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Abstract

We take an unorthodox view of voting by expanding the design space to include
both the elicitation rule, whereby voters map their (cardinal) preferences to votes,
and the aggregation rule, which transforms the reported votes into collective
decisions. Intuitively, there is a tradeoff between the communication requirements
of the elicitation rule (i.e., the number of bits of information that voters need to
provide about their preferences) and the efficiency of the outcome of the aggregation
rule, which we measure through distortion (i.e., how well the utilitarian social
welfare of the outcome approximates the maximum social welfare in the worst case).
Our results chart the Pareto frontier of the communication-distortion tradeoff.

1 Introduction

AI systems are increasingly being used for making various decisions in society, including criminal
justice [1], participatory budgeting [2] etc. Most of these decisions are high-stake and we need to
ensure that such systems reflect appropriate societal values. However, in many situations, it is not
a priori clear what the right choices are [3], and a promising direction is to design systems that
aggregate people’s opinions. The field of social choice theory studies the aggregation of individual
preferences into collective decisions. While its origins can be traced back to the contributions of
Condorcet [4] and others in the 18th Century, the field was founded in its modern form in the 20th
Century. With his famous impossibility result, Arrow [5] pioneered the axiomatic approach to voting,
in which voting rules that aggregate ranked preferences of individuals are compared qualitatively
based on the axiomatic desiderata they satisfy or violate. This approach underlies most of the work
on voting in social choice theory [see, e.g., 6, 7].

By contrast, research in computational social choice [8] has put more emphasis on quantitative
evaluation of voting rules. In particular, Procaccia and Rosenschein [9] introduced the implicit
utilitarian voting framework, in which it is assumed that individuals (a.k.a. voters) have underlying
cardinal utilities for the different alternatives, and express ranked preferences that are consistent with
their utilities. The goal is to choose an alternative that maximizes (utilitarian) social welfare — the sum
of utilities — by relying on the reported rankings as a proxy for the latent utilities. Specifically, voting
rules are compared by their distortion, which is the worst-case ratio of the maximum social welfare to
the social welfare of the alternative they choose. The implicit utilitarian voting approach has received
significant attention in the past decade [2, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23], and
voting rules based on it have been deployed on the online voting platform robovote.org.

Benadè et al. [2] observe that implicit utilitarian voting has another advantage: it allows comparing
not only voting rules that aggregate ranked preferences, but also voting rules that aggregate other
∗All the missing proofs are included in the supplementary material.
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types of ballots, which they refer to as input formats. They further argue that we can associate each
input format with the best rule for aggregating votes in that format, and ultimately compare the
input formats themselves based on the lowest distortion they make possible. They also introduce a
new input format, threshold approval, whereby each voter is asked to report whether her utility for
each alternative is above or below a given threshold; this input format allows achieving logarithmic
distortion. The results of Benadè et al. [2] beg the question: why should we set only a single
threshold? What if we set two thresholds and ask each voter to report whether her utility for each
alternative is below the lower threshold, between the two thresholds, or above the higher threshold?
What if we set five thresholds? Or a million for that matter? Intuitively there is a tradeoff between the
number of thresholds and the distortion that can be achieved. However, perhaps adding thresholds is
not the most efficient way to drive down distortion; there may be other input formats that encapsulate
more useful information. (Spoiler alert: this is indeed the case.)

Our goal in this paper is to characterize the optimal tradeoff between elicitation and distortion.
Ranking always asks voters to rank their alternatives and always asks for the same amount of
information from the votrs. On the other hand, consider the input format threshold approval. The
larger the number of thresholds, the finer the information we elicit about voter utilities, and the
lower the distortion. This is an example of a tradeoff between the amount of information voters are
required to report, and the distortion that can be achieved. As we elicit more information from voters
about their utilities, we should be able to achieve lower distortion. But exactly how low? To answer
this question, we need a precise way to reason about the complexity of vote elicitation. We use the
nomenclature of communication complexity [24], and, in particular, examine the number of bits
needed to report a vote. Note that this is simply the logarithm of the number of possible votes that a
voter can provide in a given input format. Hence, plurality votes that ask a voter to report which of
the m alternatives is her top choice contain logm bits of information, while ranked preferences that
ask a voter to rank all m alternatives contain logm! = Θ(m logm) bits of information. Our main
research question is this:

For any k, given a budget of at most k bits per vote, what is the minimum distortion any voting rule
can achieve?

1.1 Our Results

Before outlining our results, we describe our framework in a bit more detail (a formal model is
presented in Section 2). A voting rule f is composed of two parts. Its elicitation rule Πf elicits
information from voters about their utilities. Essentially, it chooses a (possibly randomized) mapping
from utility functions to finitely many (say k) possible responses, and each voter uses this mapping
to cast her vote. The communication complexity of f , denoted C(f), is then E[log k], where the
expectation is due to random choices made by Πf . The aggregation rule Γf aggregates the votes cast
by voters to choose a single alternative (possibly in a randomized way). The distortion of f , denoted
dist(f), is the worst-case ratio of the maximum social welfare to the (expected) social welfare of this
chosen alternative. The distortion is typically a function of the number of alternatives m. Our goal is
to study the tradeoff between C(f) and dist(f).

Figure 1 shows our results and positions them in the context of prior work. We note that any upper
bound with deterministic elicitation (resp. aggregation) also serves as an upper bound with randomized
elicitation (resp. aggregation), and the converse holds for lower bounds. For deterministic elicitation,
it is known that plurality voting rule achieves Θ(m2) distortion with deterministic aggregation and
logm communication complexity, and that it is trivial to achieve Θ(m) distortion with randomized
aggregation and zero communication complexity [18]. Our lower bounds from Section 4 establish
that these are the best possible asymptotic bounds with communication complexity at most logm.
We show that these bounds do not hold for randomized elicitation by constructing a new voting rule
in Section 3, RANDSUBSET, which uses randomized elicitation and achieves o(m) distortion with
o(logm) communication complexity.

We also propose a family of voting rules, PREFTHRESHOLD, which use deterministic elicitation and
aggregation, and can achieve d distortion with O(m log(d logm)/d) communication complexity,
shown as the solid line in Figure 1. This is an improvement over bounds achievable by existing
deterministic elicitation methods (even with optimal randomized aggregation): threshold approval
voting has distortion Ω(

√
m) with communication complexity m [2], and ranked voting has distor-

tion Ω(
√
m) with communication complexity m logm [11]. In fact, this is also an improvement
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Figure 1: The figure depicts lower and upper bounds on distortion which can be achieved as a
function of communication complexity. We use the following abbreviation: det = deterministic,
rand = randomized, eli = elicitation, agg = aggregation. Red dashed lines show our lower bounds
(Theorems 4 and 6), which apply to all voting rules using deterministic or randomized elicitation.
Red diamonds (solid line) and inverted triangle show some of the upper bounds achieved by two
families of rules we introduce — PREFTHRESHOLD (Theorem 1) and RANDSUBSET (Theorem 2) —
which use deterministic and randomized elicitation, respectively, and deterministic aggregation. We
obtain tradeoffs which Pareto-dominate the best possible tradeoffs that existing elicitation methods
(shown in blue) — such as threshold approval voting [2] and ranked voting [11] — allow even with
randomized aggregation.

over the randomized elicitation version of threshold approval voting, which still has distortion
Ω(logm/ log logm) with communication complexity m [2].

