib

= (p1)
n·k ·

∑
{ib}b∈A\{a}={2,...,m}

∏
b∈A\{a}

(
pib
p1

)SCAPP(b)

.
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The second transition holds because SCAPP(a) = n · k −
∑
b∈A\{a} SCAPP(b). Our assumption in

the theorem statement implies 0 < pib/p1 < 1 for ib ∈ {2, . . . ,m}. Now, it can be checked that
for a, b ∈ A, we have L̂(V, a)/L̂(V, b) =

∑
i∈{2,...,m}(pi/p1)

SCAPP(b)−SCAPP(a). Thus, SCAPP(a) ≥
SCAPP(b) if and only if L̂(V, a) ≥ L̂(V, b), as required. �

Note that the conditions of Theorem 2 are very mild. In particular, the condition for plurality votes
is satisfied under the Mallows model with all five distances we consider, and the condition for veto
votes is satisfied under the Mallows model with the Kendall tau, the footrule, and the maximum
displacement distances. This is presented as Theorem 4 in the online appendix (Appendix B).

4 High Noise and Low Noise

While Theorem 1 shows that there are situations where at least some of the approval winners may not
be MLE best alternatives, it does not paint the complete picture. In particular, in both profiles used as
counterexamples in the proof of Theorem 1, it holds that every MLE best alternative is an approval
winner. That is, the optimal rule choosing an MLE best alternative works as if a tie-breaking scheme
is imposed on top of approval voting. Does this hold true for all profiles? Part 2 of Theorem 1 gives
a positive answer for the Kendall tau distance. In this section, we answer the foregoing question
(largely) in the positive under the other four distance functions, with respect to the two ends of the
Mallows spectrum: the case of low noise (ϕ → 0), and the case of high noise (ϕ → 1). The case
of high noise is especially compelling (because that is when it becomes hard to pinpoint the ground
truth), but both extreme cases have received special attention in the literature [24, 21, 11]. In contrast
to previous results, which have almost always yielded different answers in the two cases, we show
that every MLE best alternative is an approval winner in both cases, in almost every situation.

We begin with the likelihood function for alternative a: L(V, a) =
∑
σ∗:σ∗(1)=a

∑
π:π→V ϕ

d(π,σ∗).
When ϕ → 0, maximizing L(V, a) requires minimizing the minimum exponent. Ties, if any, are
broken using the number of terms achieving the minimum exponent, then the second smallest expo-
nent, and so on. At the other extreme, let ϕ = 1− ε with ε→ 0. Using the first-order approximation
(1− ε)d(π,σ∗) ≈ 1− ε · d(π, σ∗), maximizing L(V, a) requires minimizing the sum of d(π, σ∗) over
all σ∗, π with σ∗(1) = a and π → V . Ties are broken using higher-order approximations. Let

L0(V, a) = min
σ∗:σ∗(1)=a

min
π:π→V

d(π, σ∗) L1(V, a) =
∑

σ∗:σ∗(1)=a

∑
π:π→V

d(π, σ∗).

We are interested in minimizing L0(V, a) and L1(V, a); this leads to novel combinatorial problems
that require detailed analysis. We are now ready for the main result of this section.
Theorem 3. The following statements hold for using approval voting to aggregate k-approval votes
drawn from the Mallows model.

1. Under the Mallows model with d ∈ {dFR, dCY , dHM } and ϕ→ 0, and under the Mallows
model with d ∈ {dFR, dCY , dHM , dMD} and ϕ → 1, it holds that for every k ∈ [m − 1],
and every profile with k-approval votes, every MLE best alternative is an approval winner.

2. Under the Mallows model with d = dMD and ϕ → 0, there exists a profile with seven 2-
approval votes over 5 alternatives such that no MLE best alternative is an approval winner.

Before we proceed to the proof, we remark that in part 1 of the theorem, by ϕ → 0 and ϕ → 1,
we mean that there exist 0 < ϕ∗0, ϕ

∗
1 < 1 such that the result holds for all ϕ ≤ ϕ∗0 and ϕ ≥ ϕ∗1,

respectively. In part 2 of the theorem, we mean that for every ϕ∗ > 0, there exists a ϕ < ϕ∗ for
which the negative result holds. Due to space constraints, we only present the proof for the Mallows
model with d = dFR and ϕ→ 0; the full proof appears in the online appendix (Appendix C).

