
�

�

�

�

�

�

�

�

3

Beyond Dominant Resource Fairness: Extensions, Limitations,
and Indivisibilities

DAVID C. PARKES, Harvard University
ARIEL D. PROCACCIA and NISARG SHAH, Carnegie Mellon University

We study the problem of allocating multiple resources to agents with heterogeneous demands. Technological
advances such as cloud computing and data centers provide a new impetus for investigating this problem un-
der the assumption that agents demand the resources in fixed proportions, known in economics as Leontief
preferences. In a recent paper, Ghodsi et al. [2011] introduced the dominant resource fairness (DRF) mech-
anism, which was shown to possess highly desirable theoretical properties under Leontief preferences. We
extend their results in three directions. First, we show that DRF generalizes to more expressive settings,
and leverage a new technical framework to formally extend its guarantees. Second, we study the relation
between social welfare and properties such as truthfulness; DRF performs poorly in terms of social welfare,
but we show that this is an unavoidable shortcoming that is shared by every mechanism that satisfies one of
three basic properties. Third, and most importantly, we study a realistic setting that involves indivisibilities.
We chart the boundaries of the possible in this setting, contributing a new relaxed notion of fairness and
providing both possibility and impossibility results.
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1. INTRODUCTION

Resource allocation is a fundamental issue in the design and implementation of
computing systems, which are naturally constrained in terms of CPU time, mem-
ory, communication links, and other resources. We are interested in settings where
these resources must be allocated to multiple agents with different requirements. Such
situations arise, for instance, in operating systems (where the agents can be jobs)
or in cloud computing and data centers (where the agents can be users, compa-
nies, or software programs representing them). To take one example, federated clouds
[Rochwerger et al. 2009] involve multiple agents that contribute resources; the re-
distribution of these resources gives rise to delicate issues, including fairness as well
as incentives for participation and revelation of private information, which must be
carefully considered.
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3:2 D. C. Parkes et al.

Despite the growing need for resource allocation policies that can address these re-
quirements, state-of-the-art systems employ simple abstractions that fall short. For
example, as pointed out by Ghodsi et al. [2011], Hadoop and Dryad—two of the
most widely used cluster computing frameworks—employ a single resource abstrac-
tion for resource allocation. Specifically, these frameworks partition the resources into
bundles—known as slots—that contain fixed amounts of different resources. The slots
are then treated as the system’s single resource type, and at this point the allocation
can be handled using standard techniques that were developed by the systems commu-
nity. However, in a realistic environment where agents have heterogeneous demands,
the single resource abstraction inevitably leads to significant inefficiencies.

Ghodsi et al. [2011] suggest a compelling alternative. Their key insight is that even
though agents may have heterogeneous demands for resources, their demands can be
plausibly assumed to be highly structured, in maintaining a fixed proportion between
resource types. For example, if an agent wishes to execute multiple instances of a job
that requires 2 CPUs and 1 GB RAM, its demand for these two resources has a fixed
ratio of 2. Given 5 CPUs and 1.8 GB RAM, the agent can run only 1.8 instances of its
task (note that Ghodsi et al. allow divisible tasks) despite the additional CPU, hence
the agent would be indifferent between this allocation and receiving only 3.6 CPUs
and 1.8 GB RAM. Preferences over resource bundles that exhibit this proportional
structure are known as Leontief preferences in the economics literature. There are some
positive results on resource allocation under Leontief preferences [Nicolò 2004], but
more often than not Leontief preferences are drawn upon for negative examples.

Leveraging this model, Ghodsi et al. [2011] put forward the dominant resource fair-
ness (DRF) mechanism. Briefly, DRF allocates resources according to agents’ propor-
tional demands, in a way that equalizes the shares that agents receive of their most
highly demanded resource (we elaborate in Section 2). Ghodsi et al. demonstrate that
DRF satisfies a number of prominent desiderata, including: (i) Pareto optimality (PO),
a well-known criterion of economic efficiency; (ii) sharing incentives (SI), in the sense
that agents are at least as happy as they would be under an equal split of the re-
sources; (iii) envy-freeness (EF), meaning that agents do not wish to swap their al-
located resources with other agents; (iv) strategyproofness (SP), which requires that
agents cannot gain by misreporting their demands. From the perspective of economics,
Ghodsi et al. discovered that the egalitarian equivalent rule [Pazner and Schmeidler
1978] possesses excellent properties under Leontief preferences.

At the risk of sounding melodramatic, we believe that resource allocation in com-
puting systems is one of the most important and real challenges at the intersection of
economics and computer science today. In particular, we find it exciting that the the-
ory of fair division [Moulin 2003], as exemplified by the egalitarian equivalent rule,
provides an ideal, almost tailor-made framework for tackling modern technological
challenges in data centers and cloud computing. Despite the significant step forward
made by Ghodsi et al. [2011], there are still many key issues that need to be addressed.
Is it possible to rigorously extend the DRF paradigm to more expressive settings where
agents are weighted and may not demand every resource? How can we formally tackle
settings where agents’ demands are indivisible? How does DRF compare to alterna-
tive mechanisms when social welfare is a concern? We will provide answers to these
questions.

1.1. Our Results

Our first order of business is to rigorously extend some of the theoretical results of
Ghodsi et al. [2011]. In Section 3, we consider a setting where agents can be weighted
based on an initial endowment, and modify the definitions of SI and EF accordingly.
We also address the case where agents may not require every resource. We extend
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Beyond Dominant Resource Fairness: Extensions, Limitations, and Indivisibilities 3:3

DRF to tackle these extensions of the model, and formally establish that the extended
version still satisfies PO, SI, EF, and in fact satisfies the stronger coalitional version of
SP, group strategyproofness (GSP). (See the following for a discussion of closely related
results.)

In Section 4, we explore the relation between the desirable properties mentioned
earlier, and maximization of the social welfare—the sum of utilities of the agents. To
study social welfare we must assume an interpersonal comparison of utilities, that is,
we need to exactly specify the utilities of agents for allocations, rather than focusing on
ordinal preferences over allocations. Focusing on a natural, albeit specific, utility func-
tion, we observe that DRF can produce allocations that only provide roughly 1/m of the
social welfare of the optimal allocation, where m is the number of resources. However,
we demonstrate that this poor welfare property is necessary for any mechanism that
satisfies at least one of the three properties SI, EF, and SP. While the proofs for SI and
EF are straightforward, the proof for SP is our most technical. These results vindicate
DRF by establishing that reasonable methods for the allocation of multiple resources
are inherently incompatible with social welfare maximization. In other words, the poor
performance of DRF in terms of social welfare does not stem from its implicit focus on
egalitarian welfare.

We view Section 5 as the most important on both a conceptual and practical level.
The definition of Leontief preferences, on which the previous results hinge, implicitly
requires that both resources and tasks be divisible, so an agents’ utility can be repre-
sented simply by the proportion between its demand for different resources. While it
is reasonable to assume that the resources are divisible, in practice the tasks are often
indivisible, that is, an agent’s task would require a minimum, indivisible bundle of
resources. For example, if an agent requires 2 CPUs and 1 GB RAM to run one in-
stance of its task, allocating 1 CPU and 1/2 GB RAM would be no more preferred than
allocating nothing at all. Indeed, the agent’s utility function should be conceptualized
as a step function that only increases when another complete bundle is available. This
setting is novel; even its single-resource variant has not been studied in settings with-
out money, to the best of our knowledge.

We observe that DRF performs poorly in this setting, but, more generally, strong
impossibilities rear their head as one moves to a setting with indivisibilities. In partic-
ular, EF and PO are trivially incompatible; inspired by the fair division literature, we
relax EF by considering the novel notion of envy-freeness up to one bundle (EF1): an
agent i prefers its own allocation to the allocation of another agent j, given that a sin-
gle copy of the demanded bundle of i is removed from the allocation of j. Nevertheless,
we show that SP is incompatible with PO and EF1 in a setting with indivisibilities, nor
is it compatible with PO and SI. The main result of Section 5 is positive: we design a
mechanism, SEQUENTIALMINMAX, which satisfies PO, SI, and EF1; given our impos-
sibility results with respect to SP, this is the best combination of properties one could
hope for. The mechanism sequentially allocates bundles to minimize the maximum
share of a resource that any agent has after allocation. We argue that this mechanism
is practical for several reasons, in particular because it can be implemented dynami-
cally (when agents arrive and depart, or change their demands over time).

1.2. Related Work on the Allocation of Multiple Resources

The work of Ghodsi et al. [2011] has quickly attracted significant attention from the
algorithmic economics community. Consequently, during the process of preparing the
conference version of this article, several independent (from our work and each other)
related papers have become available. While none of these papers study social wel-
fare maximization (our Section 4) or indivisibilities (our Section 5), there is a partial
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3:4 D. C. Parkes et al.

overlap with our results on extending DRF (Section 3). In the following, we discuss
each of these papers in detail, starting from the original DRF paper.