In Section 5, we leverage tools from multi-party communication complexity to show that the bounds
achieved by PREFTHRESHOLD are nearly optimal: any voting rule with d distortion must have
Ω(m/d2) communication complexity with deterministic elicitation and Ω(m/d3) communication
complexity with randomized elicitation. These are presented as dashed lines in Figure 1. Note
that our upper and lower bounds differ by a factor that is almost linear or almost quadratic in d,
and sublogarithmic in m. This implies a surprising fact: when our goal is to achieve near-constant
distortion, randomization cannot significantly help.

1.2 Related Work

There are two threads of research on implicit utilitarian voting. The first thread does not make any
assumptions on utilities, other than that they are normalized [2, 9, 10, 11, 17, 18, 22, 23]. The second
thread assumes that utilities are induced by a metric [12, 13, 14, 15, 16, 19, 20, 21]; this structure
generally enables lower distortion. Our approach is consistent with the former thread.

In addition to the work of Benadè et al. [2], discussed above, an especially relevant paper is that
of Caragiannis and Procaccia [10]. Their goal is also to achieve low distortion while keeping the
communication requirements low. To that end, they employ specific voting techniques such as
approving a single alternative (like plurality) or approving a subset of alternatives (like approval
voting) — these require logm and m bits per voter, respectively — but use what they call an
embedding to describe how voters translate their cardinal preferences into votes. However, the key
difference between the work of Caragiannis and Procaccia and our work is that our design space is
much larger: we simultaneously optimize both the embedding and the voting technique (together,
these form our elicitation rule), as well as the aggregation rule.2

2That said, in this work we focus only on deterministic embeddings. That is, we study elicitation rules in
which voters deterministically translate their cardinal preferences into votes, and show that the foregoing result
is impossible to achieve in this case. We discuss implications of randomized embeddings in Section 6.
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Further afield, Conitzer and Sandholm [25] study how much information about the voters’ ranked
preferences has to be elicited in order to compute the outcome under a given voting rule. By contrast,
we are interested in designing the voting rule, and the very way in which preferences are represented,
in order to minimize distortion. In addition, the voting rules we design ask voters to report their
approximate utility for their top few choices or for a randomly chosen subset of alternatives. Related
ideas have been explored previously [26] or in parallel [27] in the computational social choice
literature, albeit in fundamentally different models.

Another loosely related line of work was initiated by Balcan and Harvey [28] and Badanidiyuru et al.
[29]. Their goal is to sketch combinatorial valuation functions, that is, to encode such functions using
a polynomial number of bits in a way that the value of each subset can be recovered approximately.
We deal with much simpler valuation functions, but, on the other hand, are looking to achieve much
lower communication complexity. We also note that in several query models it is standard to directly
query a real number [28, 29, 30, 31, 32]; by contrast, in our framework, asking for even a single real
number leads to infinite communication complexity.

2 Model

For k ∈ N, define [k] = {1, . . . , k}. Let x ∼ D denote that random variable x has distributionD. Let
log denote the logarithm to base 2, and ln denote the logarithm to base e. There is a set of alternatives
A with |A| = m, and a set of voters N = [n]. Each voter i ∈ N is endowed with a valuation
vi : A→ R+, where vi(a) ≥ 0 represents the value of voter i for alternative a. Equivalently, we view
vi ∈ Rm+ as a vector which contains the voter’s value for each alternative. We slightly abuse notation
and let vi(S) =

∑
a∈S vi(a) for S ⊆ A. Collectively, voter valuations are denoted ~v = (v1, . . . , vn).

Given ~v, the (utilitarian) social welfare of an alternative a is sw(a,~v) =
∑
i∈N vi(a). Our goal is to

elicit information about voter valuations and use it to find an alternative with high social welfare.

Valuations: We adopt the standard normalization assumption that
∑
a∈A vi(a) = 1 for each i ∈ N .

This can be thought of as a “one voter, one vote” principle for cardinal valuations as it prevents voters
from overshadowing other voters by expressing very high values. 3 Let ∆m denote the m-simplex,
i.e., the set of all vectors in Rm+ whose coordinates sum to 1. Hence, we have that vi ∈ ∆m for each
i ∈ N . Given such a vector vi ∈ ∆m, let supp(vi) ⊆ A denote the support of vi, i.e., the set of
alternatives a for which vi(a) > 0.

Query space: Consider any interaction with voter i which elicits finitely many bits of information
and in which the voter responds deterministically. In this interaction, the voter must provide one of
finitely many (say k) possible responses. We say that this interaction elicits log k bits of information.4
It effectively partitions ∆m into k compartments, where the compartment corresponding to each
response is the set of all valuations which would result in the voter choosing that response. In other
words, any interaction which elicits log k bits of information is equivalent to a query which partitions
∆m into k compartments and asks the voter to pick the compartment in which her valuation belongs.

Let Q denote the set of all queries which partition ∆m into finitely many compartments. For a query
q ∈ Q, let k(q) denote the number of compartments created by q; the number of bits elicited is
log k(q).5 This query space incorporates traditional elicitation methods studied in the social choice
literature. For instance, plurality votes (which ask voters to report their favorite alternative) use m
compartments, k-approval votes (which ask voters to report the set of their k favorite alternatives)
use
(
m
k

)
compartments, threshold approval votes (which ask voters to approve alternatives for which

their value is at least a given threshold) use 2m compartments, and ranked votes (which ask voters to
rank all alternatives) use m! compartments.

Voting Rule: A voting rule (or simply, a rule) f consists of two parts: an elicitation rule Πf and an
aggregation rule Γf . The (randomized) elicitation rule Πf is a distribution overQ, according to which
a query q is sampled. Each voter i provides a response ρi to this query, depending on her valuation

3Effectively, voters can only report the intensity of their relative preference for one alternative over another.
4For a multi-round interaction, we can concatenate the voter’s responses in different rounds. This is equivalent

to a single-round interaction in which the voter is asked to provide the entire string upfront.
5Note that the number of bits elicited may not be an integer, but 2 raised to the power of the number of

bits must be an integer. We could take the ceiling to enforce an integral number of bits, and this would only
minimally increase elicitation, but some of our lower bounds are sensitive to this non-integral formulation.

4



vi. We say that the elicitation rule is deterministic if it has singleton support (i.e., it chooses a query
deterministically). The (randomized) aggregation rule Γf takes voter responses ~ρ = (ρ1, . . . , ρn) as
input, and returns a distribution over alternatives. We say that the aggregation rule is deterministic if
it always returns a distribution with singleton support. Slightly abusing notation, we denote by f(~v)
the (randomized) alternative returned by f when voter valuations are ~v = (v1, . . . , vn). We measure
the performance of f via two metrics.

1. The communication complexity of f for m alternatives, denoted Cm(f) = Eq∼Πf
log k(q), is

the expected number of bits of information elicited by f from each voter. We drop m from the
superscript when its value is clear from the context.

2. The distortion of f for m alternatives, denoted distm(f), is the worst-case ratio of the optimal
social welfare to the expected social welfare achieved by f . Again, we drop m from the
superscript when its value is clear from the context. Formally,

dist(f) = sup
~v∈(∆m)n

maxa∈A sw(a,~v)

Eâ∼f(~v) sw(â, ~v)
.

While it is desirable for a voting rule to have low communication complexity and low distortion,
typically eliciting more information from voters enables achieving low distortion. Our goal is to
understand the Pareto frontier of the tradeoff between communication complexity and distortion.

