CSC304 Lecture 6

Game Theory :
Minimax Theorem via
Expert Learning




2-Player Zero-Sum Games

e Reward of P2 = - Reward of P1

> Matrix A s.t. A; ; is reward to P1 when P1 chooses her it
action and P2 chooses her jt"* action

h

> Mixed strategy profile (x1,x,) = reward to P1is x{ A x,

* Minimax Theorem: For all 4,
max min x{ A x, = min max x{ A4 x,

X1 X9 X2 X1

> Proof through online expert learning!
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Online Expert Learning

* Setup:
> On each day, we want to predict if a stock price will go up
or down
> 1 experts provide their predictions every day
o Each expert says either up or down
> Based on their advice, we make a final prediction

> At the end of the day, we learn if our prediction was
correct (reward = 1) or wrong (reward = 0)

* Goal:
> Do almost as good as the best expert in hindsight!
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Online Expert Learning

* Notation
» n = #experts
> Predictions and ground truth: 1 or O
> ml@ = #mistakes of expert i in first T steps
> M(T) = #tmistakes of the algorithm in first T steps

e Simplest idea:
> Keep a weight for each expert
> Use weighted majority of experts to make prediction

> Decrease the weight of an expert whenever the expert
makes a mistake
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Online Expert Learning

/- Weighted Majority:
> Fixn < 1/2.

> Start with W(l) = 1.

i
> In time step t, predict 1 if the total weight of experts
predicting 1 is larger than the total weight of experts

predicting 0, and vice-versa.

i

\ every expert that made a mistake.

~

> At the end of time step t, set wltD Wl-(t) - (1 —n) for
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Online Expert Learning

* Theorem: Foreveryiand T,

2Inn
M® <2(1+7)m" + Z—
* Proof:

> Consider a “potential function” @) =Y. Wi(t).

> If the algorithm makes a mistake in round t, at least half
of the weight decreases by a factor of 1 — n:

1 1 n
) < @O (24 2(1—m) | = p® (1 _ _)
< >+t A=) 2
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Online Expert Learning

* Theorem: Foreveryiand T,

2Inn
M < 2(1 +n) mm +—

* Proof:
> (I)(l) =N

M)
> Thus: ®(T+1) < n( — g)

(T)
> Weight of expert i: W(T+1) =1 —-—n)"

» Use dT+D > 1y (T“) and —In(1 —17) <7 +7n?
(asn < 1/2).
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Online Expert Learning

e Beautiful!
> Comparison to the best expert in hindsight.

> At most (roughly) twice as many mistakes + small additive
term

> In the worst case over how experts make mistakes
o No statistical assumptions.
» Simple policy to implement.

* It can be shown that this bound is tight for any
deterministic algorithm.
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Randomized Weighted Majority

 Randomization = beat the factor of 2
* Simple Change:
> At the beginning of round ¢, let
O Cbgt) = total weight of experts predicting 1
O CID((,t) = total weight of experts predicting O

> Deterministic: predict 1 if Cbgt) > CD(()t), O otherwise.
(t)

. . . . > .
> Randomized: predict 1 with probability CID(lt):dDgt)' 0 with

the remaining probability.
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Randomized Weighted Majority

e Equivalently:
> “Pick an expert with probability proportional to weight, and
go with their prediction”

. (0 _ Wi’
> Pr[picking expertiinstept] =p,” = $

e Let bi(t) = 1 if expert i makes a mistake in step t, 0 otherwise.

* Algorithm makes a mistake in round t with probability
i

 E[#mistakes after T rounds] = Z{zl p(t) . p©
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Randomized Weighted Majority

Pt+1) — ZiW_(t+1) _ ZiWi(t) . (1 . Ubi(t))

l
t t
= o® —no® 3 p” - b
= o®(1 —np® . p®)
< p® exp(—n p® . b(t))

* Applying iteratively:
& T+ < . exp(—n - E[#mistakes])

(T)
* But dT+D > Wi(ﬂl) > (1 - n)miT
* QED!
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Randomized Weighted Majority

Theorem: For every i and T, the expected number of
mistakes of randomized weighted majority in the first T

rounds is 51
nn
MDD < (1+ n)m(T) +— .
 Settingn = lnTn . M™ < m(T) + 0(\/T In n)

We say that the algorithm has O(VT - Inn) regret

Sublinear regretin T
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How is this related to
the minimax theorem?!!
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Minimax via Regret Learning

Recall:

Vg = max, min, x{ 4x,

Ve = min,, max, x; Ax,

Row player’s guarantee: my reward = Vp

Column player’s guarantee: row player’s reward < V.

Hence, Vp < V. (trivial direction)

To prove: IV =V,
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Minimax via Regret Learning

* Scale valuesin A to bein [0,1].
> Without loss of generality.

* Suppose for contradiction that V, =V, — 6,6 > 0.

e Suppose row player R uses randomized weighted
majority (experts = row player’s actions)
> In each round, column player C responds by choosing her
action that minimizes the row player’s expected reward.
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Minimax via Regret Learning

e After T iterations, row player’s reward is:

>V <T-Vy

> V = “reward of best action in hindsight” — 0(\/T - In n)
o Reward of best action in hindsight = T - V.
o Why?
o Suppose column player plays action j; in round t
o Equivalent to playing mixed strategy s in each round

* spickst € {1, ..., T} at random and plays j;

o By definition of V-, s cannot ensure that row player’s
reward is less than V

* Then, there is an action of row player with E[reward]
at least /- against s
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Minimax via Regret Learning

e After T iterations, row player’s reward is:
>V <T-Vy
>V =T V. —O0KT -Inn)
T -Vg=T -(Ve—68)=T V. — 0T -1nn)
>8T <O(T-Inn)
> Contradiction for sufficiently large T.

* QED!
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Yao's Minimax Principle

e Goal:

> Provide a lower bound on the expected running time that
any randomized algorithm for a problem can achieve in
the worst case over problem instances

* Note:

> Expectation (in running time) is over randomization of the
algorithm

> The problem instance (worst case) is chosen to maximize
this expected running time
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Yao's Minimax Principle

* Notation
> Capital letters for “randomized”, small for deterministic
> d : a deterministic algorithm
> R : a randomized algorithm
> P :aproblem instance
> P : a distribution over problem instances
» T : running time

e We are interested in

min max T(R,p)
R p
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Yao's Minimax Principle

Det. Algorithms

__Running

_— | times

4

-

<«— Problem Instances —
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Yao's Minimax Principle

e Minimax Theorem:

min max T(R,p) = max min T(d, P)
R D P d

* So:
> To lower bound the E[running time] of any randomized
algorithm R on its worst-case instance p by a quantity Q...

> Choose a distribution P over problem instances, and
show that every det. algorithm d has expected running
time at least Q on problems drawn from P
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