Ghodsi et al. [2011] focus on the theoretical comparison of DRF to other potential
mechanisms, and provide a systematic empirical study of the computational proper-
ties of DRF. Ghodsi et al. also mention that one can extend DRF to take into account
weighted agents. However, the discussion of this extension is informal, and it is un-
clear whether DRF maintains its properties. In addition, although Ghodsi et al. do
not assume that agents have strictly positive demands for every resource, this issue is
addressed rather informally. Specifically, their proof of SP relies on a loose simulation
argument that, we believe, may be insufficient when some agents do not demand every
resource. We introduce an alternative technical framework that allows us (in Section 3)
to rigorously establish stronger properties (GSP instead of SP) while simultaneously
tackling agent weights and zero demands on some resources.

A manuscript by Li and Xue [2011] provides a characterization of mechanisms that
satisfy desirable properties under Leontief preferences. As a consequence of their
results, one obtains a formal proof of GSP for certain mechanisms, even when agents
are weighted. Curiously, their results do not capture DRF itself due to a technical as-
sumption. More importantly, Li and Xue assume strictly positive demands; we argue
in Section 3 that the case of zero demands is important, and our results suggest that
it is also technically challenging.

Another manuscript by Friedman et al. [2011] explores the relations between
resource allocation under Leontief preferences and bargaining theory. Among other
results, they introduce a family of weighted DRF mechanisms. It is important to recog-
nize that here the weights are not exogenously given, but are a way to induce different
variations of DRF as mechanisms for allocating to unweighted agents. In addition,
Friedman et al. explicitly assume strictly positive demands for simplicity. Under this
assumption, they show that every weighted DRF mechanism that satisfies additional
technical properties is GSP.

We mention two additional related papers that are disjoint from ours in terms of
results. Dolev et al. [2012] also study resource allocation under Leontief preferences.
They consider an alternative fairness criterion, which they call no justified complaints.
They compare allocations that satisfy this criterion with DRF allocations. Their main
result is the existence of allocations that satisfy no justified complaints. Gutman
and Nisan [2012] present polynomial time algorithms for computing allocations un-
der a family of mechanisms that includes DRF. Moreover, they show that a competi-
tive equilibrium (discussed in passing later) achieves the notion of fairness of Dolev
et al. [2012], thereby leading to a polynomial time algorithm for computing allocations
with this property. The two new mechanisms that we present are both polynomial time.

2. THE MODEL

We begin with an intuitive exposition based on an example from Ghodsi et al. [2011],
and provide a different perspective on this example. Subsequently, we formulate
a simple mathematical model, and more rigorously introduce our notations and
assumptions.

2.1. Intuition and an Alternative Interpretation of DRF

Consider a system with 9 CPUs, 18 GB RAM, and two agents. Agent 1 wishes to
execute a (divisible) task with the demand vector 〈1 CPU, 4 GB〉, and agent 2 has a
(divisible) task that requires 〈3 CPU, 1 GB〉. Note that each instance of the task of
agent 1 demands 1/9 of the total CPU and 2/9 of the total RAM; the task of agent 2
requires 1/3 of the total CPU and 1/18 of the total RAM.

ACM Transactions on Economics and Computation, Vol. 3, No. 1, Article 3, Publication date: March 2015.
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Beyond Dominant Resource Fairness: Extensions, Limitations, and Indivisibilities 3:5

The dominant resource fairness (DRF) mechanism [Ghodsi et al. 2011] works as
follows. The dominant resource of an agent is the resource for which the agent’s task
requires the largest fraction of total availability. In the example, the dominant resource
of agent 1 is RAM, and the dominant resource of agent 2 is CPU. The DRF mechanism
seeks to maximize the number of allocated tasks, under the constraint that the frac-
tions of dominant resource that are allocated—called dominant shares—are equalized.

Returning to the running example, let y and z be the (possibly fractional) quantities
of tasks allocated by DRF to agents 1 and 2, respectively; then overall y + 3z CPUs
and 4y+ z GB are allocated, and these quantities are constrained by the availability of
resources. The dominant shares are 2y/9 for agent 1 and z/3 for agent 2. The values of
y and z can be computed as follows:

max (y, z)
subject to y + 3z ≤ 9

4y + z ≤ 18
2y
9 = z

3 .

Due to the equality 2y/9 = z/3 it is sufficient to maximize either y or z; we maximize
the pair (y, z) for consistency with [Ghodsi et al. 2011]. The solution is y = 3 and z = 2,
that is, agent 1 is allocated 3 CPUs and 12 GB RAM, and agent 2 is allocated 6 CPUs
and 2 GB RAM.

We next introduce a novel, somewhat different way of thinking about DRF, which
greatly simplifies the analysis of its properties. Let Dir be the ratio between the de-
mand of agent i for resource r, and the availability of that resource. In our example,
when CPU is resource 1 and RAM is resource 2, D11 = 1/9, D12 = 2/9, D21 = 1/3, and
D22 = 1/18. For all agents i and resources r, denote dir = Dir/(maxr′Dir′); we refer to
these demands as normalized demands. In the example, d11 = 1/2, d12 = 1, d21 = 1,
d22 = 1/6.

We propose a linear program whose solution x is the dominant share of each agent.
Observing the fixed proportion between an agent’s demands for different resources,
agent i is allocated an (x · dir)-fraction of resource r.

max x
subject to

∑
i x · dir ≤ 1, ∀r.

Allocations are bounded from above by 1 because the program allocates fractions of
the total availability of resources. Clearly this linear program can be rewritten as

x = 1
maxr

∑
i dir

. (1)

In the example, x = 1/(1/2 + 1) = 2/3. That is, the allocation to agent 1 is 1/3 of the
total CPU, and 2/3 of the total RAM, which is equivalent to 3 CPUs and 12 GB RAM,
as before. Similarly, agent 2 is allocated 2/3 of the total CPU and 1/9 of the total RAM,
which is equivalent to 6 CPUs and 2 GB RAM, as before.

2.2. Rigorous Model

Denote the set of agents by N = {1, . . . , n}, and the set of resources by R, |R| = m. As
before, we denote the normalized demand vector of agent i ∈ N by di = 〈di1, . . . , dim〉,
where 0 ≤ dir ≤ 1 for all r ∈ R. An allocation A allocates a fraction Air of resource r
to agent i, subject to the feasibility condition

∑
i∈N Air ≤ 1 for all r ∈ R. A resource

allocation mechanism is a function that receives normalized demand vectors as input,
and outputs an allocation.
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3:6 D. C. Parkes et al.

Throughout the article we assume that resources (e.g., CPU, RAM) are divisible. Up
to (but excluding) Section 5, our model for preferences coincides with the domain of
Leontief preferences. Let the utility of an agent for its allocation vector Ai be

ui(Ai) = max{y ∈ R+ : ∀r ∈ R, Air ≥ y · dir}.
In words, the utility of an agent is the fraction of its dominant resource that it can
actually use, given its proportional demands and its allocation of the various resources.
Note that this definition makes the implicit assumption that agents’ tasks are divisible;
we relax this assumption in Section 5. Unless explicitly mentioned otherwise, we do
not rely on an interpersonal comparison of utilities. Put another way, with the excep-
tion of Section 4, an agent’s utility function simply induces ordinal preferences over
allocations, and its exact value is irrelevant.

An allocation A is called non-wasteful if for every agent i ∈ N there exists y ∈ R+
such that for all r ∈ R, Air = y · dir. Note that if A is a non-wasteful allocation then for
all i ∈ N,

ui(A′
i) > ui(Ai) ⇒ ∀r ∈ R s.t. dir > 0, A′

ir > Air. (2)

2.3. Properties of Mechanisms

DRF is intuitively fair as it equalizes dominant shares. To mathematically gauge its
desirability we consider a set of formal properties that are deemed to be the most
important by Ghodsi et al. [2011], and are also featured prominently in the work of
Li and Xue [2011]. Ghodsi et al. established that these properties are all satisfied
by DRF.

An allocation mechanism satisfies sharing incentives (SI) (also known in this context
as individual rationality) if ui(Ai) ≥ ui(〈1/n, · · · , 1/n〉) for all i ∈ N. In other words, an
agent must receive an allocation that it values at least as much as the allocation that
splits all resources equally between all agents. This property is appropriate when each
agent contributes an equal amount of resources to the system (we will generalize it).

An allocation mechanism is envy free (EF) if ui(Ai) ≥ ui(Aj) for all agents i, j ∈ N. In
words, each agent prefers its allocation to the allocation received by any other agent.

An allocation mechanism is Pareto optimal (PO) if it returns an allocation A such
that for all allocations A′, if there is an agent i ∈ N such that ui(A′

i) > ui(Ai) then
there is an agent j ∈ N such that uj(A′

j) < uj(Aj), that is, there is no other allocation
where all agents are at least as well off and at least one agent is strictly better off.