3 Upper Bounds

In this section, we derive upper bounds on the best distortion a voting rule can achieve given an
upper bound on its communication complexity (equivalently, this gives an upper bound on the
communication complexity required to achieve a given level of distortion). We construct two
families of voting rules: PREFTHRESHOLD, which use deterministic elicitation and aggregation, and
RANDSUBSET, which convert a given voting rule into one which uses randomized elicitation.

3.1 Deterministic Elicitation, Deterministic Aggregation

We begin by designing voting rules which use deterministic elicitation and deterministic aggregation —
the most practical combination. Caragiannis et al. [18] show that plurality achieves Θ(m2) distortion
with logm communication complexity, and even voting rules that elicit ranked preferences, and thus
have Θ(m logm) communication complexity, cannot achieve asymptotically better distortion.

We propose a novel voting rule PREFTHRESHOLDt,`, parametrized by t ∈ [m] and ` ∈ N. It is
presented as Algorithm 1. Its elicitation rule asks each voter to report the set of her t most preferred
alternatives, and for each alternative in this set, report her approximate value for it by picking one of
`+1 subintervals of [0, 1]. Note that for t = 1, we use ` subintervals of [1/m, 1]; this is valid because
a voter’s value for her most favorite alternative must be at least 1/m. The aggregation rule is also
intuitive: it uses the approximate values to compute an estimated social welfare of each alternative,
and picks an alternative with the highest estimated social welfare. The next theorem provides bounds
on the communication and distortion of PREFTHRESHOLDt,`.
Theorem 1. prefth For t ∈ [m] \ {1} and ` ∈ N, we have

C(PREFTHRESHOLDt,`) = Θ

(
t log

m(`+ 1)

t

)
, dist(PREFTHRESHOLDt,`) = O

(
m1+2/`/t

)
.

For t = 1 and ` ∈ N, we have

C(PREFTHRESHOLD1,`) = log(m`), dist(PREFTHRESHOLDt,`) = O
(
m1+1/`

)
.

PREFTHRESHOLDt,` offers a tradeoff between two parameters, t and `. Increasing either parameter
increases the communication complexity but reduces the distortion. It is easy to see that there is no
(asymptotic) benefit of choosing ` > logm. We make several observations.

• t = 1, ` = 2 gives us subquadratic distortion of O(m
√
m) with just one more bit of elicitation

than plurality (i.e. logm+ 1 bits).
• t = m1−γ , ` = logm gives us sublinear distortion of O(mγ) (for γ ∈ (0, 1)) with polynomial

communication complexity of O(m1−γ logm).
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ALGORITHM 1: PREFTHRESHOLDt,`, where t ∈ [m] and ` ∈ N.
Elicitation Rule:

• If t > 1, create `+ 1 buckets: B0 = [0, 1/m2] and Bp = (1/m2−2(p−1)/`, 1/m2−2p/`] for p ∈ [`].

• If t = 1, create ` buckets: B1 = [m−1,m−1+1/`] and Bp = (m−1+(p−1)/`,m−1+p/`] for p ∈ [`] \ {1}.
• The query asks each voter i to identify set St

i of the t alternatives for which she has the highest value
(breaking ties arbitrarily), and for each a ∈ St

i , identify bucket index pi,a such that vi(a) ∈ Bpi,a .

Aggregation Rule:
• For each p, let Up denote the upper endpoint of bucket Bp.
• For each voter i ∈ N and alternative a ∈ A, define v̂i(a) = Upi,a if a ∈ St

i and v̂i(a) = 0 o.w.
• For an alternative a ∈ A, define the estimated social welfare as ŝw(a) =

∑
i∈N v̂i(a).

• Return an alternative with the highest estimated social welfare, i.e., â ∈ argmaxa∈A ŝw(a).

• t = m/
√
logm, ` = logm has distortion O

(√
logm

)
with communication o(m), and

Pareto-dominates threshold approval voting, which has higher communication complexity of m
and higher distortion of Ω(logm/ log logm), even with randomized aggregation [2].

• t = m, ` = logm leads to constant distortion with communication O(m log logm). By con-
trast, eliciting ranking leads to higher communication complexity of Θ(m logm), and also
significantly higher distortion of Ω(

√
m), even with randomized aggregation [11].

3.2 Randomized Elicitation, Randomized Aggregation

We now present a generic approach to designing voting rules with randomized elicitation. Given
a voting rule f and an integer s ≤ m, instead of using f to select one alternative from A directly,
we sample S ⊆ A with |S| = s at random and use f to select one alternative from S. Recall
that for p ∈ N, Cp(f) and distp(f) denote the communication complexity and distortion of f for p
alternatives, respectively.

Clearly, this approach reduces the communication complexity from Cm(f) to Cs(f). Its effect on
distortion, however, is more subtle. On the one hand, selecting an alternative from S instead of A
results in an inevitable loss of welfare because we can only hope to do as well as the best alternative
in S. On the other hand, the welfare we achieve is related to the welfare of the best alternative in
S via the factor dists(f), which can be significantly lower than distm(f). We show that in some
cases, this approach reduces distortion in addition to reducing communication complexity. The key
challenge in making this approach work is that we cannot apply f directly to select one alternative
from S, as the total value of the alternatives in S need not be 1. We circumvent this obstacle by
eliciting an approximate value of vi(S) from each voter i, making a number of copies of voter i that
is approximately proportional to vi(S) with each copy now having a total value of 1 for alternatives
in S, and running f on the resulting instance.

ALGORITHM 2: RANDSUBSET(f, s), where f is a voting rule and s ∈ [m]

Elicitation Rule:
• Pick S ⊆ A with |S| = s uniformly at random from among all subsets of A of size s.

• Partition [0, 1] into dlog(4m)e buckets as follows: B0 =
[
0, 1

4m

]
, Bj =

(
2j−1

4m
, 2j

4m

]
for j ∈ dlog(4m)e.

• Ask two reports from each voter i:

1. The bucket index pi such that vi(S) =
∑

a∈S vi(a) ∈ Bpi ;
2. A response ρi to the elicitation rule of f for the set of alternatives S according to the renormalized

valuation v̂i defined as v̂i(a) = vi(a)/vi(S) for each a ∈ S.

Aggregation Rule:
• Let Lp denote the lower endpoint of bucket Bp for p ∈ dlog(4m)e ∪ {0}.
• Run the aggregation rule of f on an input which consists of 4m · Lpi copies of ρi for each i ∈ N .

Theorem 2. For every voting rule f and s ∈ [m], we have Cm(RANDSUBSET(f, s)) = Cs(f) +
logdlog(4m)e and distm(RANDSUBSET(f, s)) ≤ 4m

s · dists(f).
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Using f = PREFTHRESHOLDt,` and Theorem 1, we obtain that for s ∈ [m], t ∈ [s], and ` ∈ N,
there is a new voting rule g = RANDSUBSET (PREFTHRESHOLDt,`, s) with

Cm(g) = O (t log(s(`+ 1)/t) + log logm) and distm(g) = O
(
m · s2/`/t

)
.

Setting ` = log s, we get O(m/t) distortion. Then, we set s = t to minimize communication
complexity to O(t log log t+ log logm). This is slightly better than using PREFTHRESHOLDt,logm,
which achieves O(m/t) distortion with O(t log m logm

t ) communication complexity. In particular,
for t = O(1) this reduces communication complexity by a factor of logm/ log logm.