Proof of Theorem 3 (only for d = dFR, φ→ 0). Let ϕ→ 0 in the Mallows model with the footrule
distance. To analyze L0(V, ·), we first analyze minπ:π→V dFR(σ

∗, π) for a fixed σ∗ ∈ L(A). Then,
we minimize it over σ∗, and show that the set of alternatives that appear first in the minimizers (i.e.,
the set of alternatives minimizing L0(V, a)) is exactly the set of approval winners. Since every MLE
best alternative in the ϕ→ 0 case must minimize L0(V, ·), the result follows.
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Fix σ∗ ∈ L(A). Imagine a boundary between positions k and k+1 in all rankings, i.e., between the
approved and the non-approved alternatives. Now, given a profile π such that π → V , we first apply
the following operation repeatedly. For i ∈ [n], let an alternative a ∈ A be in positions t and t′ in σ∗
and πi, respectively. If t and t′ are on the same side of the boundary (i.e., either both are at most k or
both are greater than k) and t 6= t′, then swap alternatives πi(t) and πi(t′) = a in πi. Note that this
decreases the displacement of a in πi with respect to σ∗ by |t − t′|, and increases the displacement
of πi(t) by at most |t − t′|. Hence, the operation cannot increase dFR(π, σ

∗). Let π∗ denote the
profile that we converge to. Note that π∗ satisfies π∗ → V (because we only swap alternatives on
the same side of the boundary), dFR(π

∗, σ∗) ≤ dFR(π, σ
∗), and the following condition:

Condition X: for i ∈ [n], every alternative that is on the same side of the boundary in σ∗ and π∗i is
in the same position in both rankings.

Because we started from an arbitrary profile π (subject to π → V ), it follows that it is sufficient to
minimize dFR(π

∗, σ∗) over all π∗ with π∗ → V satisfying condition X . However, we show that
subject to π∗ → V and condition X , dFR(π

∗, σ∗) is actually a constant.

Note that for i ∈ [n], every alternative that is in different positions in π∗i and σ∗ must be on different
sides of the boundary in the two rankings. It is easy to see that in every π∗i , there is an equal number
of alternatives on both sides of the boundary that are not in the same position as they are in σ∗. Now,
we can divide the total footrule distance dFR(π

∗, σ∗) into four parts:

1. Let i ∈ [n] and t ∈ [k] such that σ∗(t) 6= π∗i (t). Let a = σ∗(t) and (π∗i )
−1(a) = t′ > k.

Then, the displacement t′ − t of a is broken into two parts: (i) t′ − k, and (ii) k − t.

2. Let i ∈ [n] and t ∈ [m] \ [k] such that σ∗(t) 6= π∗i (t). Let a = σ∗(t) and (π∗i )
−1(a) =

t′ ≤ k. Then, the displacement t− t′ of a is broken into two parts: (i) k− t′, and (ii) t− k.

Because the number of alternatives of type 1 and 2 is equal for every π∗i , we can see that the total
displacements of types 1(i) and 2(ii) are equal, and so are the total displacements of types 1(ii) and
2(i). By observing that there are exactly n− SCAPP(σ∗(t)) instances of type 1 for a given value of
t ≤ k, and SCAPP(σ∗(t)) instances of type 2 for a given value of t > k, we conclude that

dFR(π
∗, σ∗) = 2 ·

[
k∑
t=1

(n− SCAPP(σ∗(t))) · (k − t) +
m∑

t=k+1

SCAPP(σ∗(t)) · (t− k)

]
.

Minimizing this over σ∗ reduces to minimizing
∑m
t=1 SCAPP(σ∗(t)) · (t−k). By the rearrangement

inequality, this is minimized when alternatives are ordered in a non-increasing order of their approval
scores. Note that exactly the set of approval winners appear first in such rankings. �

Theorem 3 shows that under the Mallows model with d ∈ {dFR, dCY , dHM }, every MLE best
alternative is an approval winner for both ϕ → 0 and ϕ → 1. We believe that the same statement
holds for all values of ϕ, as we were unable to find a counterexample despite extensive simulations.

Conjecture 1. Under the Mallows model with distance d ∈ {dFR, dCY , dHM }, every MLE best
alternative is an approval winner for every ϕ ∈ (0, 1).

5 Experiments

We perform experiments with two real-world datasets — Dots and Puzzle [20] — to compare the
performance of approval voting against that of the rule that is MLE for the empirically observed
distribution of k-approval votes (and not for the Mallows model). Mao et al. [20] collected these
datasets by asking workers on Amazon Mechanical Turk to rank either four images by the number
of dots they contain (Dots), or four states of an 8-puzzle by their distance to the goal state (Puzzle).
Hence, these datasets contain ranked votes over 4 alternatives in a setting where a true ranking of the
alternatives indeed exists. Each dataset has four different noise levels; higher noise was created by
increasing the task difficulty [20]. For Dots, ranking images with a smaller difference in the number
of dots leads to high noise, and for Puzzle, ranking states farther away from the goal state leads to
high noise. Each noise level of each dataset contains 40 profiles with approximately 20 votes each.
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In our experiments, we extract 2-approval votes from the ranked votes by taking the top 2 alternatives
in each vote. Given these 2-approval votes, approval voting returns an alternative with the largest
number of approvals. To apply the MLE rule, however, we need to learn the underlying distribution
of 2-approval votes. To that end, we partition the set of profiles in each noise level of each dataset
into training (90%) and test (10%) sets. We use a high fraction of the profiles for training in order
to examine the maximum advantage that the MLE rule may have over approval voting.