Finally, taking the game theoretic perspective, an agent’s demand vector is its pri-
vate information, and we would like to motivate agents to truthfully report their de-
mands regardless of the reported demands of other agents. We say that an allocation
mechanism is strategyproof (SP) if truth-telling is a dominant strategy. We define SP
in words to avoid introducing additional notation that will not be used later on. Given
a vector of demands for all agents d, let A be the resulting allocation, and let A′ be the
allocation returned by the mechanism when other agents report the same demands
d−i, and agent i ∈ N reports d′

i. Then under an SP mechanism ui(Ai) ≥ ui(A′
i), where

ui is the utility function induced by di.

3. EXTENSIONS: WEIGHTS, ZERO DEMANDS, AND GROUP STRATEGYPROOFNESS

In this section we depart from the framework of Ghodsi et al. [2011] in three ways.
First, we allow agents to be weighted, based on their contribution to the system.
Second, we explicitly model the case where agents may have zero demands and there-
fore DRF needs to allocate in multiple rounds (these first two issues were informally
considered by Ghodsi et al., as we discussed in Section 1). Third, we study stronger
game theoretic properties such as group strategyproofness. We show that DRF can
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Beyond Dominant Resource Fairness: Extensions, Limitations, and Indivisibilities 3:7

be modified to address these realistic extensions, although the analysis of its game
theoretic properties becomes more intricate.

For (contribution) weights, we assume that each agent i ∈ N has a publicly known
weight wir for resource r ∈ R, which reflects the agent’s endowment of that resource
(think of this as the amount of the resource contributed by the agent to the resource
pool or the equivalent monetary contribution made by the agent for the resource). We
assume without loss of generality that for all resources r ∈ R,

∑
i∈N wir = 1. PO and

SP are defined identically, but the weighted setting does require modifications to the
notions of SI and EF, which are redefined as follows. SI now means that an agent i ∈ N
receives as much value as it would get from the allocation that assigns it a wir-fraction
of each resource r ∈ R, that is, ui(Ai) ≥ ui(〈wi1, . . . , wim〉). EF requires that agent i
does not envy agent j when the allocation of j is scaled by wir/wjr on each resource r.
Formally,

ui(Ai) ≥ ui(〈(wi1/wj1) · Aj1, . . . , (wim/wjm) · Ajm〉).
An alternative definition for the weighted version of EF might simply require that in
the special case where agents have a uniform weight wi = wir for all r ∈ R, agent i
does not prefer the allocation of agent j scaled by wi/wj. However, note that the given
definition is stronger, and, as we shall demonstrate, the stronger version is feasible.
We also note that setting wir = 1/n for all agents i ∈ N and resources r ∈ R recovers
the unweighted case.

Our second contribution in this section is explicitly modeling the case where agents
may not demand every resource. At first glance the assumption of positive de-
mands, which implies that DRF can be simulated via a single allocation according to
Equation (1), seems very mild. After all, it may seem that the allocation when an agent
has zero demand for a resource would be very similar to the allocation when that agent
has almost zero demand for the same resource.

To see why this is not the case, let the normalized demand vector of agent 1 be 〈1, ε〉
(i.e., d11 = 1 and d12 = ε), and let agents 2 and 3 have the demand vector 〈ε, 1〉. DRF
allocates roughly 1/2 of resource 1 to agent 1, and roughly 1/2 of resource 2 to each
of agents 2 and 3. If the ε demands are replaced by zero, the first-round allocation
(using Equation (1)) would be similar. However, then a second round would take place;
participation is restricted to agents that demand only unsaturated resources. In this
second round agent 1 would receive the unallocated half of resource 1, hence agent 1
would ultimately be allocated all, instead of just half, of resource 1. Crucially, note that
agent 1 ends up receiving all of its dominant resource while agents 2 and 3 receive
1/2 of their dominant resources. Thus, agents might receive unequal shares of their
dominant resources at the end of such a multi-round DRF allocation in the presence of
zero demands, unlike the single-round DRF allocation in the case of nonzero demands.

In dealing with both weights and zero demands, we extend DRF as follows.
Let r∗

i be the weighted dominant resource of agent i ∈ N, defined by r∗
i ∈

arg minr∈R: dir>0(wir/dir). Informally, an agent’s demand is now scaled by its weight
on each resource. Next, we let ρi = wir∗

i
/dir∗

i
be the ratio of weight to demand on the

weighted dominant resource of agent i ∈ N; for now we assume, for ease of exposition,
that dir > 0 implies wir > 0 (we explain how to drop this assumption later). The ex-
tended DRF mechanism proceeds in rounds; let srt be the surplus fraction of resource
r ∈ R left unallocated at the beginning of round t (so sr1 = 1 for all r ∈ R). The frac-
tion of resource r allocated to agent i in round t is denoted by Airt. We remark that
agent weights and demands do not change during the execution of the mechanism,
but an agent’s dominant resource might change depending on the surpluses of various
resources available in each round.

ACM Transactions on Economics and Computation, Vol. 3, No. 1, Article 3, Publication date: March 2015.
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ALGORITHM 1: EXTENDEDDRF
Data: Demands d, weights w
Result: An allocation A
t ← 1;
∀r, sr1 ← 1;
S1 ← N;
while St 
= ∅ do

xt ← minr∈R

(
srt∑

i∈St
ρi·dir

)
;

∀i ∈ St, r ∈ R, Airt ← xt · ρi · dir;
∀i ∈ N \ St, r ∈ R, Airt ← 0;
∀r ∈ R, sr,t+1 ← srt − ∑

i∈St
Airt;

t ← t + 1;
St ← {i ∈ St−1 : ∀r ∈ R, dir > 0 ⇒ srt > 0}/* St demand unsaturated resources */

end
∀i ∈ N, r ∈ R, Air ← ∑t−1

k=1 Airk

We present our mechanism EXTENDEDDRF as Algorithm 1. It deviates from the
unweighted mechanism in a couple of ways. Instead of using x = 1/(maxr

∑
i dir)

as in Equation (1), it defines xt in round t using the ρi’s of the agents. Thus, each
agent i is now allocated an (xt · ρi · dir)-fraction of resource r in round t, and hence an
(xt · wir∗

i
)-fraction of its dominant resource, instead of being allocated an x-fraction of

its dominant resource and other resources in proportion, as in the unweighted case.
Our main result of this section is that EXTENDEDDRF satisfies the four desir-

able properties introduced earlier. In fact, the mechanism satisfies an even stronger
game-theoretic property known as group strategyproofness (GSP): whenever a coali-
tion of agents misreports demands, there is a member of the coalition that does not
strictly gain.

THEOREM 3.1. EXTENDEDDRF is PO, SI, EF, and GSP.

It is trivial that the mechanism is PO, because resources are allocated in the correct
proportions, that is, it is non-wasteful, and moreover it allocates resources as long as
players can derive value from them. Establishing SI is also a simple matter. Indeed,
for every r ∈ R,

∑
i∈N

ρi · dir ≤
∑

i∈N: dir>0

(
wir

dir
· dir

)
=

∑
i∈N: dir>0

wir ≤ 1,

and therefore x1 ≥ 1. Thus, each agent i receives x1 · ρi · dir∗
i

= x1 · wir∗
i

≥ wir∗
i

of
resource r∗

i already in round 1. We need to show that each agent i ∈ N values its
allocation as much as the allocation 〈wi1, . . . , wim〉, and this now follows from the fact
that the mechanism is non-wasteful and from Equation (2).

For EF, let i, j ∈ N; we argue that agent i does not envy j. Indeed, let ti and tj,
respectively, be the last rounds in which these agents were allocated resources. If tj >
ti, agent j does not demand some resource that i does and hence is not allocated a share
of that resource. We can therefore assume that tj ≤ ti. If djr∗

i
> 0 then

Ajr∗
i

=
⎛
⎝ tj∑

t=1

xt

⎞
⎠ · ρj · djr∗

i
≤

⎛
⎝ tj∑

t=1

xt

⎞
⎠ · wjr∗

i

djr∗
i

· djr∗
i

=
⎛
⎝ tj∑

t=1

xt

⎞
⎠ · wjr∗

i
,
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and otherwise Ajr∗
i

= 0. Moreover,

Air∗
i

=
( ti∑

t=1

xt

)
· ρi · dir∗

i
=

( ti∑
t=1

xt

)
· wir∗

i
≥

⎛
⎝ tj∑

t=1

xt

⎞
⎠ · wir∗

i
.

Scaling Ajr∗
i

by (wir∗
i
/wjr∗

i
), we get at most Air∗

i
; EF is then implied by Equation (2).