An interesting choice is t = logm
log logm , which leads to distortion O (m log logm/ logm) = o(m) and

communication complexity O (t log log t+ log logm) = o(logm). Note that this rule has random-
ized elicitation but deterministic aggregation. By contrast, we later show that with deterministic
elicitation, no voting rule can achieve o(m) distortion with communication complexity at most logm,
even when randomized aggregation is allowed (Theorem 4).

4 Direct Lower Bounds For Deterministic Elicitation

We now turn to deriving lower bounds on the distortion of a voting rule given an upper bound on its
communication complexity (equivalently, this gives a lower bound on the communication complexity
required to achieve a given level of distortion). In this section, we focus on deterministic elicitation.

Consider a voting rule f which uses deterministic elicitation and has communication complexity at
most log k. Hence, the (deterministic) query of f must partition ∆m into at most k compartments.
Wthout loss of generality, we can assume that f uses exactly k compartments. This is because if f
uses k′ compartments where k′ < k, then we can partition some of its compartments into smaller
compartments and derive a new voting rule g which uses exactly k compartments, receives at least
the information that f receives from the voters, and simulates the aggregation rule of f to achieve
the same distortion. Now, establishing a lower bound on the distortion of f requires analyzing the
following game between two players, the voting rule f and the adversary.

1. The voting rule f decides the partition of ∆m into k compartments.
2. The adversary decides the response of each voter.
3. The voting rule f picks a winning alternative (or a distribution over winning alternatives, if

its aggregation rule is randomized).
4. The adversary picks valuations of voters consistent with their responses in the second step.

We use this framework to derive lower bounds on the distortion of voting rules that use deterministic
elicitation. We first focus on deterministic aggregation. Perhaps the simplest such voting rule is
plurality, which has logm communication complexity and achieves Θ(m2) distortion. This raises
an important question: What distortion can we achieve with deterministic elicitation, deterministic
aggregation, and communication complexity less than logm? The next lemma shows that the answer
turns out to be disappointing.

Theorem 3. Every voting rule that has deterministic elicitation, deterministic aggregation, and
communication complexity strictly less than logm has unbounded distortion.

Now, plurality has communication complexity logm and achieves Θ(m2) distortion. Can a dif-
ferent voting rule achieve better distortion using only logm communication complexity? Perhaps
unsurprisingly, we answer this in the negative. But the proof of this intuitive result is quite intricate.

Further, using randomized aggregation we can trivially achieve O(m) distortion with zero communi-
cation complexity (by returning the uniform distribution over alternatives). One may wonder: How
much information do we need from the voters to achieve sublinear distortion? It is easy to show that
eliciting plurality votes is not sufficient. Surprisingly, we show that this holds for every logm-bit
elicitation. That is, even with randomized aggregation, eliciting logm bits per voter is asymptotically
no better than blindly selecting an alternative uniformly at random!

Theorem 4. Let f be a voting rule with deterministic elicitation and C(f) ≤ logm. If f uses
deterministic (resp. randomized) aggregation, then dist(f) = Ω(m2) (resp. Ω(m)).
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For deterministic aggregation, Theorem 4 shows that eliciting logm bits per voter is not sufficient to
achieve o(m2) distortion. By contrast, we know from Theorem 1 that we can achieveO(m) distortion
by eliciting O(logm) bits per voter. Similarly, for randomized aggregation, Theorem 4 shows that
eliciting logm bits per voter is not sufficient to achieve o(m) distortion. However, we can achieve
o(m) distortion if we are willing to elicit ω(logm) bits per voter (Theorem 1),6 or if we are willing
to use randomized elicitation (Theorem 2).

5 Lower Bounds Through Multi-Party Communication Complexity

In this section, we leverage tools from the literature on multi-party communication complexity to
derive lower bounds for both deterministic and randomized elicitation. Specifically, we derive lower
bounds on the communication complexity of voting rules that achieve a given level of distortion. We
begin by reviewing existing results on multi-party communication complexity, and then derive new
results, which help us prove the desired lower bounds in our voting context.

5.1 Setup

In multi-party communication complexity, there are t computationally omnipotent players. Each
player i holds a private input Xi ∈ Xi. The input profile is the vector (X1, . . . , Xt). The goal is to
compute the output of a function f : X1 ×X2 × . . .×Xt → {0, 1} on the input profile.

A shared protocol Π specifies how the players exchange information among themselves and with the
center. We use the blackboard model, in which messages written by one player are visible to all other
players. Let Π(X1, . . . , Xt) be the random variable denoting the message transcript generated when
all players follow the protocol on input profile (X1, . . . , Xt); here, the randomness is due to coin
tosses by the players or the protocol. The communication cost of Π, denoted |Π|, is the maximum
length of Π(X1, . . . , Xt) over all input profiles (X1, . . . , Xt) and all coin tosses. Given δ ≥ 0, we
say that Π is a δ-error protocol for f if there exists a function Πout such that for every input profile
(X1, . . . , Xt), Pr [Πout(Π(X1, . . . , Xt)) = f(X1, . . . , Xt)] ≥ 1 − δ. The δ-error communication
complexity of f , denoted Rδ(f), is the communication cost of the best δ-error protocol for f .

5.2 Multi-Party Fixed-Size Set-Disjointness

The main ingredient of our proof is a standard problem in multi-party communication complexity
called the multi-party set-disjointness problem, denoted DISJm,t. Here, each player i holds an
arbitrary set Si from a universe of size m. The goal is to distinguish between two types of inputs.

• NO inputs: The sets are pairwise disjoint, i.e., Si ∩ Sj = ∅ for all i 6= j.
• YES inputs: The sets have a unique element in common, but are otherwise pairwise disjoint,

i.e., there exists x such that Si ∩ Sj = {x} for all i 6= j.

It is promised that the input will be one of these two types (in other words, the protocol is free
to choose any output on an input that does not satisfy this promise). Following a series of results
[33, 34, 35], Gronemeier [36] and Jayram [37] finally established the optimal lower bound of Ω(m/t).

We introduce a variant of this problem, which we call multi-party fixed-size set-disjointness and
denote FDISJm,s,t. It is almost identical to DISJm,t, except that we know each player i holds a set
Si of a given size s. Our goal is to still determine whether the sets are pairwise disjoint (Si ∩ Sj = ∅
for all i 6= j) or pairwise uniquely intersecting (there exists x such that Si ∩ Sj = {x} for all i 6= j).
We use the lower bound on Rδ(DISJm,t) to derive the following lower bound on Rδ(FDISJm,s,t).
Theorem 5. For a sufficiently small constant δ > 0 and m ≥ (3/2)st, Rδ(FDISJm,s,t) = Ω(s).

5.3 Lower Bounds on the Communication Complexity of Voting Rules

We now use our lower bound on the δ-error communication complexity of FDISJm,s,t to derive a
lower bound on the communication complexity of a voting rule in terms of its distortion. We derive
different bounds depending on whether the elicitation rule of f is deterministic or randomized. For
randomized elicitation, our bound is weaker.