Given the training profiles (which approval voting simply ignores), the MLE rule learns the proba-
bilities of observing each of the 6 possible 2-subsets of the alternatives given a fixed true ranking.4
On the test data, the MLE rule first computes the likelihood of each ranking given the votes. Then, it
computes the likelihood of each alternative being the best by adding the likelihoods of all rankings
that put the alternative first. It finally returns an alternative with the highest likelihood.

We measure the accuracy of both methods by their frequency of being able to pinpoint the correct
best alternative. For each noise level in each dataset, the accuracy is averaged over 1000 simulations
with random partitioning of the profiles into training and test sets.
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Fig. 1: The MLE rule (trained on 90% of the profiles) and approval voting for 2-approval votes.

Figures 1(a) and 1(b) show that in general the MLE rule does achieve greater accuracy than approval
voting. However, the increase is at most 4.5%, which may not be significant in some contexts.

6 Discussion

Our main conclusion from the theoretical and empirical results is that approval voting is typically
close to optimal for aggregating k-approval votes. However, the situation is much subtler than it
appears at first glance. Moreover, our theoretical analysis is restricted by the assumption that the
votes are drawn from the Mallows model. A recent line of work in social choice theory [9, 10] has
focused on designing voting rules that perform well — simultaneously — under a wide variety of
noise models. It seems intuitive that approval voting would work well for aggregating k-approval
votes under any reasonable noise model; an analysis extending to a wide family of realistic noise
models would provide a stronger theoretical justification for using approval voting.

On the practical front, it should be emphasized that approval voting is not always optimal. When
maximum accuracy matters, one may wish to switch to the MLE rule. However, learning and apply-
ing the MLE rule is much more demanding. In our experiments we learn the entire distribution over
k-approval votes given the true ranking. While for 2-approval or 3-approval votes over 4 alterna-
tives we only need to learn 6 probability values, in general for k-approval votes over m alternatives
one would need to learn

(
m
k

)
probability values, and the training data may not be sufficient for this

purpose. This calls for the design of estimators for the best alternative that achieve greater statistical
efficiency by avoiding the need to learn the entire underlying distribution over votes.

4Technically, we learn a neutral noise model where the probability of a subset of alternatives being observed
only depends on the positions of the alternatives in the true ranking.
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Online Appendix To: Is Approval Voting Optimal Given Approval Votes?

A Calculations for the Counterexamples in Theorem 1

Recall from Equation (1) that the likelihood of an alternative a given n (k-approval) votes V is
proportional to

L(V, a) ,
∑

σ∗:σ∗(1)=a

∑
π:π→V

ϕd(π,σ
∗) =

∑
σ∗:σ∗(1)=a

n∏
i=1

[ ∑
πi:πi→Vi

ϕd(πi,σ
∗)

]
.

In this section, we illustrate how to use this formula to verify the counterexamples used in the proof
of Theorem 1. We show the detailed procedure in the case of the counterexample used for distances
dMD , dCY , and dHM . The counterexample for dFR can be verified similarly.

Recall the counterexample for d ∈ {dMD , dCY , dHM }. We have 5 voters providing 2-approval
votes over the set of 4 alternatives A = {a, b, c, d}, where

V1 = V2 = {b, c}, V3 = {a, d}, V4 = {a, b}, V5 = {a, c}.

We want to verify that under the Mallows model with d ∈ {dMD , dCY , dHM }, an approval winner
(in particular, a) is not an MLE best alternative for any value of ϕ ∈ (0, 1) by showing that a
different alternative b has greater likelihood. Let T ∗a (resp. T ∗b ) denote the set of rankings of A that
place a (resp. b) in the first position, i.e.,

T ∗a =
{
a � b � c � d, a � b � d � d,
a � c � b � d, a � c � d � b,
a � d � b � c, a � d � c � b

}
,

T ∗b =
{
b � a � c � d, b � a � d � d,
b � c � a � d, b � c � d � a,
b � d � a � c, b � d � c � a

}
.

