CSC304 Lecture 18

Voting 4: Impartial selection
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Recap

* The Gibbard-Satterthwaite theorem says that we
cannot design strategyproof voting rules that are
also nondictatorial and onto.

 Restricted settings (e.g., facility location on a line)

> There exist strategyproof, nondictatorial, and onto rules.

> They can be used to (perfectly or approximately) optimize
the societal goal

* Today, we will study another interesting setting
called impartial selection
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Impartial Selection

* “How can we select k people out of n people?”

> Applications: electing a student representation committee,
selecting k out of n grant applications to fund using peer
review, ...

* Model
> Input: a directed graph G = (V, E)
> Nodes V = {v4, ..., v, } are the n people
> Edge e = (vi,vj) € E: v; supports/approves of v;
o We do not allow or ignore self-edges (v;, v;)
> Output: a subset V' € V with |V'| =k
>k €{1,..,n—1}is given
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Impartial Selection

* Impartiality: A k-selection rule f is impartial if v; €
f(G) does not depend on the outgoing edges of v;
» V; cannot manipulate his outgoing edges to get selected

» Q: But the definition says v; can neither go from v; € f(G)
tov; € f(G), norfromv; € f(G)tov; &€ f(G). Why?

* Societal goal: maximize the sum of in-degrees of
selected agents Y, ¢ +(¢) | in(v)|

> in(v) = set of nodes that have an edge to v
> out(v) = set of nodes that v has an edge to
> Note: OPT will pick the k nodes with the highest indegrees
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Optimal # Impartial

* An optimal 1-selecton rule must select v; or v,

* The other node can remove his edge to the winner,
and make sure the optimal rule selects him instead

* This violates impartiality
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Goal: Approximately Optimal

* x-approximation: We want a k-selection system
that always returns a set with total indegree at
least a times the total indegree of the optimal set

* Q: For k = 1, what about the following rule?

Rule: “Select the lowest index vertex in out(v,).
If out(v,) = @, select v,.”

> A. Impartial + constant approximation

ImIOartiaI + bad approximation
> C. Not impartial + constant approximation

> D. Not impartial + bad approximation
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No Finite Approximation ®

* Theorem [Alon et al. 2011]
Forevery k € {1, ...,n — 1}, there is no impartial k-
selection rule with a finite approximation ratio.

* Proof:

> For small k, this is trivial. E.g., consider k = 1.

o What if G has two nodes v; and v, that point to each other, and
there are no other edges?

o For finite approximation, the rule must choose either v, or v,

o Say it chooses v4. If v, now removes his edge to v4, the rule must
choose v, for any finite approximation.

o Same argument as before. But applies to any “finite approximation
rule”, and not just the optimal rule.
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No Finite Approximation ®

* Theorem [Alon et al. 2011]
Forevery k € {1, ...,n — 1}, there is no impartial k-
selection rule with a finite approximation ratio.

* Proof:
> Proof is more intricate for larger k. Let’'sdo k =n — 1.
o k = n — 1:given a graph, “eliminate” a node.
» Suppose for contradiction that there is such a rule f.
> W.l.o.g., say v,, is eliminated in the empty graph.

> Consider a family of graphs in which a subset of
{vq, ..., V1 } have edges to v,.
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No Finite Approximation ®

* Proof (k = n — 1 continued): Q
> Consider star graphs in which a non-empty @ @
subset of {v4, ..., V,_1} have edge to v,,, and @
there are no other edges @ @
o Represented by bit strings {0,1}"‘1\{6}
. : /
> U, cannot be eliminated in any star graph Y -

o Otherwise we have infinite approximation

> f maps {0,1}"‘1\{6} to{1,..,n—1} @
o “Who will be eliminated?”
o &; has 1 at it" coordinate, 0 elsewhere

o In words, i cannot prevent elimination by adding
or removing his edge to v, ~

> Impartiality: f(X) =i e f(x+¢) =i @
N

N\
® &
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No Finite Approximation ®

* Proof (k = n — 1 continued): @ Q @
> f:{0,1}""1\{0} > {1,..,n— 1} @
@ =ie fE+E) =i ® (v)
o &; has 1 only in it" coordinate N /
. . . . ‘ ’
> Pairing implies...
o The number of strings on which f outputs i is @
even, for every i.
o Thus, total number of strings in the domain G @
must be even too. Q
o But total number of strings is 2" — 1 (odd) @
» So impartiality must be violated for some
pair of Xx and X + ¢; \ /
~
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Back to Impartial Selection

* Question: So what can we do to select impartially?

* Answer: Randomization!

> Impartiality now requires that the probability of an agent
being selected be independent of his outgoing edges.