6For t = ω(1), PREFTHRESHOLDt,logm has distortion O(m/t) = o(m) and communication O(t logm).
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Table 1: Comparison between our lower bounds (Theorem 6) and upper bounds (Theorem 1)

Distortion Lower Bounds Upper BoundDeterministic Elicitation Randomized Elicitation

O(mγ) Ω(m1−2γ) Ω(m1−3γ) O(m1−γ logm)

O(logm) Ω
(
m/ log2m

)
Ω
(
m/ log3m

)
O(m log logm/ logm)

O(1) Ω(m) Ω(m) O(m log logm)

The key insight in the proof is that we can use a voting rule f with dist(f) ≤ t/2 to construct a
δ-error protocol for solving FDISJm,s,t, and hence we can use the lower bound on Rδ(FDISJm,s,t)
from Theorem 5 to derive a lower bound on C(f). At a high level, consider an instance (S1, . . . , St)
of FDISJm,s,t. We ask each player i to respond to the query of f according to an artificial valuation
function constructed using Si. We then use these responses to create an input for the aggregation rule
of f . We show that by asking each player an additional question about the alternative returned by the
aggregation rule, and possibly running this process a number of times, we can solve FDISJm,s,t.
Theorem 6. Consider a voting rule f with elicitation rule Πf and dist(f) = d. If Πf is deterministic,
then C(f) ≥ Ω

(
m/d2

)
, and if Πf is randomized, then C(f) ≥ Ω

(
m/d3

)
.

Finally, Table 1 summarizes our upper and lower bounds for some special cases. Achieving sublinear
distortion makes polynomial communication complexity both necessary (even with randomized
aggregation) and sufficient (even with deterministic aggregation). If dist(f) = O(logm), our upper
and lower bounds differ by only polylogarithmic factors. And for constant distortion, they differ by
only a sublogarithmic factor.

6 Discussion

We initiated a formal study of the communication-distortion tradeoff in voting, but our work leaves
many open questions. The most immediate direction is to close the gap between our upper and
lower bounds. Regarding our upper bounds, both families of voting rules that we introduce —
PREFTHRESHOLD and RANDSUBSET — use deterministic aggregation, and we do not have better
upper bounds using randomized aggregation. Our lower bounds from Theorem 6 are also identical
for deterministic and randomized aggregation. This raises an elegant question: Can randomized
aggregation help? Also, using randomized elicitation in RANDSUBSET, we can achieve sublinear
distortion with communication complexity at most logm; Theorem 4 shows that this is not possible
with deterministic elicitation. This raises another elegant question: What is the best possible distortion
with randomized elicitation and communication complexity at most logm? It would also be interesting
to improve upon our lower bounds in Section 5, potentially by using a different problem from the
multi-party communication complexity literature.

Taking a broader viewpoint, we can consider more general forms of elicitation, like non-uniform
questions across voters, and questions adaptive to past responses. One can also explore the effect
of imposing other restrictions on the voting rule such as truthfulness [23, 38]. On a conceptual
level, perhaps the main take-away message of our paper is that it pays off to elicit and aggregate
preferences “by any means necessary,” that is, potentially through highly nonstandard aggregation
and, especially, elicitation rules. In the setting of Caragiannis and Procaccia [10], voters are software
agents, and this is natural. But when voters are people, it is crucial to understand the implications of
such unconventional approaches, both in terms of how communication complexity corresponds to
cognitive burden, and in terms of the interpretability and transparency of aggregation rules.
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Appendix

A Upper Bounds

A.1 Deterministic Elicitation, Deterministic Aggregation

Theorem 1. For t ∈ [m] \ {1} and ` ∈ N, we have

C(PREFTHRESHOLDt,`) = log

[(
m

t

)
· (`+ 1)t

]
= Θ

(
t log

m(`+ 1)

t

)
,

dist(PREFTHRESHOLDt,`) = O
(
m1+2/`/t

)
.

For t = 1 and ` ∈ N, we have

C(PREFTHRESHOLD1,`) = log(m`), dist(PREFTHRESHOLDt,`) = O
(
m1+1/`

)
.

Proof. It is evident that the number of possible responses that a voter can provide under
PREFTHRESHOLDt,` is

(
m
t

)
· (` + 1)t if t > 1, and m` if t = 1. Taking the logarithm of this

gives us the desired communication complexity.

We now establish the distortion of PREFTHRESHOLDt,`. Let ~v = (v1, . . . , vn) be the underlying
valuations of voters. For alternative a ∈ A, recall that sw(a,~v) =

∑
i∈N vi(a), and

ŝw(a) =
∑
i∈N

v̂i(a) =
∑

i∈N :a∈St
i

v̂i(a) =
∑

i∈N :a∈St
i

Upi,a .

Let â ∈ arg maxa∈A ŝw(a) be the alternative chosen by the rule, and let a∗ ∈ arg maxa∈A sw(a,~v)
be an alternative maximizing social welfare.

We begin by finding an upper bound on sw(a∗, ~v) in terms of ŝw(â).

sw(a∗, ~v) =
∑
i∈N

vi(a
∗) =

∑
i∈N :a∗∈St

i

vi(a
∗) +

∑
i∈N :a∗ /∈St

i

vi(a
∗)

≤
∑

i∈N :a∗∈St
i

vi(a
∗) +

∑
i∈N :a∗ /∈St

i

(∑
a∈St

i
vi(a)

t

)

≤
∑

i∈N :a∗∈St
i

v̂i(a
∗) +

∑
a∈A\{a∗}

∑
i∈N :a∗ /∈St

i∧a∈St
i
v̂i(a)

t

≤ ŝw(a∗) +

∑
a∈A\{a∗} ŝw(a)

t
≤ ŝw(â) +

(m− 1) · ŝw(â)

t
=
m+ t− 1

t
· ŝw(â),

(1)

where the third transition holds because for every i ∈ N with a∗ /∈ Sti and every a ∈ Sti , we have
vi(a

∗) ≤ vi(a); the fourth transition holds because for every i ∈ N and a ∈ Sti , vi(a) ≤ v̂i(a);
the fifth transition follows from the definition of ŝw; and the sixth transition holds because â is a
maximizer of ŝw.
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We now establish the distortion for t > 1. The first step is to derive an upper bound on ŝw(â) in
terms of sw(â, ~v). Our bucketing implies that for all i ∈ N and a ∈ Sti , we have vi(a) ≤ v̂i(a) ≤
m2/`vi(a) + 1

m2 . Using this, we can derive the following.

ŝw(â) =
∑

i∈N :â∈St
i

v̂i(â) ≤
∑

i∈N :â∈St
i

(
m2/`vi(â) +

1

m2

)
≤ m2/`sw(â, ~v) +

n

m2
. (2)

Next, we derive a lower bound on ŝw(â), which helps establish a lower bound on sw(â, ~v). Note that
for each voter i ∈ N ,

∑
a∈St

i
vi(a) ≥ t/m. Hence,∑

a∈A
ŝw(a) =

∑
i∈N

∑
a∈St

i

v̂i(a) ≥
∑
i∈N

∑
a∈St

i

vi(a) ≥ n · t
m

.

Because â is a maximizer of ŝw, this yields ŝw(â) ≥ n · t/m2. Substituting this into Equation (2),
we get

n

m2
+ sw(â, ~v) ·m2/` ≥ ŝw(â) ≥ n · t

m2
⇒ sw(â, ~v) ≥ n · (t− 1)

m2
·m−2/` ≥ n

m2
·m−2/`. (3)

Applying Equations (1), (2), and (3) in this order, we have

sw(a∗, ~v)

sw(â, ~v)
≤ m+ t− 1

t
· ŝw(â)

sw(â, ~v)
≤ m+ t− 1

t
·
(
m2/` +

n

m2 · sw(â, ~v)

)
≤ m+ t− 1

t
·
(
m2/` +m2/`

)
∈ O(m1+2/`/t).