For i ∈ [5], let Ti = {πi ∈ L(A)|πi → Vi} denote the set of rankings that could generate the
k-approval vote Vi, i.e.,

T1 = T2 = {b � c � a � d, b � c � d � a, c � b � a � d, c � b � d � a},
T3 = {a � d � b � c, a � d � c � b, d � a � b � c, d � a � c � b},
T4 = {a � b � d � c, a � b � c � d, b � a � d � c, b � a � c � d},
T5 = {a � c � d � b, a � c � b � d, c � a � d � b, c � a � b � d}.

Using these, we can now evaluate the likelihoods

L(V, a) =
∑
σ∗∈T∗a

5∏
i=1

[ ∑
πi∈Ti

ϕd(πi,σ
∗)

]
, L(V, b) =

∑
σ∗∈T∗b

5∏
i=1

[ ∑
πi∈Ti

ϕd(πi,σ
∗)

]
.

Using a computer program, it can be verified that for d ∈ {dMD , dHM , dCY }, the difference in
likelihoods L(V, b) − L(V, a), which is a polynomial in ϕ, has no roots in (0, 1), and is positive at
ϕ = 0.5. Hence, due to the intermediate value theorem, it must be positive in the entire interval.
Hence, a is not an MLE best alternative for any value of ϕ ∈ (0, 1), as required.

B Mildness of the Conditions in Theorem 2

In this section, we want to prove that the conditions in Theorem 2 are mild, by showing that they hold
for popular distance metrics. Let Ti,j(σ∗) = {σ ∈ L(A)|σ−1(σ∗(i)) ≤ j} be the set of rankings
where alternative in position i in σ∗ appears among the top j positions. Caragiannis et al. [9] study
three of our distance metrics: the Kendall tau distance, the footrule distance, and the maximum
displacement distance. Combining their Lemma 5.5 and Theorem 5.9, one gets the following lemma.
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Lemma 1 ([9]). For d ∈ {dKT , dFR, dMD}, σ∗ ∈ L(A), i, i′ ∈ [m] with i < i′, and j ∈ [m − 1],
there exists a bijection f : Ti,j(σ

∗) → Ti′,j(σ
∗) such that d(f(σ), σ∗) ≥ d(σ, σ∗) for all σ ∈

Ti,j(σ
∗), and d(f(σ), σ∗) > d(σ, σ∗) for at least one σ ∈ Ti,j(σ∗).

That is, rankings placing a less preferred alternative among the top positions are generally farther
away from σ∗; this is highly intuitive. We use this property to establish our required conditions
for the three distance metrics {dKT , dFR, dMD}. For the Cayley and the Hamming distances, un-
fortunately, Caragiannis et al. [9] give an example demonstrating that they violate the property in
Lemma 1. For these metrics, we give a different result that is sufficient for our purpose. First, we
need the following characterization (see, e.g., [9]) of the Cayley distance.

The Cayley distance: Given two rankings σ1 and σ2, suppose we want to convert σ1 to σ2 by
pairwise swaps of alternatives. We create a directed graph (let us call it the conversion graph) over
the alternatives where each alternative a points to the alternative σ1(σ−12 (a)), that is, the alternative
whose position in σ1 matches the position of a in σ2. This indicates that we need to move a to the
position of this alternative in σ1. It can be checked that this graph is a collection of disjoint directed
cycles, and the Cayley distance between the two rankings is m minus the number of cycles.

We are now ready to prove two useful results.

Lemma 2. Let d ∈ {dCY , dHM }, σ1, σ2 ∈ L(A), and i, j ∈ [m]. For t ∈ [2], let σ̂t =
(σt)σt(i)↔σt(j) denote the ranking obtained by swapping alternatives at positions i and j in σt.
Then, d(σ1, σ2) = d(σ̂1, σ̂2).

Proof. For the Hamming distance, this follows immediately from the definition. For the Cayley dis-
tance, the result follows directly from the definition of the conversion graph. Indeed, when we swap
alternatives in positions i and j in two rankings σ1 and σ2, for every alternative a the alternative in
position σ−12 (a) in σ1 is the same, before or after the swap. In other words, the function σ1(σ−12 (·)),
which induces the conversion graph, remains intact. Hence, the Cayley distance remains intact, as
required. � (Proof of Lemma 2)

Note that swapping alternatives in two fixed positions in two rankings is different from swapping
two fixed alternatives. Hence, Lemma 2 is not satisfied by all neutral distance metrics.

Lemma 3. For d ∈ {dCY , dHM }, σ ∈ L(A), and i ∈ [m − 1], there exists a bijection f :
Ti,1(σ

∗)→ Ti+1,1(σ
∗) such that

1. for i ≥ 2, d(f(σ), σ∗) = d(σ, σ∗) for all σ ∈ Ti,1(σ∗), and

2. for i = 1, d(f(σ), σ∗) > d(σ, σ∗) for all σ ∈ T1,1(σ∗).