The challenge is to show that EXTENDEDDRF is GSP. To gain some insight, let
us concentrate first on a very special case: strictly positive demands (one round), no
weights (ρi = 1 for all i ∈ N), and SP rather than GSP. For this, assume that agent
i ∈ N reports the demand vector d′

i instead of di; this leads to the solution x′ to Equa-
tion (1) instead of x, which induces the allocation A′

ir = x′ · d′
ir. If x′ ≤ x then agent i

receives x′ · d′
iri

≤ x · 1 = x · diri of its dominant resource ri, so its utility cannot increase
by Equation (2). If x′ > x, consider a resource r that was saturated when reporting di.
It holds that

Air = 1 −
∑
j 
=i

Ajr = 1 −
∑
j 
=i

x · djr > 1 −
∑
j 
=i

x′ · djr = 1 −
∑
j 
=i

A′
jr ≥ A′

ir,

hence, once again, the utility of agent i cannot increase by Equation (2).
The next lemma extends the previous argument to the case of possibly zero demands

and weighted agents, and strengthens SP to get GSP, thereby completing the proof of
Theorem 3.1.

LEMMA 3.2. EXTENDEDDRF is GSP.

PROOF. Assume, without loss of generality, that the set of manipulating agents is
M ⊆ N and they report untruthful normalized demand vectors d′

M = 〈d′
i〉i∈M (which

induce ratios ρ′
i); let d′ be the collection of normalized demand vectors where d′

i = di
for all i ∈ N \ M.

Let t∗ be the first round when a demanded resource of some i ∈ M becomes satu-
rated, under truthful or untruthful demands (i.e., the minimum of the two rounds).
Let isSaturated be a Boolean variable that is true if and only if a demanded resource
of a manipulator becomes saturated at the end of round t∗ under the truthful reports,
and define isSaturated′ similarly for the untruthful reports. As before, denote by Airt
(resp., A′

irt) the share of resource r ∈ R allocated to agent i ∈ N in round t, and let
Air = ∑

t Airt (resp., A′
ir) be the total fraction of resource r ∈ R allocated to agent i ∈ N

under d (resp., d′). In addition, St (resp., S′
t) is the set of agents that demand only

unsaturated resources in round t under d (resp., d′).

CLAIM 3.3.

(1) For all t ≤ t∗ and r ∈ R such that dir = d′
ir = 0 for all i ∈ M, srt = s′

rt.
(2) For all t ≤ t∗, St = S′

t.
(3) For all t < t∗, xt = x′

t.

PROOF. We prove the claim by induction on t. The base of the induction is trivial,
as sr1 = s′

r1 = 1 for all r ∈ R, and S1 = S′
1 = N. We can also let x0 = x′

0 as a formality.
For the induction step, consider round t < t∗. We assume statements (1) and (2) are

true for all t′ ≤ t, and that statement (3) is true for all t′ < t. We prove statement (3)
for round t and then we prove statements (1) and (2) for round t + 1.
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3:10 D. C. Parkes et al.

In round t, no agent i ∈ M has saturated resources under d or d′, hence there are
resources r, r′ ∈ R such that for all i ∈ M, dir = d′

ir = 0 and dir′ = d′
ir′ = 0, which

become saturated at round t under the two demand vectors, that is,

xt = srt∑
i∈St

ρi · dir
,

and

x′
t = s′

r′t∑
i∈S′

t
ρ′

i · d′
ir′

.

By the induction assumption, srt = s′
rt, sr′t = s′

r′t, and St = S′
t. Moreover,

∑
i∈St

ρi · dir =∑
i∈S′

t
ρ′

i · d′
ir and

∑
i∈St

ρi · dir′ = ∑
i∈S′

t
ρ′

id
′
ir′ , where last two equalities hold because

every i ∈ M does not demand either r or r′ under d or d′ (and hence the summations
include zero terms for these agents). It follows that

xt = srt∑
i∈St

ρi · dir
= s′

rt∑
i∈S′

t
ρ′

i · d′
ir

≥ x′
t,

and similarly x′
t ≥ xt. We conclude that xt = x′

t.
To establish statement (1) for round t + 1, let r ∈ R such that dir = d′

ir = 0 for all
i ∈ M. Using the induction assumption we conclude that

sr,t+1 = srt − xt
∑
i∈St

ρidir = s′
rt − x′

t

∑
i∈S′

t

ρ′
id

′
ir = s′

r,t+1.

Finally, the assertion that St+1 = S′
t+1 follows from the fact that all resources not

demanded by members of the coalition have the same surplus under both d and d′, and
resources that are demanded by at least one member of the coalition are not saturated
under d nor under d′.

Having established Claim 3.3, we proceed with the lemma’s proof by distinguishing
between four cases.

Case 1: x′
t∗ ≥ xt∗ and isSaturated is true. Let r be a resource that is saturated under

d in round t∗, and is demanded by some manipulator, that is, there is i ∈ M such that
dir > 0. Note that such a resource exists by the definition of the variable isSaturated.
Using Claim 3.3, we have that for every t < t∗ and every i ∈ N \ M,

Airt = xt · ρi · dir = x′
t · ρ′

i · d′
ir = A′

irt,
and similarly Airt∗ ≤ A′

irt∗ by the assumption that xt∗ ≤ x′
t∗ . It follows that for all

i ∈ N \ M,

Air =
t∗∑

t=1

Airt ≤
t∗∑

t=1

A′
irt ≤ A′

ir.

Consider the set of agents M′ = {i ∈ M|dir > 0}. From the definition of r, M′ is
nonempty. In addition, for all i ∈ M\M′, Air = 0 ≤ A′

ir. We conclude that for any
i ∈ N \ M′, Air ≤ A′

ir. It follows that∑
i∈M′

A′
ir ≤ 1 −

∑
i∈N\M′

A′
ir ≤ 1 −

∑
i∈N\M′

Air =
∑
i∈M′

Air,

where the equality holds because r is saturated under d. In other words, the overall
allocation of resource r to the set of manipulating agents in M′ does not grow larger as
a result of manipulation, so there must be i ∈ M′ such that A′

ir ≤ Air. Since dir > 0,
this implies by Equation (2) that the utility to agent i does not increase, as required.
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Beyond Dominant Resource Fairness: Extensions, Limitations, and Indivisibilities 3:11

Case 2: x′
t∗ ≤ xt∗ and isSaturated’ is true. Consider an agent i ∈ M that demands a

resource that becomes saturated in round t∗ under d′. Let r∗
i be a weighted dominant

resource of agent i. We have that ρi = wir∗
i
/dir∗

i
and ρ′

i ≤ wir∗
i
/d′

ir∗
i
. It follows that

ρi · dir∗
i

= wir∗
i

and ρ′
i · d′

ir∗
i

≤ wir∗
i
. From Claim 3.3, we know that for all t < t∗, xt = x′

t,

and our assumption is that x′
t∗ ≤ xt∗ . Therefore, for every t ≤ t∗,

A′
ir∗

i t = x′
t · ρ′

i · d′
ir∗

i
≤ x′

t · wir∗
i

≤ xt · wir∗
i

= xt · ρi · dir∗
i

= Air∗
i t.

Next we notice that under d′, agent i is not allocated more resources after round t∗.
We conclude that

A′
ir∗

i
=

t∗∑
t=1

A′
ir∗

i t ≤
t∗∑

t=1

Air∗
i t ≤ Air∗

i
.

Thus, there exists an agent i ∈ M who does not receive an increased share of weighted
dominant resource under d′, and hence its utility under d′ does not increase.

Case 3: x′
t∗ > xt∗ and isSaturated is false (and hence isSaturated′ is true). We argue

that this case is impossible. Let r be a resource that is saturated under d in round t∗.
Since isSaturated is false, it must hold that for all i ∈ M, dir = 0. Thus for all t ≤ t∗
(using St = S′

t by Claim 3.3),
∑

i∈S′
t
ρ′

i · d′
ir ≥ ∑

i∈St
ρi · dir. Claim 3.3 further states that

xt = x′
t for all t < t∗, and therefore

srt∗ = 1 −
t∗−1∑
t=1

⎛
⎝xt ·

∑
i∈St

ρi · dir

⎞
⎠ ≥ 1 −

t∗−1∑
t=1

⎛
⎝x′

t ·
∑
i∈S′

t

ρ′
i · d′

ir

⎞
⎠ = s′

rt∗ .

We conclude that

xt∗ = srt∗∑
i∈St∗ ρi · dir

≥ s′
rt∗∑

i∈S′
t∗

ρ′
i · d′

ir
≥ x′

t∗ ,

which contradicts our assumption that x′
t∗ > xt∗ .