For t = 1, we have that for every i ∈ N and a ∈ Sti , vi(a) ≤ v̂i(a) ≤ m1/`vi(a). Hence, in
Equation (2), the additive factor of n/m2 disappears and the multiplicative factor of m2/` becomes
m1/`, yielding ŝw(â) ≤ sw(â, ~v) ·m1/`. Similarly, Equation (3) becomes sw(â, ~v) ≥ n

m2 ·m−1/`.
Following the same line of proof as for the case of t > 1, we obtain

sw(a∗, ~v)

sw(â, ~v)
≤ m · ŝw(â)

sw(â, ~v)
≤ m ·m1/`,

which is the desired bound on distortion.

A.2 Randomized Elicitation, Randomized Aggregation

Theorem 2. For every voting rule f and s ∈ [m], we have Cm(RANDSUBSET(f, s)) = Cs(f) +
logdlog(4m)e and distm(RANDSUBSET(f, s)) ≤ 4m

s · dists(f).

Proof. Let ~v = (v1, . . . , vn) denote the underlying valuations of voters. First, let us consider a fixed
choice of S ⊆ A with |S| = s. Due to our bucketing, we have that for every i ∈ N ,

vi(S)

2
− 1

4m
≤ Lpi ≤ vi(S). (4)

Recall that in the input to the aggregation rule of f , we have 4m · Lpi copies of the response ρi of
voter i. Hence, the social welfare function approximated by the aggregation rule of f is given by

∀a ∈ S, ŝw(a,~v) =
∑
i∈N

4m · Lpi ·
vi(a)

vi(S)
= 4m

∑
i∈N

vi(a) · Lpi
vi(S)

.

Combining this with Equation (4), we have that for each a ∈ S,

ŝw(a,~v) ≥ 4m
∑
i∈N

vi(a) ·
(

1

2
− 1

4m · vi(S)

)
= 2m · sw(a,~v)−

∑
i∈N

vi(a)

vi(S)
≥ 2m · sw(a,~v)− n,

(5)
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as well as
ŝw(a,~v) ≤ 4m

∑
i∈N

vi(a) · 1 = 4m · sw(a,~v). (6)

Let â denote the alternative chosen by our rule. Because the distortion of f for choosing an alternative
from S is dists(f), we have that E[ŝw(â, ~v)] ≥ maxa∈S ŝw(a,~v)/dists(f). Note that so far, we
have fixed S. The expectation on the left hand side is due to the fact that even for fixed S, â can be
randomized if f is randomized.

Next, we take expectation over the choice of S, and use the fact that the optimal alternative a∗ ∈
arg maxa∈A sw(a,~v) belongs to S with probability s/m. We obtain

E[ŝw(â, ~v)] ≥ E[maxa∈S ŝw(a,~v)]

dists(f)
≥

s
m · ŝw(a∗, ~v)

dists(f)
≥

s
m (2m · sw(a∗, ~v)− n)

dists(f)
, (7)

where the final transition follows from Equation (5). On the other hand, from Equation (6), we have

E[ŝw(â, ~v)] ≤ 4mE[sw(â, ~v)]. (8)

Combining Equations (7) and (8), we have that

distm(RANDSUBSET(f, s)) =
sw(a∗, ~v)

E[sw(â, ~v)]
≤ sw(a∗, ~v)

sw(a∗,~v)
2 − n

4m

· m
s
· dists(f) ≤ 4m

s
· dists(f),

where the final transition uses the fact that sw(a∗, ~v) ≥ (1/m) ·
∑
a∈A sw(a,~v) = n/m. This

establishes the desired distortion bound. Since each voter answers the query of f for s alternatives
and chooses one of dlog(4m)e buckets, we get Cm(RANDSUBSET(f, s)) = Cs(f) + logdlog(4m)e,
as desired.

B Lower Bounds

B.1 Direct Lower Bounds for Deterministic Elicitation

We start by establishing a straightforward lemma. Recall that for a valuation v ∈ ∆m, supp(v)
denotes the support of v.

Lemma 1. Let f be a voting rule which uses deterministic elicitation and deterministic aggregation.
Let q∗ be the query used by f . If some compartment of q∗ contains two valuations v1 and v2 such
that supp(v1) ∩ supp(v2) = ∅, then the distortion of f is unbounded.

Proof. Suppose compartment P contains valuations v1 and v2 such that supp(v1) ∩ supp(v2) = ∅.
Let â be the alternative returned by f when all voters pick compartment P . Pick t ∈ {1, 2} such that
â /∈ supp(vt). Note that vt(â) = 0, but there exists a∗ ∈ supp(vt) such that vt(a∗) > 0.

Define voter valuations ~v = (v1, . . . , vn) such that vi = vt for each i ∈ N . This yields sw(â, ~v) = 0
and sw(a∗, ~v) > 0, which implies that f must have infinite distortion.

Theorem 3. Every voting rule that has deterministic elicitation, deterministic aggregation, and
communication complexity strictly less than logm has unbounded distortion.

Proof. We need the following definition. For a ∈ A, we say that the unit valuation corresponding
to a is the valuation va ∈ ∆m for which va(a) = 1. Let f be a voting rule that has deterministic
elicitation and deterministic aggregation, and let C(f) < logm. Hence, the query used by f must
partition ∆m into less than m compartments.

Because there are m unit valuations, by the pigeonhole principle there must exist distinct a, b ∈ A
such that va and vb belong to the same compartment. Because supp(va) ∩ supp(vb) = ∅, Lemma 1
implies that the distortion of f must be infinite.

Theorem 4. Let f be a voting rule which uses deterministic elicitation and has C(f) ≤ logm. If
f uses deterministic aggregation, then dist(f) = Ω(m2). If f uses randomized aggregation, then
dist(f) = Ω(m).
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Proof. Let f be a voting rule which has deterministic elicitation and C(f) ≤ logm. As argued
above, we can assume C(f) = logm without loss of generality. Hence, the query q∗ used by f
partitions ∆m into m compartments. Let P = (P1, . . . , Pm) denote the set of compartments. If f
has unbounded distortion, we are done. Suppose f has bounded distortion.

Due to Lemma 1, each of m unit vectors must belong to a different compartment. Since there are m
compartments, we identify each compartment by the unit valuation it contains. For a ∈ A, let P a
denote the compartment containing unit valuation va. Before we construct adversarial valuations, we
need to define low valuations and high valuations.

Low valuations: We say that a valuation v ∈ ∆m is a low valuation if |supp(v)| = m/5 and
v(a) = 5/m for every a ∈ supp(v). Let ∆m,low denote the set of all low valuations. Due to Lemma 1,
we have

v ∈ ∆m,low ∩ P a ⇒ a ∈ supp(v) ∧ v(a) =
5

m
. (9)

Let L = {P ∈ P : P ∩∆m,low 6= ∅} be the set of compartments containing at least one low valuation,
and AL = {a ∈ A : P a ∈ L} be the set of alternatives corresponding to these compartments.

We claim that |AL| = |L| ≥ 4m/5 + 1. Suppose for contradiction that |AL| ≤ 4m/5. Then,
|A \ AL| ≥ m/5. Hence, there exists a low valuation v ∈ ∆m,low such that supp(v) ⊆ A \ AL.
Let a ∈ A be the alternative for which v ∈ P a. Because P a contains a low valuation, a ∈ AL by
definition. Thus, the construction of v ensures v(a) = 0. We have v ∈ ∆m,low ∩ P a with v(a) = 0,
which contradicts Equation (9). Hence, |AL| ≥ 4m/5 + 1.