Proof. The Hamming distance, i ≥ 2: Let d = dHM . Fix rankings σ∗ ∈ L(A) and σ ∈ Ti,1(σ∗).
Let ai = σ∗(i) = σ(1) and ai+1 = σ∗(i + 1). Next, let σ̂ and σ̂∗ denote the rankings obtained by
swapping the alternatives in positions i and i + 1 in σ and σ∗, respectively. Lemma 2 implies that
d(σ, σ∗) = d(σ̂, σ̂∗). Further, i ≥ 2 implies that σ̂(1) = σ(1) = ai. Also, σ̂∗(i + 1) = ai and
σ̂∗(i) = ai+1. Finally, we exchange the labels of alternatives ai and ai+1. Applying this operation
on σ̂∗ yields σ∗ back. Let σ̃ denote the ranking obtained by applying this operation to σ̂. Then,
clearly, σ̃(1) = ai+1 = σ∗(i + 1). Hence, σ̃ ∈ Ti+1,1(σ

∗). Due to the neutrality of the Hamming
distance, d(σ̃, σ∗) = d(σ̂, σ̂∗) = d(σ, σ∗). The proof is complete by assigning f(σ) = σ̃ for
every σ ∈ Ti,1(σ∗). The fact that f is a bijection follows from the observation that its two parts —
swapping alternatives in columns i and i+ 1, and exchanging the labels of alternatives ai and ai+1

— are bijections themselves.

The Cayley distance, i ≥ 2: Let d = dCY . For the Cayley distance, we use the same bijection
that we used for the Hamming distance. Once again, the first operation (swapping alternatives in
positions i and i + 1) keeps the Cayley distance intact due to Lemma 2, and the second operation
(exchanging labels of alternatives ai and ai+1) keeps the Cayley distance intact due to the neutrality
of the metric. Hence, we get that d(f(σ), σ∗) = d(σ, σ∗), as required.

The Hamming distance, i = 1: Let d = dHM . Let σ∗ ∈ L(A) and σ ∈ T1,1(σ
∗). Again, let

a1 = σ∗(1) = σ(1) and a2 = σ∗(2). Let t = σ−1(a2). Let f(σ) = σa1↔a2 . Observe that not only
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f(σ) ∈ T2,1(σ∗), but f is a bijection from T1,1(σ
∗) to T2,1(σ∗). Next, note that only positions 1 and

t are affected when we swap alternatives a1 and a2 in σ. Hence, to show d(f(σ), σ∗) > d(σ, σ∗),
we only need to establish that

I[f(σ)(1) 6= σ∗(1)] + I[f(σ)(t) 6= σ∗(t)] > I[σ(1) 6= σ∗(1)] + I[σ(t) 6= σ∗(t)]. (4)

However, in the LHS, we have I[f(σ)(1) 6= σ∗(1)] = I[a2 6= a1] = 1 and I[f(σ)(t) 6= σ∗(t)] =
I[a1 6= σ∗(t)] = 1, whereas in the RHS, we have I[σ(1) 6= σ∗(1)] = I[a1 6= a1] = 0. Hence,
Equation (4) holds, as required.

The Cayley distance, i = 1: Let d = dCY . Let σ∗ ∈ L(A) and σ ∈ T1,1(σ
∗). Again, let

a1 = σ∗(1) = σ(1) and a2 = σ∗(2). Define f(σ) = σa1↔a2 . Once again, f is a bijection from
T1,1(σ

∗) to T2,1(σ∗). Next, let us compare two conversion graphs: graph G1 for converting σ to
σ∗, and graph G2 for converting f(σ) to σ∗. It can be checked that G2 is identical to G1 except
that, instead of having a self-loop at a1 as in G1, a1 has an incoming edge that was originally
incoming to a2 in G1, and a1 has an outgoing edge to a2. In other words, G1 has a self-loop at
a1, which, in G2, is absorbed into the loop that contains a2. Thus, G2 has one less cycle than
G1, i.e., d(f(σ), σ∗) > d(σ, σ∗), as required. Note that this is also true in the special case where
σ(2) = a2. In that case, G1 has self-loops at both a1 and a2, whereas G2 has a 2-cycle between a1
and a2. � (Proof of Lemma 3)

We are now ready to analyze the conditions for plurality and veto votes in Theorem 2.
Theorem 4. For i ∈ [m], let pi and qi denote the probabilities of the alternative in position i in the
true ranking σ∗ appearing in the first and the last positions, respectively, under the Mallows model
with distance metric d. Then,