* Examples: Randomized Impartial Mechanisms

> Choose k nodes uniformly at random
o Sadly, this still has arbitrarily bad approximation.

o Imagine having k special nodes with indegree n — 1, and all other
nodes having indegree 0.

o Mechanism achieves (k/n) * OPT = approximation =n/k
o Good when k is comparable to n, but bad when k is small.
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Random Partition

* |dea:

» What if we partition V into I/; and V,, and select k nodes
from V; based only on edges coming to them from V,?

* Mechanism:
> Assign each node to I/; or V, i.i.d. with probability Y2
> Choose V; € {V;,V,} at random

» Choose k nodes from V; that have most incoming edges
from nodes in V5 _;
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Random Partition

* Analysis:
> Goal: approximate [ = # edges incoming to OPT.
ol,=#edgesV, - OPT NV, I, =#edgesV; - OPT NV,

> Note: E|I; + I,] =1/2. (WHY?)

> W.p. 12, we pick k nodes in V; with the mostincoming
edges from V, = # incoming edges = I; (WHY?)

o |OPT nVy| < k; OPT NV, has I; incoming edges from 1/,

> W.p. 12, we pick k nodes in V, with the mostincoming
edges from V; = #incoming edges = I,

> E[#incoming edges] = E [(%) L+ (%) . 12] — i
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Random Partition

* Improvement

> More generally, we can divide into € parts, and pick k /¢
nodes from each part based on incoming edges from all
other parts.

* Theorem [Alon et al. 2011]:
> £ = 2 gives a 4-approximation.

> Fork = 2, £~k'/3 gives 1 + 0( :

k1/3

) approximation.
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Better Approximations

e [Alon et al. 2011] conjectured that for randomized
impartial 1-selection...
> (For which their mechanism is a 4-approximation)
> It should be possible to achieve a 2-approximation.
> Recently proved by [Fischer & Klimm, 2014]

> Permutation mechanism:

o Select a random permutation (m4, 5, ..., T, ) Of the vertices.
o Start by selecting y = m; as the “current answer”.
o At any iteration t, let y € {m4, ..., m;} be the current answer.

o From {4, ..., m:}\{y}, if there are more edges to m;,; than to y,
change the current answertoy = ;1.

CSC304 - Nisarg Shah




Better Approximations

e 2-approximationis tight.
> In an n-node graph, fix u and v, and suppose no other
nodes have any incoming/outgoing edges.

> Three cases: only u = v edge, only v = u, or both.

o The best impartial mechanism selects u and v with probability 72
in every case, and achieves 2-approximation.

e But this is because n — 2 nodes are not voting!
> What if every node must have an outgoing edge?

> [Fischer & Klimm]:
o Permutation mechanism gives 12/, = 1.714 approximation.
o No mechanism gives better than 2/3 approximation.
o Open question to achieve better than 12/,
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The rest of this lecture is
not part of the syllabus.




PageRank

* An extension of the impartial selection problem
> Instead of selecting k nodes, we want to rank all nodes

* The PageRank Problem: Given a directed graph,
rank all nodes by their “importance”.

> Think of the web graph, where nodes are webpages, and
a directed (u, v) edge means u has a link to v.

* Questions:
» What properties do we want from such a rule?
> What rule satisfies these properties?
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PageRank

* Here is the PageRank Algorithm:
> Start from any node in the graph.

> At each iteration, choose an outgoing edge of the current
node, uniformly at random among all its outgoing edges.

> Move to the neighbor node on that edge.

> In the limit of T — oo iterations, measure the fraction of
time the “random walk” visits each node.

> Rank the nodes by these “stationary probabilities”.

* Google uses (a version of) this algorithm
> It’s seems a reasonable algorithm.
> What nice axioms might it satisfy?
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Axioms

Axiom 1 (Isomorphism) - -
» Permuting node names permutes the final
ranking.
Axiom 2 (Vote by Committee)
» Voting through intermediate fake nodes »
cannot change the ranking.

Axiom 3 (Self Edge)

» v adding a self edge cannot change the O = &
ordering of the other nodes.

Axiom 4 (Collapsing)
> Merging identically voting nodes cannot change the @ -
ordering of the other nodes.

Axiom 5 (Proxy)

> |If a set of nodes with equal score vote for v through a ® ®
proxy, it should not be different than voting directly. o # ® @
0
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PageRank

* Theorem [Altman and Tennenholtz, 2005]:
The PageRank algorithm satisfies these five axioms,
and is the unique algorithm to satisfy all five
axioms.

* Thatis, any algorithm that satisfies all five axioms
must output the ranking returned by PageRank on
every single graph.
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