CSC304 Lecture 4

Game Theory (Cost sharing & congestion games, Potential function, Braess' paradox)

Recap

- Nash equilibria (NE)
 - > No agent wants to change their strategy
 - > Guaranteed to exist if mixed strategies are allowed
 - Could be multiple
- Pure NE through best-response diagrams
- Mixed NE through the indifference principle

Worst and Best Nash Equilibria

- What can we say after we identify all Nash equilibria?
 Compute how "good" they are in the best/worst case
- How do we measure "social good"?
 - Game with only rewards?
 Higher total reward of players = more social good
 - Game with only penalties?
 Lower total penalty to players = more social good
 - Game with rewards and penalties? No clear consensus...

Price of Anarchy and Stability

• Price of Anarchy (PoA)

"Worst NE vs optimum"

Max total reward Min total reward in any NE

or

Max total cost in any NE

Min total cost

• Price of Stability (PoS)

"Best NE vs optimum"

Max total reward Max total reward in any NE

or

Min total cost in any NE Min total cost

 $PoA \ge PoS \ge 1$

Revisiting Stag-Hunt

Hunter 2 Hunter 1	Stag	Hare
Stag	(4 , 4)	(0 , 2)
Hare	(2 , 0)	(1 , 1)

- Max total reward = 4 + 4 = 8
- Three equilibria

> (Stag, Stag) : Total reward = 8
> (Hare, Hare) : Total reward = 2
>
$$\binom{1}{3}$$
 Stag $-\frac{2}{3}$ Hare, $\frac{1}{3}$ Stag $-\frac{2}{3}$ Hare)
 \circ Total reward = $\frac{1}{3} * \frac{1}{3} * 8 + (1 - \frac{1}{3} * \frac{1}{3}) * 2 \in (2,8)$

• Price of stability? Price of anarchy?

Revisiting Prisoner's Dilemma

John Sam	Stay Silent	Betray
Stay Silent	(-1 , -1)	(-3 , 0)
Betray	(0 , -3)	(-2 , -2)

- Min total cost = 1 + 1 = 2
- Only equilibrium:

> (Betray, Betray) : Total cost = 2 + 2 = 4

• Price of stability? Price of anarchy?

Cost Sharing Game

- n players on directed weighted graph G
- Player *i*
 - > Wants to go from s_i to t_i
 - > Strategy set $S_i = \{ \text{directed } s_i \rightarrow t_i \text{ paths} \}$
 - > Denote his chosen path by $P_i \in S_i$
- Each edge e has cost c_e (weight)
 ➤ Cost is split among all players taking edge e
 ➤ That is, among all players i with e ∈ P_i

Cost Sharing Game

• Given strategy profile \vec{P} , cost $c_i(\vec{P})$ to player *i* is sum of his costs for edges $e \in P_i$

• Social cost
$$C(\vec{P}) = \sum_i c_i(\vec{P})$$

• Note:
$$C(\vec{P}) = \sum_{e \in E(\vec{P})} c_e$$
, where...
> $E(\vec{P})$ ={edges taken in \vec{P} by at least one player}
> Why?

Cost Sharing Game

- In the example on the right:
 - > What if both players take direct paths?
 - > What if both take middle paths?
 - What if one player takes direct path and the other takes middle path?
- Pure Nash equilibria?

Cost Sharing: Simple Example

- Example on the right: *n* players
- Two pure NE
 - > All taking the n-edge: social cost = n
 - All taking the 1-edge: social cost = 1
 - Also the social optimum
- Price of stability: 1
- Price of anarchy: *n*
 - ➤ We can show that price of anarchy ≤ n in every cost-sharing game!

Cost Sharing: PoA

- Theorem: The price of anarchy of a cost sharing game is at most *n*.
- Proof:
 - > Suppose the social optimum is $(P_1^*, P_2^*, ..., P_n^*)$, in which the cost to player *i* is c_i^* .
 - > Take any NE with cost c_i to player i.
 - > Let c'_i be his cost if he switches to P_i^* .
 - > NE $\Rightarrow c'_i \ge c_i$ (Why?)
 - > But : $c'_i \leq n \cdot c^*_i$ (Why?)
 - > $c_i \leq n \cdot c_i^*$ for each $i \Rightarrow$ no worse than $n \times$ optimum

Cost Sharing

- Price of anarchy
 - > Every cost-sharing game: $PoA \le n$
 - > Example game with PoA = n
 - \succ Bound of *n* is tight.
- Price of stability?
 - > In the previous game, it was 1.
 - > In general, it can be higher. How high?
 - > We'll answer this after a short detour.

Cost Sharing

- Nash's theorem shows existence of a mixed NE.
 - Pure NE may not always exist in general.
- But in both cost-sharing games we saw, there was a PNE.
 - > What about a more complex game like the one on the right?