1. For d ∈ {dKT , dFR, dMD}, we have p1 > pi > 0 and 0 < q1 < qi for i ∈ {2, . . . ,m}.

2. For d ∈ {dCY , dHM }, we have p1 > pi > 0 for i ∈ {2, . . . ,m}.

Proof. Note that pi, qi > 0 holds trivially for all i ∈ [m] because under the Mallows model (with any
distance metric and ϕ > 0), every ranking has a positive probability. For d ∈ {dKT , dFR, dMD},
we directly leverage Lemma 1. Fix σ∗ ∈ L(A). Let f denote the bijection established in Lemma 1
from Ti,1(σ

∗) to Ti+1,1(σ
∗). For i ∈ [m− 1], under the Mallows model we have

pi − pi+1 =
1

Zmϕ
·

 ∑
σ∈Ti,1(σ∗)

ϕd(σ,σ
∗) −

∑
σ∈Ti+1,1(σ∗)

ϕd(σ,σ
∗)


=

1

Zmϕ
·

∑
σ∈Ti,1(σ∗)

[
ϕd(σ,σ

∗) − ϕd(f(σ),σ
∗)
]

> 0,

where the last inequality follows because Lemma 1 ensures d(f(σ, σ∗)) ≥ d(σ, σ∗) for every σ ∈
Ti,1(σ

∗), and d(f(σ, σ∗)) > d(σ, σ∗) for at least one σ ∈ Ti,1(σ
∗). Hence, pi > pi+1 for all

i ∈ [m− 1], which directly implies p1 > maxi∈{2,...,m} pi.

Using a similar argument, we can also see that for i ∈ [m− 1],

(1− qi)− (1− qi+1) =
1

Zmϕ
·

 ∑
σ∈Ti,m−1(σ∗)

ϕd(σ,σ
∗) −

∑
σ∈Ti+1,m−1(σ∗)

ϕd(σ,σ
∗)

 > 0.

Hence, we have that qi < qi+1 for all i ∈ [m−1]; it follows that q1 < mini∈{2,...,m} qi, as required.

The argument for the Hamming and the Cayley distances, i.e., for d ∈ {dHM , dCY }, is similar, but
we use Lemma 3 instead of Lemma 1. It can be checked that this leads to p1 > p2 and pi = pi+1 for
i ∈ {2, . . . ,m− 1}. This still implies p1 > maxi∈{2,...,m} pi, as required. � (Proof of Theorem 4)

Caragiannis et al. [9] show (in Appendix D.4 in the full version of their paper) that in the case of
the Cayley distance (resp., the Hamming distance) with m = 3, both σ∗(1) and σ∗(2) appear last
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in exactly two rankings: one at distance 1 (resp., 3) from σ∗, and another at distance 2 from σ∗.
Hence, under any noise model where the probability of a ranking is a function of its distance from
σ∗ (e.g., under the Mallows model), we have q1 = q2, which violates the condition for veto votes in
Theorem 2.

C Continued Proof of Theorem 3

While for the footrule distance we could show that only approval winners minimize L0(V, a), for the
Cayley and the Hamming distances it can be shown that even alternatives with suboptimal approval
score might sometimes minimize L0(V, a). In many cases, several higher orders of tie-breaking do
not help distinguish approval winners from other alternatives. Hence, we devise a way to completely
avoid the analysis of multiple levels of tie-breaking.

First, we say that a set S1 is lexicographically smaller than another set S2 if, after sorting their ele-
ments in non-decreasing order and comparing from the lowest to the highest, when they differ for the
first time S1 has a smaller element than S2. Recall that in theϕ→ 0 case, we can determine the MLE
best alternative as follows. We consider the set of distances Da = {d(π, σ∗)}σ∗:σ∗(1)=a,π:π→V for
each alternative a. Then, the alternative whose set is lexicographically smallest is the MLE best
alternative. There may be multiple tied MLE best alternatives whose sets are identical. We are now
ready to prove the following simple and useful lemma.

Lemma 4. Let distance metric d ∈ {dCY , dHM }. For alternatives a, b ∈ A, define

ma,−b = min
σ∗:σ∗(1)=a∧(σ∗)−1(b)>k

π:π→V

d(π, σ∗).

Then, there exists ϕ∗ > 0 such that for all 0 < ϕ ≤ ϕ∗, alternative a has higher likelihood than
alternative b if ma,−b < mb,−a.