Case 4: x′
t∗ < xt∗ and isSaturated’ is false (and hence isSaturated is true). This case

is symmetric to case 3, by replacing the roles of d and d′.
It may not be immediately apparent that the four cases described here are exhaus-

tive, but note that it is never the case that both isSaturated and isSaturated′ are false.
Therefore, the three possible combinations of values for isSaturated and isSaturated′
are covered by cases 1 and 3 when x′

t∗ > xt∗ ; by cases 2 and 4 when x′
t∗ < xt∗ ; and by

cases 1 and 2 when x′
t∗ = xt∗ . This completes the proof of Lemma 3.2.

While GSP is a strong game-theoretic axiom, an even stronger version has been
studied in the literature. Under the stronger notion, it cannot be the case that the
value of all manipulators is at least as high, and the value of at least one manipulator
is strictly higher under the false reported demands. Under the assumption of strictly
positive demands, it is easy to verify that EXTENDEDDRF also satisfies the stronger
notion (the allocation is made in a single round).

However, it turns out that when there are multiple rounds, one agent can help an-
other by causing a third agent to drop out early without losing value itself. To see
this, consider the following setting with 5 agents with wir = 1/5 for each i ∈ N and
r ∈ R, and,

d1 = 〈0, 1, 0〉, d2 = 〈1, 0, 0〉, d3 = 〈1, 0, 1/4〉, d4 = 〈0, 1, 1〉, d5 = 〈0, 1, 1〉.
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3:12 D. C. Parkes et al.

It can be seen that x1 = 1/3. The surplus at the beginning of the second round is
s12 = 1/3, s22 = 0, and s32 = 1/4. Resource 2 is saturated and S2 = {2, 3}. In the
second round, x2 = 1/6. Therefore, the utilities of agents 1 and 2 in this setting are
u1 = 1/3 and u2 = 1/3 + 1/6 = 1/2.

Now, assume that agents 1 and 2 collude, and report demand vectors d′
1 = {0, 1, 3/4}

and d′
2 = d2. In this case x′

1 = 1/3 as before, but the surplus at the beginning of the
second round is s′

12 = 1/3, s′
22 = 0, and s′

32 = 0. Hence, both resources 2 and 3 are
saturated and S2 = {2}. In round 2 agent 2 receives the remaining surplus of resource
1. Hence, under the false demands, u′

1 = 1/3 and u′
2 = 1/3 + 1/3 = 2/3; agent 1 is not

worse off and agent 2 is better off.
We conclude with two remarks. First, note that in each round, the mechanism ex-

hausts a resource that at least one agent demanded. This gives an immediate upper
bound of min(|N| = n, |R| = m) on the number of rounds. Since each round takes
O(n · m) time to execute, it follows that the running time of the mechanism is polyno-
mial in the number of agents and the number of resources.

Second, recall that we have assumed for ease of exposition that dir > 0 implies
wir > 0. We now briefly explain how to drop this assumption. Observe that if there
exist i ∈ N and r ∈ R such that dir > 0 but wir = 0, agent i is not entitled to anything
according to EF or SI, that is, any allocation would satisfy these two properties with
respect to i. Hence, we can initially remove such agents, and proceed as before with
the remaining agents. We then add a second stage where the remaining resources are
allocated to the agents that were initially removed, for instance, via unweighted DRF.
Using Theorem 3.1, it is easy to verify that this two-stage mechanism is PO, EF, SI,
and GSP.

4. LIMITATIONS: SP MECHANISMS AND WELFARE MAXIMIZATION

In Section 3 we have established that the DRF paradigm is robust to perturbations
of the model, maintaining its many highly desirable properties. In this section we
examine some of the limitations of DRF, and ask whether these limitations can be
circumvented.

Throughout this section we assume that an agent’s utility is exactly ui(Ai) =
max{y ∈ R+ : ∀r ∈ R, Air ≥ y · dir}. In particular, if the mechanism is non-wasteful,
an agent’s utility is the allocated fraction of its dominant resource. In addition, we as-
sume an interpersonal comparison of utilities; that is, the utility function is not merely
a formalism for comparing allocations ordinally. Therefore, given an allocation A, we
define its (utilitarian) social welfare as

∑
i∈N ui(Ai). The results of this section, which

are negative in nature, hold under this assumption specifically, but similar results
hold under perturbations of the utility functions such as linear affine sums of utility.
Because the negative results hold even when players are unweighted in terms of their
resource contributions, we adopt the model and definitions of Section 2.

Our basic observation is that DRF may provide very low social welfare compared to
a welfare-maximizing allocation. For example, consider a setting with m resources. For
each resource r there is an agent ir such that dir,r = 1, and dir,r′ = 0 for all r′ ∈ R \ {r}.
Moreover, there is a large number of agents with normalized demands dir = 1 for all
r ∈ R. The optimal allocation would give all of resource r to agent ir, for a social welfare
of m. In contrast, under DRF each agent would receive a (1/(n − m + 1))-fraction of its
dominant resource. As n grows larger, the social welfare of n/(n−m+1) approaches 1.
The ratio between these two values is arbitrarily close to m. More formally, letting
the approximation ratio of a mechanism be the worst-case ratio between the optimal
solution and the mechanism’s solution, we say that for every δ > 0, DRF cannot have
an approximation ratio better than m − δ for the social welfare.
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In some sense it is not surprising that DRF provides poor guarantees with respect to
social welfare. After all, the DRF paradigm focuses on egalitarian welfare by equalizing
the dominant shares across the agents, rather than aiming for utilitarian welfare. So,
can other mechanisms do better?

Let us first examine mechanisms that satisfy SI. It is immediately apparent that the
previous example provides a similar lower bound. Indeed, any SI mechanism would
have to allocate at least 1/n of each resource to each of the n − m agents with an all-
ones normalized demand vector. Intuitively, an SI mechanism must allocate almost εm
of the various resources in order to obtain ε social welfare. That is, for any δ > 0, any SI
mechanism cannot have an approximation ratio better than m−δ for the social welfare.
A similar (though slightly more elaborate) argument works for EF, by replacing the
demand vectors of the m agents ir with dir,r = 1 (as before) and dir,r′ = ε for all
r′ ∈ R \ {r} and an arbitrarily small ε > 0.

These observations are disappointing, but not entirely unexpected. SI and EF are
properties that place significant constraints on allocations. SP is an altogether differ-
ent matter. A priori the constraints imposed by SP seem less obstructive to welfare
maximization than SI or EF, and indeed in some settings SP mechanisms (even with-
out the use of payments) provide optimal, or nearly optimal, social welfare [Procaccia
and Tennenholtz 2009]. Nevertheless, the main result of this section is a similar lower
bound for SP mechanisms.

THEOREM 4.1. For any δ > 0 there exists a sufficiently large number of agents n
such that no SP mechanism can provide an approximation ratio smaller than m − δ for
the social welfare.

PROOF. We first introduce some notation. Given an allocation A, define the index
set of A as IA = {i ∈ N | minr∈R Air ≤ 1/

√
n}. In words, IA denotes the set of agents

who have at most a (1/
√

n)-fraction of some resource allocated to them. We argue that
for any allocation A,

|IA| ≥ n − √
n. (3)

Indeed, for any i ∈ N\IA and r ∈ R, Air > 1/
√

n. Hence, there cannot be more than
√

n
such agents, otherwise their total allocation for every resource would be more than 1.

Let 1 = (1, 1, . . . , 1) be a the all-ones demand vector. Let εi be the demand vector
that has 1 in ith position and ε everywhere else. We are interested in settings where
the agents in a subset X ⊆ N, |X| = m, have the demand vectors ε1, ε2, . . . , εm and the
remaining agents have demand vectors 1. We show that if the resulting allocation A is
such that for all i ∈ X, i ∈ IA, then the theorem follows.

CLAIM 4.2. Suppose that for any sufficiently large n ∈ N, for any SP mechanism
for n agents and m resources, and for any ε > 0, there exists X ⊆ N such that |X| = m
and when the agents in X report the demand vectors ε1, . . . , εm, and the agents in N \ X
report the demand vector 1, the mechanism returns an allocation A such that X ⊆ IA.
Then for any δ > 0, no SP mechanism for m resources can provide an approximation
ratio smaller than m − δ.

PROOF. Given n, an SP mechanism, and ε, let X ⊆ N as in the claim’s statement.
For all i ∈ X, ui(Ai) ≤ 1/(

√
n · ε). Clearly it also holds that∑

i∈N\X

ui(Ai) ≤ 1.

Hence, the social welfare of an SP mechanism on this instance can be at most m/(
√

n ·
ε) + 1.
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3:14 D. C. Parkes et al.

In contrast, maximum social welfare is obtained by dividing the resources among the
m agents in X, with everyone getting equal shares of their dominant resources. Under
this allocation, every agent i ∈ X receives a (1/(1+ (m−1) · ε))-fraction of its dominant
resource, which is its utility. Hence, the optimal social welfare is m/(1 + (m − 1) · ε).

