CSC304 Lecture 11

Mechanism Design w/ Money: Continued...Revelation principle; First price, second price, and ascending auctions; Revenue equivalence

Recap: Bayesian Framework

Recap: Bayesian Framework

• Strategy profile $\vec{s} = (s_1, \dots, s_n)$

Interim utility of agent i is

$$E_{\{v_j \sim D_j\}_{j \neq i}} [u_i(s_1(v_1), \dots, s_n(v_n))]$$

where utility u_i is "value derived – payment charged"

> s̄ is a Bayes-Nash equilibrium (BNE) if s_i is the best strategy for agent i given s̄_{-i} (strategies of others)
 ○ NOTE: I don't know what others' values are. But I know they are rational players, so I can reason about what strategies they might use.

Recap: 1st Price Auction

- Sealed-bid first price auction for a single item
 Each agent *i* privately submits a bid b_i
 - > Agent i^* with the highest bid wins the item, pays b_{i^*}
- Suppose there are two agents
 - Common prior: each has valuation drawn from U[0,1]
- Claim: Both players using s_i(v_i) = v_i/2 is a BNE.
 ▶ Proof on the board.

Direct Revelation Mechanisms & The Revelation Principle

Direct Revelation

- Direct-revelation: mechanisms that ask you to report your private values
 - > Doesn't mean agents will report their true values.
 - > Makes sense to ask "Would they, in equilibrium?"
- Non-direct-revelation: different action space than type space
 - Suppose your value for an item is in [0,1], but the mechanism asks you to either dive left or dive right.
 - > Strategy s_i : [0,1] → {left, right}
 - > Truthfulness doesn't make much sense.
 - > But we can still ask: What is the outcome in equilibrium?

BNIC Mechanisms

- A direct revelation mechanism is Bayes-Nash incentive compatible (BNIC) if all players playing $s_i(v_i) = v_i$ is a BNE.
 - I don't know what other's valuations are, only the distributions they're drawn from.
 - But as long as they report their true values, in expectation I would like to report my true value.
- Compare to strategyproofness
 - I know what others' values are, and for every possible values they can have, I want to report my true values.

Revelation Principle

- Outcome = (allocation, payments)
- Strategyproof version [Gibbard, '73]
 - If a mechanism implements an outcome in dominant strategies, there's a direct revelation strategyproof mechanism implementing the same outcome.
- BNIC version [Dasgupta et al. '79, Holmstrom '77, Myerson '79]
 - If a mechanism implements an outcome as BNE, there's a direct revelation BNIC mechanism implementing the same outcome.

Revelation Principle

• Informal proof:

Applying Revelation Principle

- We already saw...
 - Sealed-bid 1st price auction
 - > 2 agents with valuations drawn from U[0,1]
 - > Each player halving his value was a BNE
 - > Not naturally BNIC (players don't report value)
- BNIC variant through revelation principle?
- Can also be used on non-direct-revelation mechs

Revenue of Auction Mechanisms & Revenue Equivalence

1st Price Auction

- For n players with iid valuations from U[0,1], "shadowing" the bid by a factor of (n 1)/n is a BNE
- E[Revenue] to the auctioneer? > $E_{\{v_i \sim U[0,1]\}_{i=1}^n} \left(\frac{n-1}{n}\right) * \max_i v_i = \frac{n-1}{n+1}$ (Exercise!)
- Interestingly, this is equal to E[Revenue] from 2nd price auction

$$\succ E_{\{v_i \sim U[0,1]\}_{i=1}^n} [2^{nd} \operatorname{highest} v_i] = \frac{n-1}{n+1} \quad (\operatorname{Exercise!})$$

Revenue Equivalence

- If two BNIC mechanisms A and B:
 - 1. Always produce the same allocation;
 - 2. Have the same expected payment to agent *i* for some type v_i^0 (e.g., "zero value for all" \rightarrow zero payment);
 - Have agent valuations drawn from distributions with "path-connected support sets";
- Then they:
 - Charge the same expected payment to all agent types;
 - > Have the same expected total revenue.

Revenue Equivalence

- Informally...
 - If two BNIC mechanisms always have the same allocation, then they have the same E[payments] and E[revenue].
 - > Very powerful as it applies to any pair of BNIC mechanism
- 1st price (BNIC variant) and 2nd price auctions
 - Have the same allocation:
 - Item always goes to the agent with the highest valuation
 - > Thus, also have the same revenue

Non-Direct-Revelation Auctions

- Ascending auction (a.k.a. English auction)
 - > All agents + auctioneer meet in a room.
 - \succ Auctioneer starts the price at 0.
 - > All agents want the item, and have their hands raised.
 - > Auctioneer raise the price continuously.
 - > Agents drop out when price > value for them
- Descending auction (a.k.a. Dutch auction)
 - > Start price at a very high value.
 - > Keep decreasing the price until some agent agrees to buy.