High valuations: We say that a valuation v ∈ ∆m is a high valuation if |supp(v)| = 2 and v(a) = 1/2
for each a ∈ supp(v). Let ∆m,high denote the set of high valuations. Note that |∆m,high| =

(
m
2

)
.

Similarly to the case of low valuations, we can apply Lemma 1, and obtain that

v ∈ ∆m,high ∩ P a ⇒ a ∈ supp(v) ∧ v(a) =
1

2
. (10)

For a ∈ A, let Ha = {P ∈ L : ∃v ∈ ∆m,high ∩ P s.t. a ∈ supp(v)}. In words, Ha is the set
of compartments from L which contain at least one high valuation v for which v(a) = 1/2. Let
Ahigh = {a ∈ A : |Ha| ≥ m/5}. We claim that |Ahigh| ≥ m/6.

Suppose this is not true. LetB = |A\Ahigh|. Then, |B| ≥ 5m/6. Consider a ∈ B. Each of them−1
high valuations which contain a in their support must belong to some compartments inHa ∪ (P \L).
Since |Ha| ≤ m/5− 1 for a ∈ B and |P \ L| ≤ m/5− 1, the m− 1 high valuations containing a
in their support are distributed across at most 2m/5− 2 compartments. However, due to Lemma 1, a
compartment other than P a can contain at most one high valuation with a in its support. Hence, P a
must contain at least m− 1− (2m/5− 3) = 3m/5 + 2 high valuations. Thus, we have established
that |B| ≥ 5m/6 and for each a ∈ B, P a contains at least 3m/5 + 2 high valuations. Thus, the
number of high valuations is at least (5m/6) · (3m/5 + 2) > m2/2 >

(
m
2

)
, which is a contradiction.

Thus, we have |Ahigh| ≥ m/6.

We are now ready to prove the desired result for both deterministic and randomized aggregation.

Voter responses: When responding to the query q∗, suppose each compartment P ∈ L is picked by a
set NP of n/|L| voters.

Deterministic aggregation: Let â denote the alternative picked by f . We claim that â ∈ AL. If
â /∈ AL, consider voter valuations ~v such that every voter i picking compartment P a ∈ L has
valuation vi = va. Since â /∈ AL, we have vi(â) = 0 for each i ∈ N , i.e., sw(â, ~v) = 0. Since
sw(a,~v) > 0 for some a ∈ A, f has infinite distortion, which is a contradiction. Thus, we must have
â ∈ AL.

Now, let us construct the voter valuations as follows. Pick a low valuation v̂ ∈ P â ∩∆m,low, which
exists because we have established â ∈ AL. Note that v̂(â) = 5/m. For each i ∈ NP â , let vi = v̂.
Pick a∗ ∈ Ahigh \ {â}. Let P̄ be the compartment containing the high valuation under which both
â and a∗ have utility 1/2. For each P ∈ Ha∗ \ {P â, P̄}, and for each i ∈ NP , let vi be the high
valuation in P such that vi(a∗) = 1/2 and vi(â) = 0. For every other P a ∈ L and every i ∈ NPa ,
let vi = va.
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Observe that under these valuations, sw(â, ~v) = Θ(n/m2), whereas, since |Ha∗ | ≥ m/5 and
|L| ≤ |P| = m, sw(a∗, ~v) = Θ(n). We conclude that dist(f) = Ω(m2).

Randomized aggregation: Note that f must select at least one alternative a∗ ∈ Ahigh with probability
at most 1/|Ahigh| ≤ 6/m. Construct voter valuations such that for every P ∈ Ha∗ and every i ∈ NP ,
vi is the high valuation under which vi(a∗) = 1/2. For every P a ∈ L \ Ha∗ , and for every i ∈ NPa ,
let vi = va. It holds that sw(a∗, ~v) = Θ(n) (as before), whereas sw(a,~v) = O(n/m) for every
a ∈ A \ {a∗}. Because f selects a∗ with probability at most 6/m, we have Eâ∼f(~v)[sw(â, ~v)] =
O(n/m), implying dist(f) = Ω(m), as required.

B.2 Lower Bound for Plurality Votes

In this section, we show that eliciting plurality votes (whereby each voter picks her most favorite
alternative) results in Ω(m) distortion, even with randomized aggregation. This is implied by
Theorem 4, which proves this for any elicitation that has at most logm communication complexity.
However, for the special case of plurality votes, we can provide a much simpler proof.
Proposition 1. Every voting rule which elicits plurality votes incurs Ω(m) distortion.

Proof. For simplicity, let the number of voters n be divisible by the number of alternatives m.
Consider an input profile in which the set of voters N is partitioned into equal-size sets {Na}a∈A
such that for each a ∈ A, a is the most favorite alternative of every voter in Na.

Take any voting rule f . It must return some alternative a∗ ∈ A with probability at most 1/m. Now,
construct adversarial valuations of voters ~v as follows.

• For all i ∈ Na∗ , vi(a∗) = 1 and vi(a) = 0 for all a ∈ A \ {a∗}.
• For all â ∈ A \ {a∗} and i ∈ Nâ, vi(â) = vi(a

∗) = 1/2 and vi(a) = 0 for all a ∈
A \ {a∗, â}.

Under these valuations, we have sw(a∗, ~v) ≥ n/2, while sw(a,~v) = (n/m) · (1/2) for every
a ∈ A \ {a∗}. Hence, the distortion of f is

dist(f) ≥ sw(a∗, ~v)
1
m sw(a∗, ~v) + m−1

m
n

2m

= Ω(m),

where the final transition holds when substituting sw(a∗, ~v) ≥ n/2.

C Lower Bounds Through Multi-Party Communication Complexity

C.1 Lower Bound on the Communication Complexity of FDISJm,s,t

In this section, we prove a lower bound on the communication complexity of multi-party fixed-size
set-disjointness. Let us recall Theorem 5.
Theorem 5. For a sufficiently small constant δ > 0 and m ≥ (3/2)st, Rδ(FDISJm,s,t) = Ω(s).

Proof. Suppose there is a δ-error protocol Π for FDISJm,s,t. We use it to construct a 2δ-error
protocol Π′ for DISJm′,t′ , where m′ = st/2 and t′ = 2t.

Consider an instance (S′1, . . . , S
′
t′) of DISJm′,t′ . Due to the promise that the sets are either pairwise

disjoint or pairwise uniquely intersecting, we have that at most one of the m′ elements can appear in
multiple sets. Hence,

∑t′

i=1 |S′i| ≤ m′ − 1 + t′. Due to the pigeonhole principle, there must exist at
least t′/2 = t sets of size at most 2(m′ + t′ − 1)/t′. Note that

2(m′ + t′ − 1)

t′
=
st/2 + 2t− 1

t
=
s

2
+ 2− 1

t
≤ s.

The final transition holds when s ≥ 4. When s < 4, the lower bound of Ω(s) is trivial.