It follows that the approximation ratio of the SP mechanism cannot be smaller than

m
1 + (m − 1) · ε

· 1
m√
n·ε + 1

. (4)

To prove the claim it remains to show that for any δ > 0, we can choose n and ε such
that the expression in Equation (4) is greater than m − δ. Indeed, choose

ε <
δ

3 · m · (m − 1)

and

n > max

⎛
⎝(

3 · m2 · (m − 1)

δ

)2

,

(
3 · m2

ε · δ

)2
⎞
⎠ .

Then (m2 · (m − 1))/
√

n < δ/3, m · (m − 1) · ε < δ/3, and m2/(
√

n · ε) < δ/3. It follows
that

δ >
m2 · (m − 1)√

n
+ m · (m − 1) · ε + m2

√
n · ε

,

and in particular

1 + δ

m
> (1 + (m − 1) · ε) ·

(
m√
n · ε

+ 1
)

.

Therefore, using the fact that 1/(1 − δ
m ) > 1 + δ/m,

m
m − δ

> (1 + (m − 1) · ε) ·
(

m√
n · ε

+ 1
)

,

and finally

m − δ <
m

1 + (m − 1) · ε
· 1

m√
n·ε + 1

,

as required.

Our goal is therefore to prove the hypothesis made in the statement of Claim 4.2. In
the remainder of the proof ε is arbitrary and fixed, and we vary the number of agents
n. Since we are dealing with an arbitrarily large n, we can assume that m divides n for
ease of exposition. We start from a setting where the demand vector is di = 1 for all
i ∈ N. We partition the set of n agents into m buckets, B1, B2, . . . , Bm, each with n/m
agents. For consistency we impose the following restriction: an agent in Bi can only
change its demand from 1 to εi. In future references, we omit the unambiguous initial
and final demands when we say that an agent changes its demand. We show not only
that a set X ⊆ N of m agents exists as in the statement of Claim 4.2, but one such
set exists that consists of one agent from each bucket, such that after these m agents
change their demands, they all belong to the index set of the resulting allocation.

Call an m-tuple (i1, . . . , im) diverse if ik ∈ Bk for every k ∈ {1, . . . , m}, that is, if
it consists of one agent from each bucket. Let Tn,m denote the set of all diverse m-
tuples. Let Ln,m ⊆ Tn,m be the set of diverse m-tuples such that when they all change
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their demands, at least one of them is not in the index set. We want to show that
|Tn,m \ Ln,m| > 0. We prove the following claim.

CLAIM 4.3. For any n, m ∈ N, |Tn,m| = (n/m)m and |Ln,m| ≤ m · (n/m)m−1 · √
n.

PROOF. Since Tn,m is the set of all diverse m-tuples where one agent is selected
from each of m buckets with each bucket containing n/m agents, it is easy to see that
|Tn,m| = (n/m)m. Recall that Ln,m denotes the set of all diverse m-tuples such that
when they change their demands, at least one of them is not in the index set. For any
k ∈ {1, . . . , m}, define Lk

n,m ⊆ Ln,m to be the set of m-tuples in Ln,m such that when
they change their demands, the agent from bucket Bk is not in the index set. Clearly
|Ln,m| ≤ ∑m

k=1 |Lk
n,m|.

Fix any k ∈ {1, . . . , m}. We upper-bound |Lk
n,m| as follows. Take any tuple t =

(i1, . . . , im) ∈ Lk
n,m. Let t−k = (i1, . . . , ik−1, ik+1, . . . , im). If all agents in t change their

demands, agent ik is not in the index set and gets more than a (1/
√

n)-fraction of every
resource. Consider the case when only agents in t−k change their demands. If agent ik
is in the index set, then it receives at most a (1/

√
n)-fraction of some resource. Thus,

its utility under the demand vector 1 is at most 1/
√

n and it has strict incentive to
misreport its demand vector (to εk) and be outside the index set. This is impossible
since the mechanism is SP. Thus, ik must not be in the index set when the agents in
t−k change their demands.

Now, for any fixed t−k, the number of possible agents ik that are not in the index set
when the agents in t−k change their demands is at most

√
n (from Equation (3)). Thus,

for each possible t−k, there are at most
√

n tuples in Lk
n,m. Since the number of ways of

choosing t−k is at most (n/m)m−1, we have that |Lk
n,m| ≤ (n/m)m−1 · √

n. Hence,

|Ln,m| ≤
m∑

k=1

|Lk
n,m| ≤ m ·

( n
m

)m−1 · √
n,

as required.

Using Claim 4.3, we see that

|Tn,m \ Ln,m| ≥
( n

m

)m − m ·
( n

m

)m−1 · √
n =

( n
m

)m−1 · √
n ·

(√
n

m
− m

)
.

Thus, for n > m4, we have that |Tn,m \ Ln,m| > 0, as required.

Despite their negative flavor, the results of this section can be seen as vindicating
DRF as far as social welfare maximization is concerned. Indeed, asking for just one
of the three properties (SI, EF, or SP) seems like a minimal requirement, but already
leads to an approximation ratio that is as bad as the one provided by DRF itself (or
EXTENDEDDRF, for that matter).

5. INDIVISIBLE TASKS

So far, our theoretical analysis treated agents’ tasks as divisible: if to run a task an
agent needs 2 CPUs and 2 GB RAM, but it is allocated 1 CPU and 1 GB RAM, then
it can run half a task. This assumption, which coincides with Leontief preferences, is
the driving force behind the results of Section 3 as well as earlier and related results
[Ghodsi et al. 2011; Li and Xue 2011; Friedman et al. 2011].

However, in practice agents’ tasks would usually be indivisible. Indeed, this is the
case in the implementation and simulations carried out by Ghodsi et al. [2011]. In
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3:16 D. C. Parkes et al.

other words, a more realistic domain model is a setting with divisible goods but in-
divisible tasks: an agent can only derive utility from tasks that are allocated enough
resources to run.1 Hence, informally, an agent’s utility function is a step function that
increases with every additional instance of its task that it can run. In this section we
will not require interpersonal comparison of utilities; that is, as in Section 3, a util-
ity function is used only to induce ordinal preferences over allocations. However, for
ease of exposition we do assume here that agents are unweighted (or, equivalently, all
agents have equal weights).

More formally, each agent i ∈ N now reports a demand bundle bi, where bir denotes
the fraction of resource r ∈ R that agent i requires to complete one instance of its task.
Given an allocation A, the utility function of agent i ∈ N is given by

ui(Ai) = max{t ∈ N ∪ {0} : ∀r ∈ R, Air ≥ t · bir},
that is, an agent’s utility increases linearly with the number of complete instantiations
of its task that it can run.

Our positive results focus, as before, on non-wasteful mechanisms that do not al-
locate resources to agents that cannot use them (our negative results do not make
this assumption). For a non-wasteful mechanism we can simply denote by xA

i = xi the
number of bundles allocated to agent i ∈ N under the allocation A, in which case the
utility of agent i is ui(A) = xA

i . As a last piece of new notation, we define inequalities
between two vectors as follows. We write v ≥ w if the inequality is satisfied pointwise.
Furthermore, v > w if v ≥ w and there is at least one coordinate k such that vk > wk.

5.1. Impossibility Results

Observe that the definitions of PO, SI, EF, and SP are identical to the ones given in
Section 2. Interestingly, DRF still satisfies SI, EF, and SP under the new “truncated”
utilities. However, DRF is no longer PO. For example, say that there are two agents
and one resource, and b11 = 1/10, b21 = 2/5. DRF would allocate 1/2 of the resource
to each agent, but allocating 3/5 of the resource to agent 1 and 2/5 of the resource to
agent 2 would be better for agent 1 and equally good for agent 2. An implementation
of DRF that allocates tasks sequentially to agents with currently minimum dominant
share [Ghodsi et al. 2011] also suffers from several theoretical flaws when analyzed
carefully, for instance, it does not satisfy SI.2 Note that it is trivial to satisfy SI, EF, and
SP without PO, by giving each agent exactly its proportional share of each resource.

The next few results imply that we cannot hope to tweak DRF to achieve all four
desirable properties (PO, SI, EF, and SP) under indivisibilities.

THEOREM 5.1. Under indivisibilities there is no mechanism that satisfies PO, SI,
and SP.

PROOF. Consider a setting with two agents and a single resource. Both agents have
bundles b11 = b21 = 1/2 + ε, for a small ε > 0. Assume for contradiction that there
exists a mechanism that satisfies PO, SI, and SP. By PO, the mechanism allocates one
bundle to exactly one of the two agents, without loss of generality agent 1. Now suppose
that agent 2 reports b′

21 = 1/2; then any SI allocation must allocate at least 1/2 of the
resource to agent 2, hence the only allocation that is both PO and SI allocates all of
the resource to agent 2. This is a contradiction to SP.