Proof. Let La,b(A) = {σ∗ ∈ L(A)|σ∗(1) = a ∧ (σ∗)−1(b) ≤ k (i.e., the set of rankings that put
a first and b among the top k positions), and π = {π|π → V }. For σ∗ ∈ La,b(A) and π ∈ π,
let σ̂∗ and π̂ denote the ranking and the profile obtained by swapping alternatives at positions 1
and (σ∗)−1(b) in σ∗ and in every πi ∈ π, respectively. Then, it can be checked that (σ∗, π) ↔
(σ̂∗, π̂) is a bijection from La,b(A)× π to Lb,a(A)× π. Further, Lemma 2 implies that d(π, σ∗) =
d(π̂, σ̂∗). Hence, when comparingDa toDb, rankings that put a first and b among the top k positions
cancel out with rankings that put b first and a among the top k positions. The result now follows
immediately. � (Proof of Lemma 4)

We now use Lemma 4 to analyze the Cayley and the Hamming distances.

ϕ→ 0, the Cayley and the Hamming distances: We show that if alternative a is an approval
winner while alternative b is not, then there exists ϕ∗ > 0 such that for all 0 < ϕ ≤ ϕ∗, alternative a
has a higher likelihood of being the best alternative than b. Due to Lemma 4, it is sufficient to show
that ma,−b < mb,−a.

Fix a ranking σ∗ ∈ L(A). We can show that the profile π with π → V that minimizes the distance
from σ∗ must also satisfy condition X in the proof for the footrule distance. For i ∈ [n], define
Ai = (Vi ∩ σ∗([k]))∪ ((A \ Vi)∩ σ∗([m] \ [k])). In words, Ai is the set of alternatives that we can
place in the same position in πi as in σ∗ given the restriction πi → Vi. Condition X says that πi and
σ∗ would indeed agree on the positions of the alternatives in Ai, for each i ∈ [n].

For the Hamming distance, observe that the restriction π → V ensures that dHM (πi, σ
∗) ≥ |A\Ai|.

The lower bound is achieved by satisfying conditionX , i.e., putting all alternatives inAi in the same
positions in πi as they are in σ∗.

For the Cayley distance, note that

dCY (πi, σ
∗) ≥ 1

2
· dHM (πi, σ

∗) ≥ 1

2
· |A \Ai|.

Once again, to achieve this lower bound, we must align πi with σ∗ on the alternatives inAi, and pair
up alternatives from A \ Ai in πi such that for every a ∈ A \ Ai, there exists a unique b ∈ A \ Ai
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with πi((σ∗)−1(a)) = b and πi((σ∗)−1(b)) = a. The pairing is possible because the number of
alternatives from A \ Ai on each side of the boundary in πi must be equal. Therefore, the lower
bound on the distance can indeed be achieved by swapping these paired alternatives.

Define

P (σ∗) =

n∑
i=1

|A \Ai| =
k∑
t=1

(n− SCAPP(σ∗(t))) +

m∑
t=k+1

SCAPP(σ∗(t)).

Then, we have established that for the Hamming distance, minπ:π→V dHM (σ∗, π) = P (σ∗), and
for the Cayley distance, minπ:π→V dCY (σ∗, π) = (1/2) · P (σ∗). Further, note that P (σ∗) =

C −
∑k
t=1 SCAPP(σ∗(t)), where C is independent of σ∗. Hence, minimizing minπ:π→V d(σ

∗, π)

reduces to, in both cases, maximizing
∑k
t=1 SCAPP(σ∗(t)).

We are not done yet, because a ranking can maximize the sum of approval scores of its top k
alternatives while not placing the alternative with the maximum approval score at the top. However,
Lemma 4 comes to our rescue. Let

wa,−b = max
σ∗:σ∗(1)=a∧(σ∗)−1(b)>k

k∑
t=1

SCAPP(σ∗(t)).

Then, we only need to show that wa,−b > wb,−a for any two alternatives a, b ∈ A such that a is an
approval winner, while b is not.

By the choice of a and b, SCAPP(a) > SCAPP(b). For i ∈ [m], let Si denote the sum of the i highest
approval scores. If the approval score of b is among the k highest approval scores, then clearly
wa,−b = Sk+1 − SCAPP(b) and wb,−a = Sk+1 − SCAPP(a). Hence, wa,−b > wb,−a, as required.

If the approval score of b is not among the k highest approval scores, then there are two cases.

1. There are at most k approval winners. In this case, we can see that wa,−b = Sk while
wb,−a < Sk (because in the latter case, we need to find a ranking that does not put a among
the top k positions).

2. There are t approval winners, where t > k. In this case, while wa,−b = wb,−a = Sk,
and thus the exponents ma,−b and mb,−a in the likelihood expression — Equation (1) —
are equal, the number of terms achieving this exponent in the likelihood function of b is
proportional to

(
t
k

)
, while the number of terms achieving this exponent in the likelihood

function of a is proportional to
(
t−1
k

)
(because in the latter case, an approval winner — a

— is not allowed to be among the top k positions). Hence, the tie is broken in favor of a.