Consider a set of t players {i1, . . . , it} such that |S′ik | ≤ s for each k ∈ [t]. Suppose that each such
player ik adds s− |S′ik | unique elements to S′ik and creates a set Sik with |Sik | = s. The number of
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unique elements required is at most st. Hence, the total number of elements used in sets Si1 , . . . , Sit
is at most m′ + st = (3/2)st ≤ m. In other words, these sets can be created using the m-element
universe of FDISJm,s,t. Further, it is easy to check that sets Si1 , . . . , Sit are pairwise disjoint (resp.
pairwise uniquely intersecting) if and only if sets S′1, . . . , S

′
t′ are pairwise disjoint (resp. pairwise

uniquely intersecting). Thus, (Si1 , . . . , Sit) is a valid instance of FDISJm,s,t and has the same
solution as the instance (S′1, . . . , S

′
t′) of DISJm′,t′ .

Our goal is to construct a 2δ-error protocol Π′ for DISJm′,t′ that solves (S′1, . . . , S
′
t′) by effectively

running the given δ-error protocol Π for FDISJm,s,t on (S′i1 , . . . , S
′
it

). We could ask each player
i to report a single bit indicating whether |S′i| ≤ s, determine t players for which this holds, and
then run Π on them. However, this would add a t′-bit overhead. Instead, we would like to bound the
overhead in terms of the communication cost of Π, denoted |Π|, which could be significantly smaller.

This is achieved as follows. We first order the players according to a uniformly random permutation
σ. Then, we simulate Π. Every time Π wants to interact with a new player, we ask players that we
have not interacted with so far, in the order in which they appear in σ, whether their sets have size at
most s, until we find one such player. Then, we let Π interact with this player. Protocol Π′ terminates
naturally when protocol Π terminates (and returns the same answer), but terminates abruptly if, at
any point, it has interacted with more than 2|Π|/δ players (and returns an arbitrary answer).

Note that |Π| is also an upper bound with the number of players that Π needs to interact with. Let
X be the smallest index such that there are at least |Π| players having sets of size at most s among
the first X players in σ. Then, because at least half of the players have sets of size at most s, we
have E[X] ≤ 2 · |Π|. Due to Markov’s inequality, we have that Pr[X > 2|Π|/δ] ≤ δ. Hence, the
probability that Π′ terminates abruptly is at most δ. When it does not terminate abruptly, it returns
the wrong answer with probability at most δ (as Π is a δ-error protocol). Hence, due to the union
bound, we conclude that Π′ is a 2δ-error protocol for DISJm′,t′ .

Finally, we have that |Π′| ≤ 2|Π|/δ+ |Π| = |Π|(1 + 2/δ). When δ is sufficiently small, Gronemeier
[36] showed that |Π′| ≥ R2δ(DISJm′,t′) = Ω(m′/t′) = Ω(s). Hence, we have that |Π| = Ω(s).
Since this holds for every δ-error protocol Π for FDISJm,s,t, we have Rδ(FDISJm,s,t) = Ω(s).

C.2 Lower Bounds on the Communication Complexity of Voting Rules

Theorem 6. For a voting rule f with elicitation rule Πf and dist(f) = d, the following hold.

• If Πf is deterministic, then C(f) ≥ Ω
(
m/d2

)
.

• If Πf is randomized, then C(f) ≥ Ω
(
m/d3

)
.

Proof. Let t = 2 · dist(f) and s = 2m/(3t). Note that for these parameters, we have
Rδ(FDISJm,s,t) = Ω(s) from Theorem 5.

Consider an input (S1, . . . , St) to FDISJm,s,t with a universe U of size m. Let us create an
instance of the voting problem with a set of n voters N and a set of m alternatives A. Each
alternative in A corresponds to a unique element of U . Partition the set of voters N into t equal-
size buckets {N1, . . . , Nt}. Here, bucket Ni corresponds to player i, and consists of n/t voters
that each have valuation vSi given by vSi(a) = 1/s for each a ∈ Si and vSi(a) = 0 for each
a /∈ Si. Let ~v denote the resulting profile of voter valuations. Note that under these valuations,
sw(a,~v) = n

ts

∑t
i=1 1[a ∈ Si], where 1 is the indicator variable. Due to the promise that an element

either belongs to at most one set or belongs to every set, we have sw(a,~v) ∈ {0, n/(ts), n/s}. We
say that a is a “good” alternative if sw(a,~v) = n/s and a “bad” alternative otherwise.

We define two processes that will help covert our voting rule f into a protocol for FDISJm,s,t.

Process E: In this process, we ask each player i to respond to the query posed by voting rule f
(possibly selected in a randomized manner) according to valuation vSi . We note that this requires a
total of t · C(f) bits of communication from the players.

Process A: We take players’ responses from process E, create n/t copies of the response of each
player, and pass the resulting profile as input to the aggregation rule Γf to obtain the returned
alternative â (possibly selected in a randomized manner). We end the process by determining if â is a
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good alternative or a bad alternative. This requires eliciting 2 extra bits of information: we can ask
any two players i and j whether their sets contain â, and due to the promise of FDISJm,s,t, we know
that â is good if and only if it belongs to both Si and Sj .

Knowing whether â is good or bad is useful for solving the given instance of FDISJm,s,t due to the
following reason.

1. If (S1, . . . , St) is a “NO input”, then we know that every alternative is a bad alternative.
Hence, sw(a,~v) ≤ (n/t) · (1/s) = n/(ts) for each a ∈ A. In particular, this implies
sw(â, ~v) ≤ n/(ts) with probability 1.

2. If (S1, . . . , St) is a “YES input”, then there exists a unique good alternative a∗ ∈ A
with sw(a∗, ~v) = n/s, and every other alternative a is a bad alternative with sw(a,~v) ≤
n/(ts). Because dist(f) = t/2, we have that E[sw(â, ~v)] ≥ n/s

t/2 = 2n
ts . This implies

that Pr[sw(â, ~v) = n/s] = Pr[â = a∗] ≥ 1/t because if Pr[â = a∗] < 1/t, then
E[sw(â, ~v)] < (1/t) · (n/s) + 1 · n/(ts) = 2n/(ts), which is a contradiction.

We are now ready to use f to construct a protocol for FDISJm,s,t, and use Theorem 5 to derive
a lower bound on C(f). We consider two cases depending on whether the elicitation rule Πf is
deterministic or randomized.

1. Deterministic elicitation: In this case, we run process E once and then run process A t ln(1/δ)
times. In a NO input, we always get a bad alternative. In a YES input, each run of process A
returns a good alternative with probability at least 1/t. Hence, the probability that we get a
good alternative at least once is at least 1−(1−1/t)t ln(1/δ) ≥ 1−δ. Hence, this is a δ-error
protocol for FDISJm,s,t which requires t · C(f) + t ln(1/δ) · 2 bits of total communication
from the players. Using Theorem 5, we have that t · (C(f) + 2 ln(1/δ)) = Ω(s). Using
s = 2m/(3t) and t = 2d, we have C(f) = Ω(m/d2).

2. Randomized elicitation: In this case, we run E once followed by running A once. And we
repeat this entire process t ln(1/δ) times. Note that we need to repeat process E because the
elicitation is also randomized. Like in the previous case, we always get a bad alternative in
a NO input, and get a good alternative with probability at least 1/t in each run in a YES
input. Hence, in a YES input, we get a good alternative in at least one run with probability
at least 1 − (1 − 1/t)t ln(1/δ) ≥ 1 − δ. This results in a δ-error protocol for FDISJm,s,t
which requires t ln(1/δ) · (t ·C(f) + 2) bits of total communication from the players. Using
Theorem 5, we have t ln(1/δ) · (t · C(f) + 2) = Ω(s). Using s = 2m/(3t) and t = 2d, we
have C(f) = Ω(m/d3).

These are the desired lower bounds on C(f).
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