Revenue Maximization

Welfare vs Revenue

- In welfare maximization, we want to maximize $\sum_i v_i(a)$
 - VCG = strategyproof + maximizes welfare on every single instance
 - ➤ Beautiful!
- In revenue maximization, we want to maximize $\sum_i p_i$
 - > We can still use strategyproof mechanisms (revelation principle).
 - > BUT...

Welfare vs Revenue

- Different strategyproof mechanisms are better for different instances.
- Example: 1 item, 1 bidder, unknown value v
 - > strategyproof = fix a price r, let the agent decide to "take it" ($v \ge r$) or "leave it" (v < r)
 - > Maximize welfare \rightarrow set r = 0
 - Must allocate item as long as the agent has a positive value
 - > Maximize revenue $\rightarrow r = ?$

 $\,\circ\,$ Different r are better for different v

Welfare vs Revenue

- We cannot optimize revenue on every instance
 - Need to optimize the *expected* revenue in the Bayesian framework
- If we want to achieve higher revenue than VCG, we cannot always allocate the item

> Revenue equivalence principle!

Single Item + Single Bidder

- Value v is drawn from distribution with CDF F
- Goal: post the optimal price r on the item
- Revenue from price $r = r \cdot (1 F(r))$ (Why?)
- Optimal $r^* = \operatorname{argmax}_r r \cdot (1 F(r))$
 - > "Monopoly price"
 - Note: r* depends on F, but not on v, so the mechanism is strategyproof.

Example

- Suppose F is the CDF of the uniform distribution over [0,1] (denote by U[0,1]).
 > CDF is given by F(x) = x for all x ∈ [0,1].
- Recall: E[Revenue] from price r is r · (1 − F(r))
 > Q: What is the optimal posted price?
 > Q: What is the corresponding optimal revenue?
- Compare this to the revenue of VCG, which is 0
 This is because if the value is less than r*, we are willing to risk not selling the item.

Single Item + Two Bidders

- $v_1, v_2 \sim U[0,1]$
- VCG revenue = 2^{nd} highest bid = $min(v_1, v_2)$ > $E[min(v_1, v_2)] = 1/3$ (Exercise!)
- A possible improvement: "VCG with reserve price"
 > Reserve price r.
 - \succ Highest bidder gets the item if bid more than r
 - > Pays max(r, 2nd highest bid)
 - "Critical payment": Pay the least value you could have bid and still won the item

Single Item + Two Bidders

- Reserve prices are ubiquitous
 - > E.g., opening bids in eBay auctions
 - Guarantee a certain revenue to the auctioneer if item is sold
- $E[\text{revenue}] = E[\max(r, \min(v_1, v_2))]$
 - \succ Maximize over r? Hard to think about.
- Can a strategyproof mechanism that is not VCG + reserve price get a higher revenue?
 - Can a mechanism that is only BNIC get an even higher revenue?

The next 4 slides are not part of the syllabus.

The Trio

- 2nd price auction
 > Sealed-bid + truthful for agents
- 1st price auction
 > Sealed-bid
- Ascending auction
 "truthful" for agents

Seems strictly better.

Truthful for agents.

Truthful for auctioneer?

Credible Mechanisms

- Typical mechanism design
 - > Auctioneer commits to using a mechanism.
 - > Assume that auctioneer does not deviate later on.
 - Stackelberg game between auctioneer and agents"
- Credible Mechanisms [Akbarpour and Li, 2017]
 Auctioneer is incentivized to not deviate from his commitment at any stage of auction execution.

Credible Mechanisms

- Sealed-bid 2nd Price Auction
 - > Auctioneer collects all bids.
 - > Auctioneer goes to highest bidder (bid b).
 - > Auctioneer says 2^{nd} highest bid was $b \epsilon$.
 - > Highest bidder can't prove him wrong.
 - > Auctioneer has an incentive to lie \rightarrow not credible!
- 1^{st} price auction \rightarrow credible (Why?)
- Ascending auction → credible (Why?)

[Akbarpour and Li, 2017]

• Corollary: sealed-bid \cap DSIC \cap credible = Ø