CSC304 Lecture 13

Mechanism Design w/o Money: Facility Location

Lack of Money

- Mechanism design with money:
 - > VCG can implement welfare maximizing outcome because it can charge payments
- Mechanism design without money:
 - Suppose you want to give away a single item, but cannot charge any payments
 - > Impossible to get meaningful information about valuations from strategic agents
 - > How would you maximize welfare as much as possible?

Lack of Money

- One possibility: Give the item to each of n bidders with probability 1/n.
- Does not maximize welfare
 - It's impossible to maximize welfare without money
- Achieves an *n*-approximation of maximum welfare $\Rightarrow \frac{\max_{i} v_{i}}{(1/n) \sum_{i} v_{i}} \leq n$
- Can't do better than *n*-approximation without money

MD w/o Money Theme

- 1. Define the problem: agents, outcomes, valuations
- 2. Define the goal (e.g., maximizing social welfare)
- 3. Check if the goal can be achieved using a strategyproof mechanism
- 4. If not, find the strategyproof mechanism that provides the best worst-case approximation ratio
 - Worst-case approximation ratio is similar to the price of anarchy (PoA)

Facility Location

- Set of agents N
- Each agent *i* has a true location $x_i \in \mathbb{R}$
- Mechanism f
 - > Takes as input reports $\tilde{x} = (\tilde{x}_1, \tilde{x}_2, ..., \tilde{x}_n)$
 - \succ Returns a location $y \in \mathbb{R}$ for the new facility
- Cost to agent $i : c_i(y) = |y x_i|$
- Social cost $C(y) = \sum_i c_i(y) = \sum_i |y x_i|$

Facility Location

- Social cost $C(y) = \sum_i c_i(y) = \sum_i |y x_i|$
- Q: Ignoring incentives, what choice of y would minimize the social cost?
- A: The median location med(x₁,...,x_n)
 > n is odd → the unique "(n+1)/2"th smallest value
 > n is even → "n/2"th or "(n/2)+1"st smallest value
 > Why?

Facility Location

- Social cost $C(y) = \sum_i c_i(y) = \sum_i |y x_i|$
- Median is optimal (i.e., 1-approximation)
- What about incentives?
 - > Median is also strategyproof (SP)!

- A different objective function $C(y) = \max_{i} |y x_i|$
- Q: Again ignoring incentives, what value of y minimizes the maximum cost?
- A: The midpoint of the leftmost $(\min_{i} x_{i})$ and the rightmost $(\max_{i} x_{i})$ locations (WHY?)
- Q: Is this optimal rule strategyproof?
- A: No! (WHY?)

- $C(y) = \max_i |y x_i|$
- We want to use a strategyproof mechanism.
- Question: What is the approximation ratio of median for maximum cost?
 - 1. ∈ [1,2)
 - *2.* ∈ [2,3)
 - *3.* ∈ [3,4)
 - 4. ∈ [4,∞)

- Answer: 2-approximation
- Other SP mechanisms that are 2-approximation
 - > Leftmost: Choose the leftmost reported location
 - > Rightmost: Choose the rightmost reported location
 - > Dictatorship: Choose the location reported by agent 1

≻ ...

 Theorem [Procaccia & Tennenholtz, '09] No deterministic SP mechanism has approximation ratio < 2 for maximum cost.

• Proof:

Max Cost [For later reference]

 Theorem [Procaccia & Tennenholtz, '09] No deterministic SP mechanism has approximation ratio < 2 for maximum cost.

• Proof:

- Suppose the two agents report x₁ = 0 and x₂ = 1.
 o For approximation ratio < 2, the facility must be at 0 < y < 1.
- > Now, suppose the true preferences of the agents are $x_1 = 0$ and $x_2 = y$, and they report honestly.
 - \circ Again, the facility must be at 0 < y' < y.
 - \circ Then agent 2 has strict incentive to report 1 instead of y so the facility shifts to his true location y.

≻ QED!

Max Cost + Randomized

- The Left-Right-Middle (LRM) Mechanism
 - > Choose $\min_{i} x_i$ with probability $\frac{1}{4}$
 - > Choose max x_i with probability $\frac{1}{4}$
 - > Choose $(\min_{i} x_i + \max_{i} x_i)/2$ with probability $\frac{1}{2}$
- Question: What is the approximation ratio of LRM for maximum cost?

• At most
$$\frac{(1/4)*2C+(1/4)*2C+(1/2)*C}{C} = \frac{3}{2}$$

Max Cost + Randomized

- Theorem [Procaccia & Tennenholtz, '09]: The LRM mechanism is strategyproof.
- Proof Sketch:

Max Cost + Randomized

• Exercise!

Try showing that no randomized SP mechanism can achieve approximation ratio < 3/2