ϕ→ 0, the maximum displacement distance:

Consider the following vote profile V over the set of alternatives A = {a, b, c, d, e}.
V1 = {a, b} V2 = {a, c} V3 = {b, c} V4 = {c, d} V5 = {c, e} V6 = V7 = {d, e}.

Note that alternative c is the unique approval winner with an approval score of 4. However, it can
be checked that L0(V, d) = L0(V, e) = 11 < 13 = L0(V, c). Hence, neither of the two MLE best
alternatives (d and e) is an approval winner, as required.

ϕ→ 1, all five distances: The case of ϕ → 1 is easier because, as we will show, the analysis of
L1(V, ·) is sufficient to differentiate approval winners from other alternatives for all five distance
metrics. Let the distance metric be denoted d ∈ {dKT , dFR, dCY , dHM , dMD}. Note that for an
alternative a ∈ A,

L1(V, a) =
∑

σ∗:σ∗(1)=a

∑
π:π→V

d(π, σ∗)

=
∑

σ∗:σ∗(1)=a

n∑
i=1

∑
πi:πi→Vi

d(πi, σ
∗)

=

n∑
i=1

∑
πi:πi→Vi

 ∑
σ∗:σ∗(1)=a

d(πi, σ
∗)

 . (5)
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Now, define St(πi) =
∑
σ∗∈L(A):σ∗(1)=πi(t)

d(σ∗, πi). That is, St(πi) is the sum of distances of πi
from all rankings that put its tth ranked alternative first. Due to neutrality of the distance metric d,
this quantity is independent of the ranking πi. Substituting this into Equation (5), we get

L1(V, a) =

n∑
i=1

∑
πi:πi→Vi

S
π−1
i (a)

=

n∑
i=1

I[a ∈ Vi] ·

[
k! · (m− k − 1)! ·

k∑
j=1

Sj

]
+ I[a /∈ Vi] ·

(k − 1)! · (m− k)! ·
m∑

j=k+1

Sj


= k! · (m− k)! ·

[
SCAPP(a) ·

∑k
j=1 Sj

k
+ (n− SCAPP(a)) ·

∑m
j=k+1 Sj

m− k

]

= k! · (m− k)! · n ·
∑m
j=k+1 Sj

m− k + k! · (m− k)! · SCAPP(a) ·

[∑k
j=1 Sj

k
−
∑m
j=k+1 Sj

m− k

]
.

To show that this quantity is minimized when a is an approval winner, we need to show that

Pk =

∑k
j=1 Sj

k
−
∑m
j=k+1 Sj

m− k
(6)

satisfies Pk < 0 for all k ∈ [m− 1]. To that end, we show the following lemma.
Lemma 5. The following statements hold.

1. For distance d ∈ {dKT , dFR, dMD}, we have Si < Si+1 for all i ∈ [m− 1].

2. For distance d ∈ {dCY , dHM }, we have S1 < S2 and Si = Si+1 for all i ∈ {2, . . . ,m−1}.

Proof. Consider a bijection f from Ti,1(σ
∗) to Ti+1,,1(σ

∗). Then, for i ∈ [m− 1],

Si+1 − Si =
∑

σ∈Ti+1,1(σ∗)

d(σ, σ∗)−
∑

σ∈Ti,1(σ∗)

d(σ, σ∗)

=
∑

σ∈Ti,1(σ∗)

d(f(σ), σ∗)− d(σ, σ∗).

Now, for d ∈ {dKT , dFR, dMD}, Lemma 1 ensures the existence of a bijection f for which
d(f(σ), σ∗) ≥ d(σ, σ∗) for all σ ∈ Ti,1(σ

∗), and d(f(σ), σ∗) > d(σ, σ∗) for at least one
σ ∈ Ti,1(σ∗). Hence, it follows that Si+1 > Si for all i ∈ [m− 1], as required.

For d ∈ {dCY , dHM }, Lemma 3 ensures the existence of a bijection f such that for all σ ∈ Ti,1(σ∗),
we have d(f(σ), σ∗) = d(σ, σ∗) if i ≥ 2, and d(f(σ), σ∗) > d(σ, σ∗) if i = 1. Hence, it follows
that S2 > S1 and Si+1 = Si for all i ∈ {2, . . . ,m− 1}. � (Proof of Lemma 5)

Using Lemma 5, it is easy to check that Pk < 0 in Equation (6), as required.� (Proof of Theorem 3)
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