10 players: $E \rightarrow C$ 27 players: $B \rightarrow D$ 19 players: $C \rightarrow D$

Good News

- Theorem: Every cost-sharing game have a pure Nash equilibrium.
- Proof:
 - > Via "potential function" argument

Step 1: Define Potential Fn

- Potential function: $\Phi : \prod_i S_i \to \mathbb{R}_+$
 - > This is a function such that for every pure strategy profile $\vec{P} = (P_1, ..., P_n)$, player *i*, and strategy P'_i of *i*,

$$c_i(P'_i, \vec{P}_{-i}) - c_i(\vec{P}) = \Phi(P'_i, \vec{P}_{-i}) - \Phi(\vec{P})$$

- When a single player i changes her strategy, the change in potential function equals the change in cost to i!
- In contrast, the change in the social cost C equals the total change in cost to all players.

 \circ Hence, the social cost will often not be a valid potential function.

Step 2: Potential $F^n \rightarrow pure Nash Eq$

- A potential function exists \Rightarrow a pure NE exists.
 - > Consider a \vec{P} that minimizes the potential function.
 - Deviation by any single player i can only (weakly) increase the potential function.
 - > But change in potential function = change in cost to i.
 - > Hence, there is no beneficial deviation for any player.
- Hence, every pure strategy profile minimizing the potential function is a pure Nash equilibrium.

Step 3: Potential Fⁿ for Cost-Sharing

- Recall: $E(\vec{P}) = \{ edges taken in \vec{P} by at least one player \}$
- Let $n_e(\vec{P})$ be the number of players taking e in \vec{P}

$$\Phi(\vec{P}) = \sum_{e \in E(\vec{P})} \sum_{k=1}^{n_e(\vec{P})} \frac{c_e}{k}$$

• Note: The cost of edge *e* to each player taking *e* is $c_e/n_e(\vec{P})$. But the potential function includes all fractions: $c_e/1$, $c_e/2$, ..., $c_e/n_e(\vec{P})$.

Step 3: Potential Fⁿ for Cost-Sharing

$$\Phi(\vec{P}) = \sum_{e \in E(\vec{P})} \sum_{k=1}^{n_e(\vec{P})} \frac{c_e}{k}$$

- Why is this a potential function?
 - > If a player changes path, he pays $\frac{c_e}{n_e(\vec{P})+1}$ for each new edge e, gets back $\frac{c_f}{n_f(\vec{P})}$ for each old edge f.
 - > This is precisely the change in the potential function too. > So $\Delta c_i = \Delta \Phi$.

Potential Minimizing Eq.

- Minimizing the potential function gives some pure Nash equilibrium
 - > Is this equilibrium special? Yes!
- Recall that the price of anarchy can be up to *n*.
 - > That is, the worst Nash equilibrium can be up to n times worse than the social optimum.
- A potential-minimizing pure Nash equilibrium is better!

Potential Minimizing Eq.

Potential Minimizing Eq.

Potential-minimizing PNE is O(log n)-approximation to the social optimum.

- Thus, in every cost-sharing game, the price of stability is O(log n).
 - \succ Compare to the price of anarchy, which can be n

Congestion Games

- Generalize cost sharing games
- *n* players, *m* resources (e.g., edges)
- Each player *i* chooses a set of resources P_i (e.g., $s_i \rightarrow t_i$ paths)
- When n_j player use resource j, each of them get a cost $f_j(n_j)$
- Cost to player is the sum of costs of resources used

Congestion Games

- Theorem [Rosenthal 1973]: Every congestion game is a potential game.
- Potential function:

$$\Phi(\vec{P}) = \sum_{j \in E(\vec{P})} \sum_{k=1}^{n_j(\vec{P})} f_j(k)$$

• Theorem [Monderer and Shapley 1996]: Every potential game is equivalent to a congestion game.

Potential Functions

- Potential functions are useful for deriving various results
 - > E.g., used for analyzing amortized complexity of algorithms
- Bad news: Finding a potential function that works may be hard.

- In cost sharing, f_i is decreasing
 - > The more people use a resource, the less the cost to each.
- f_i can also be increasing
 - > Road network, each player going from home to work
 - > Uses a sequence of roads
 - The more people on a road, the greater the congestion, the greater the delay (cost)
- Can lead to unintuitive phenomena

- Parkes-Seuken Example:
 - > 2000 players want to go from 1 to 4
 - \succ 1 \rightarrow 2 and 3 \rightarrow 4 are "congestible" roads
 - $\succ 1 \rightarrow 3 \text{ and } 2 \rightarrow 4 \text{ are "constant delay" roads}$

- Pure Nash equilibrium?
 - > 1000 take $1 \rightarrow 2 \rightarrow 4$, 1000 take $1 \rightarrow 3 \rightarrow 4$
 - > Each player has cost 10 + 25 = 35
 - > Anyone switching to the other creates a greater congestion on it, and faces a higher cost

- What if we add a zero-cost connection $2 \rightarrow 3$?
 - > Intuitively, adding more roads should only be helpful
 - In reality, it leads to a greater delay for everyone in the unique equilibrium!

- Nobody chooses $1 \rightarrow 3$ as $1 \rightarrow 2 \rightarrow 3$ is better irrespective of how many other players take it
- Similarly, nobody chooses $2 \rightarrow 4$
- Everyone takes $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$, faces delay = 40!

- In fact, what we showed is:
 - > In the new game, $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$ is a strictly dominant strategy for each player!