1The combination of divisible goods and indivisible tasks may lead to an additional, practical issue, in regard
to resource fragmentation, which we discuss in Section 6.
2As pointed out by Ghodsi et al. [2011], this mechanism does satisfy a coarse version of an approximate EF
notion that is discussed later.
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An even more fundamental issue is that PO and EF are trivially incompatible un-
der indivisibilities. For example, when two agents have a task that requires all avail-
able resources, the only (two) Pareto optimal allocations give everything to one of the
agents, but these allocations are not EF.

Fortunately there is precedent to studying relaxed notions of EF in related settings.
A recent example is given by the work of Budish [2011] on the combinatorial assign-
ment problem. Budish deals with a related resource allocation setting that models al-
locations of seats in university courses. Each resource (seats in course) has an integer
availability, and agents have preferences over bundles of resources. Budish proposes an
approximate version of the notion of competitive equilibrium from equal incomes [Var-
ian 1974].3 An interesting notion of approximate fairness satisfied by his solution is
envy bounded by a single good: there exists some good in the allocation of agent j ∈ N
such that i ∈ N does not envy j when that good is removed.4 This notion has a natural
equivalent in our setting, which we will formalize.

Definition 5.2. A mechanism is envy-free up to one bundle (EF1) if for every vector
of reported bundles b it outputs an allocation A such that for all i, j ∈ N, ui(Ai) ≥
ui(Aj − bi).

Subtraction between vectors is pointwise. In words, a mechanism is EF1 if each
agent i ∈ N does not envy agent j ∈ N if one instance of the task of agent i is removed
from the allocation of j. For non-wasteful mechanisms, this is equivalent to xjbj �
(xi + 2)bi for all i, j ∈ N. Unlike the strict notion of EF, we shall see that the relaxed
notion is compatible with PO. However, the following straightforward result implies
that the latter notion is incompatible with PO and SP.

THEOREM 5.3. Under indivisibilities there is no mechanism that satisfies PO, EF1,
and SP.

PROOF. As before, consider a setting with two agents and one resource. Both agents
have bundles b11 = b21 = 1/3. The only feasible allocations that are EF1 and PO
allocate 2/3 of the resource to one agent and 1/3 to the other. Assume without loss
of generality that agent 1 receives two bundles. If agent 2 reports b′

21 = 1/6 then the
only PO and EF1 allocation gives 2/3 of the resource to agent 2 and 1/3 to agent 1,
violating SP.

We remark that Theorems 5.1 and 5.3 can easily be extended to multiple resources
by having every agent demand all the resources equally. To summarize, the combina-
tion SP+SI+EF1 is trivial, but if we add PO and insist on SP we immediately run into
impossibilities with either SI or EF1. Unfortunately, SP seems to preclude reasonable
mechanisms when tasks are indivisible. We therefore focus on the other three proper-
ties in the context of task indivisibilities, namely PO, SI, and EF1, which, as we shall
see, induce a rich axiomatic framework and lead to the design of practical mechanisms.

5.2. Sequential Minmax: Achieving PO, SI, and EF1 Simultaneously

To design a mechanism that is PO, SI, and EF1 under indivisible tasks, we first
introduce a few notations. Given a non-wasteful allocation A, let MaxDom(A) =
maxi∈N maxr∈R Air be the maximum dominant share allocated to an agent. We also

3Specifically, he allows the market to clear with an error, and also slightly perturbs the initially equal
budgets of agents.
4Related notions appear in earlier work, for example the approximate notion of equal treatment of equals of
Moulin and Stong [2002] and an approximate notion of envy-freeness studied by Lipton et al. [2004].
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3:18 D. C. Parkes et al.

let A ↑ i be the allocation obtained by starting from the allocation A and giving agent
i ∈ N another bundle bi.

We are now ready to present our mechanism, SEQUENTIALMINMAX, which is for-
mally given as Algorithm 2. The mechanism sequentially allocates one bundle at each
step to an agent that minimizes the maximum dominant share after allocation.

ALGORITHM 2: SEQUENTIALMINMAX

Data: Bundles b
Result: An allocation A
k ← 1; A0 ← 0; T1 ← N;
while Tk 
= ∅ do

Mk ← {i ∈ Tk | ∀j ∈ Tk, MaxDom(Ak−1 ↑ i) ≤ MaxDom(Ak−1 ↑ j)};
i ← any agent in Mk;
Ak ← Ak−1 ↑ i;
Tk+1 ← {i ∈ Tk | Ak ↑ i is feasible};
k ← k + 1;

end
return Ak−1;

Our main result of this section is the following theorem.

THEOREM 5.4. SEQUENTIALMINMAX satisfies PO, SI, and EF1.

Note that the more intuitive alternative of maximizing the minimum dominant
share does not achieve the same properties, nor do variations that consider dominant
shares before rather than after allocation.

To establish PO we need to prove that we are allocating a bundle to some agent
as long as there exists an agent to which we can allocate; this follows trivially from
the mechanism itself since Tk 
= ∅ implies Mk 
= ∅. We establish SI and EF1 in the
following two lemmas.

LEMMA 5.5. SEQUENTIALMINMAX satisfies SI.

PROOF. Let ASI be the minimal SI allocation that is obtained by giving each agent
1/n of each resource, and then taking back resources that agents cannot use. We show
that ASI = Ak for some k during the execution of SEQUENTIALMINMAX. This is suf-
ficient because subsequent allocations can only increase the shares of resources that
agents obtain.

We prove, by induction, that Ak ≤ ASI (where allocations are treated as vectors
and the inequality is pointwise) until it becomes equal to ASI for the first time. Note
that initially A0 ≤ ASI. We will show that until Ak = ASI, the mechanism would only
allocate a bundle to an agent that is also allocated in ASI, and therefore after finitely
many iterations Ak = ASI. Formally, we want to prove that if Ak ≤ ASI and Ak 
= ASI

then Ak+1 ≤ ASI.
Indeed, assume that Ak ≤ ASI and Ak 
= ASI. Let i ∈ N be the agent that is given a

bundle in iteration k+1 of the mechanism. Since Ak 
= ASI, there exists an agent j who
has a strictly smaller number of bundles in Ak than in ASI. Note that ASI is a feasible
allocation, hence the mechanism does have enough resources to allocate a bundle to j
in iteration k + 1, that is, j ∈ Tk+1. It follows that

MaxDom(Ak+1) = MaxDom(Ak ↑ i) ≤ MaxDom(Ak ↑ j) ≤ MaxDom(ASI) ≤ 1
n

.
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Therefore, Ak+1 ≤ ASI.

The next lemma shows that the mechanism maintains EF1 at every step.

LEMMA 5.6. SEQUENTIALMINMAX satisfies EF1.

PROOF. For consistency, we say that the mechanism has an iteration 0 at the end of
which the allocation is A0 = 0. Note that the allocation 0 is EF1. Suppose for contra-
diction that the allocation returned by the mechanism at the end is not EF1.

Iteration k1. Let k1 be the first iteration such that Ak1 is not EF1. Thus, k1 > 0. Let
i ∈ N be the agent that is allocated a bundle in iteration k1. There exists an agent
j ∈ N who envies i up to one bundle under Ak1 , otherwise the allocation after iteration
k1−1 would not be EF1 as well, contradicting the fact that k1 is the first such iteration.
Since j envies i, it must hold that i has positive demand for every resource for which j
has positive demand. That is,

∀r ∈ R, bjr > 0 ⇒ bir > 0. (5)

Let xi and xj denote the number of bundles of i and j, respectively, in Ak1 . It holds
that xi · bi ≥ (xj + 2) · bj, and therefore

∀r ∈ R, xi · bir ≥ (xj + 2) · bjr. (6)

For every r ∈ R such that bir > 0, Equation (6) implies that xi ≥ (xj + 2) · (bjr/bir).
Let r̂ ∈ arg maxr:bir>0(bjr/bir). Then, we have

xi ≥ (xj + 2) · bjr̂

bir̂
. (7)

Iteration k2. Consider the iteration k2 in which j was allocated its xj-th bundle. Since
i was allocated a bundle in iteration k1, we have k2 
= k1. Hence, 0 ≤ k2 < k1. Since
allocations are monotonic, j has xj bundles at the end of iteration k for every k2 ≤
k ≤ k1. If k2 = 0, then j clearly does not envy i at the end of iteration k2. If k2 > 0
and j envies i at the end of iteration k2, then j envied i up to one bundle at the end of
iteration k2−1 < k1 since j had xj−1 bundles after iteration k2−1. But this contradicts
our assumption that k1 is the first iteration such that Ak1 is not EF1. Hence, it must
be the case that j does not envy i at the end of iteration k2. However, j envies i (even
up to one bundle) at the end of iteration k1.

Iteration k3. Take the smallest k3 such that k2 < k3 ≤ k1 and j envies i at the end of
iteration k3. Clearly, the mechanism must have allocated one bundle to i in iteration k3.
Let x′

i be the number of bundles allocated to i at the end of iteration k3 (hence x′
i ≥ 1).

