CSC304 Lecture 10

Mechanism Design w/ Money: Revelation principle; First price, second price, and ascending auctions; Revenue equivalence

Announcements

• First midterm is this Friday

- We'll spend the first 30 minutes (hopefully not more) today quickly going over assignment 1 solutions
 - > Questions? \Rightarrow Office hours tomorrow

Recap : VCG

- Maximizes reported welfare
- Charges each agent the apparent reduction in welfare they cause to others due to their presence
- Satisfies four properties
 - > Welfare maximization
 - Strategyproofness
 - No payments to agents
 - > Individual rationality

This Lecture: More Auctions

- Other auction mechanisms
 - > 1st price auction and ascending (English) auction
 - Comparison to the 2nd price auction
- A different type of incentive guarantee
 > Bayes-Nash Incentive Compatibility
- Strong results
 - > Revelation principle
 - > Revenue equivalence theorem

Bayesian Framework

- Useful for providing weaker incentive guarantees than strategyproofness
- Strategyproofness:
 - "It's best for me to tell the truth even if I know what other players are doing, and regardless of what they are doing."
- Weaker guarantee:
 - "I don't exactly know what others are going to do, but I have some idea. In expectation, it's best for me to tell the truth."
 - Incomplete information setting

Bayesian Framework

• Setup

> Distribution D_i for each agent i

 $\,\circ\,$ All distributions are known to all agents.

> Each agent *i*'s valuation v_i is sampled from D_i

 $\circ v_i$'s are independent of each other

 \circ Only agent i knows v_i

Private information of agent = "type" of agent

> T_i = type space for agent i

> A_i = set of actions (possible reports) of agent i

> Strategy $s_i: T_i \rightarrow A_i$

o "How do I convert my valuation to my bid?"

Bayesian Framework

• Strategy profile $\vec{s} = (s_1, \dots, s_n)$

Interim utility of agent i is

$$E_{\{v_j \sim D_j\}_{j \neq i}} [u_i(s_1(v_1), \dots, s_n(v_n))]$$

where utility u_i is "value derived – payment charged"

> s̄ is a Bayes-Nash equilibrium (BNE) if s_i is the best strategy for agent i given s̄_{-i} (strategies of others)
 ○ NOTE: I don't know what others' values are. But I know they are rational players, so I can reason about what strategies they might use.

Example

- Sealed-bid first price auction for a single item
 Each agent *i* privately submits a bid b_i
 - > Agent i^* with the highest bid wins the item, pays b_{i^*}
- Suppose there are two agents
 ➤ Common prior: each has valuation drawn from U[0,1]
- Claim: Both players using s_i(v_i) = v_i/2 is a BNE.
 ▶ Proof on the board.