Note that j must have exactly xj bundles at the end of iteration k3 since k2 < k3 ≤ k1.
Further, since j does not envy i at the end of iteration k3 − 1, there exists r1 ∈ R
such that (x′

i − 1) · bir1 < (xj + 1) · bjr1 . First, this implies that bjr1 > 0. Hence, we
also have bir1 > 0 from Equation (5). Thus, we have x′

i − 1 < (xj + 1) · bjr1/bir1 . Since
r̂ ∈ arg maxr:bir>0(bjr/bir), we have

x′
i − 1 < (xj + 1) · bjr̂

bir̂
. (8)

Subtracting Equation (8) from Equation (7), we obtain xi − x′
i + 1 ≥ bjr̂/bir̂. Thus,

xi−x′
i+1 ≥ bjr/bir for every r ∈ R such that bir > 0. This implies that (xi−x′

i+1)·bir ≥ bjr
for every r ∈ R such that bir > 0. Moreover, if bir = 0 then we have bjr = 0 from
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Equation (5), and (xi −x′
i +1) ·bir = bjr = 0. Thus, for every r ∈ R, (xi −x′

i +1) ·bir ≥ bjr,
that is, (xi − x′

i + 1) · bi ≥ bj. Note that at least (xi − x′
i + 1) · bi resources were available

at the beginning of iteration k3 since the mechanism allocated (xi − x′
i + 1) bundles

to i from iteration k3 until k1. In particular, the mechanism had enough resources to
allocate a bundle to j at the beginning of iteration k3, that is, j ∈ Tk3 .

Next, since j envies i at the end of iteration k3, we have

∀r ∈ R, x′
i · bir ≥ (xj + 1) · bjr. (9)

Let r∗
i and r∗

j be dominant resources of agents i and j respectively. Then Equation (9)
implies that

x′
i · bir∗

i
≥ x′

i · bir∗
j

≥ (xj + 1) · bjr∗
j
. (10)

Since the mechanism allocated a bundle to i in iteration k3, it must be the case that
i ∈ Mk3 . Using our conclusion that j ∈ Tk3 , we have x′

i · bir∗
i

≤ (xj + 1) · bjr∗
j
. Therefore,

Equation (10) holds with equalities. It follows that for every r ∈ R such that bir > 0,

bjr

bir
≤ x′

i
xj + 1

=
bjr∗

j

bir∗
j

, (11)

where the first transition is due to Equation (9). Note that bjr∗
j

> 0, hence Equation (5)
implies bir∗

j
> 0. From Equation (11), we can see that x′

i · bir∗
j

< (xj + 2) · bjr∗
j
. Thus, j

does not envy i up to one bundle at the end of iteration k3. This implies that k3 < k1.
Since i was allocated a bundle in iteration k1, we also have x′

i < xi.

Iteration k4. Consider the iteration k4, k3 < k4 ≤ k1, in which i is allocated its
(x′

i + 1)-th bundle. From Equation (6), we know that xi · bir∗
j

≥ (xj + 2) · bjr∗
j
. Subtracting

x′
i · bir∗

j
= (xj + 1) · bjr∗

j
(equality holds due to Equation (11)), we get (xi − x′

i) · bir∗
j

≥ bjr∗
j
.

Again using Equation (11), we conclude that for every r ∈ R such that bir > 0,

xi − x′
i ≥

bjr∗
j

bir∗
j

≥ bjr

bir
.

Thus, (xi−x′
i)·bir ≥ bjr if bir > 0. Also, if bir = 0 then Equation (5) implies bjr = 0 and

we have (xi − x′
i) · bir = bjr = 0. Hence, (xi − x′

i) · bi ≥ bj. Note that at least (xi − x′
i) · bi

resources were available at the beginning of iteration k4 since xi − x′
i bundles were

allocated to i from iteration k4 till k1. Hence, there were enough resources to allocate a
bundle to j at the beginning of iteration k4, that is, j ∈ Tk4 . Equation (10) implies that
(xj + 1) · bjr∗

j
< (x′

i + 1) · bir∗
i

≤ MaxDom(Ak4). Note that this is still not a contradiction

because allocating to j may not decrease MaxDom(Ak4).

Iteration k5. Consider the first iteration k5, k5 ≤ k4, such that MaxDom(Ak5) > (xj +
1) · bjr∗

j
. Hence, we have

MaxDom(Ak5−1) ≤ (xj + 1) · bjr∗
j
. (12)

Let l be the agent that is allocated a bundle in iteration k5. Thus, Ak5 = Ak5−1 ↑
l. As j has at most xj bundles at the end of iteration k5 − 1, Equation (12) implies
MaxDom(Ak5−1 ↑ j) ≤ (xj+1)·bjr∗

j
< MaxDom(Ak5) = MaxDom(Ak5−1 ↑ l). Also, j ∈ Tk4

and k5 ≤ k4, hence j ∈ Tk5 . It follows that l /∈ Mk5 , which is a contradiction since the
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mechanism allocated a bundle to l in iteration k5. Thus, our original assumption that
there exists an iteration where the allocation is not EF1 is false.

Crucially, as a special case of Theorem 5.4 we find that an allocation that is PO,
SI, and EF1 always exists for indivisible tasks; this is not a priori clear, and in fact,
we are not aware of a more direct proof of existence. Once we know such an alloca-
tion exists though, we can consider alternative methods of finding it. For example, the
computation of such an allocation can be carried out using a mixed integer program
(MIP). Using a MIP approach one can also optimize an objective subject to the three
constraints; for instance, maximize the minimum dominant share to achieve the most
egalitarian allocation among allocations that are PO, SI, and EF1.

Another potential approach is to use the properties of competitive equilibrium from
equal incomes (CEEI). In the setting of Section 2 a competitive equilibrium exists and
satisfies PO, SI, and EF [Ghodsi et al. 2011]. While indivisibilities preclude the exis-
tence of a CEEI (obviously, as PO and EF are incompatible), conceivably it may be pos-
sible to prove the existence of an approximate version that is EF1 using an approach
similar to Budish [2011]. Even if such an approximate CEEI exists, its computation
can be challenging [Othman et al. 2010].

In any case, as an algorithm for finding PO+SI+EF1 allocations, SEQUENTIALMIN-
MAX has several major advantages over other potential approaches. First, since the
mechanism allocates a bundle to some agent in each execution of the while loop,
it can be seen that the mechanism terminates in time O(n2m/b∗), where b∗ =
mini∈N maxr∈R bir; that is, 1/b∗ is an upper bound on the number of bundles that can
be allocated to an agent. Second, it can be implemented dynamically. Indeed, even in
a realistic setting where agents change their demands over time, or arrive and depart,
we can still carry out the policy of allocating to an agent minimizing the maximum
dominant share. Specifically, at the beginning of iteration t we can compute the sets
Tk and Mk regardless of the currently present agents and their current demands.

6. DISCUSSION

This article enhances our understanding of resource allocation in settings with multi-
ple resources. First, we assumed that tasks are divisible and showed that EXTENDED-
DRF is PO, SI, EF, and GSP even when the agents have initial endowments and may
not demand every resource. Second, we observed that no SI or EF mechanism can pro-
vide an approximation ratio smaller than m for the social welfare, and proved that the
same property holds when one requires SP. Third, under indivisible tasks, we showed
that SEQUENTIALMINMAX is PO, SI, and EF1. Nevertheless, several key challenges
remain unresolved.

Our model in Section 5 relaxes the assumption that tasks are divisible, but we do
make the assumption that there is one pool of divisible resources. As discussed in
passing by Ghodsi et al. [2011], in practice clusters consist of many small machines.
This issue of resource fragmentation may complicate matters further, and requires
careful attention.

In addition, while working on this article we spent some time studying a setting
where each agent has multiple divisible tasks. We focused on a specific utility func-
tion: an agent’s utility is the sum of dominant shares of its tasks, under the optimal
division of its allocated resources between different tasks. Such a utility function can
be motivated by routing settings where resources are links and tasks correspond to
different paths from a source to a sink. It is possible to show that a competitive equi-
librium exists in this setting, and the resulting allocation satisfies PO, SI, and EF.
However, we were unable to settle the existence of a mechanism that satisfies PO, SI,
EF, and SP, even under restricted utility functions.
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Finally, our analysis is restricted to a static setting where demands are revealed
and a single allocation is made. Earlier, we touched on the issue of dynamic imple-
mentation, and indeed in practice agents may arrive and depart, or change their de-
mands over time (cf. Parkes [2007] and Zou et al. [2010] for analogous settings with
money). What theoretical guarantees would we look for in such a setting? In particular,
what would be the appropriate notion of fairness in a dynamic resource allocation set-
ting? Some answers are given by Kash et al. [2013], but many fundamental questions
remain open.
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