CSC304 Lecture 6

Game Theory : Minimax Theorem via Expert Learning

2-Player Zero-Sum Games

- Reward of P2 = Reward of P1
 - Matrix A s.t. A_{i,j} is reward to P1 when P1 chooses her ith action and P2 chooses her jth action
 - > Mixed strategy profile $(x_1, x_2) \rightarrow$ reward to P1 is $x_1^T A x_2$
- Minimax Theorem: For all A,

 $\max_{x_1} \min_{x_2} x_1^T A x_2 = \min_{x_2} \max_{x_1} x_1^T A x_2$

> Proof through online expert learning!

• Setup:

- > On each day, we want to predict if a stock price will go up or down
- n experts provide their predictions every day
 Each expert says either up or down
- > Based on their advice, we make a final prediction
- > At the end of the day, we learn if our prediction was correct (reward = 1) or wrong (reward = 0)

• Goal:

> Do almost as good as the best expert in hindsight!

- Notation
 - > *n* = #experts
 - > Predictions and ground truth: 1 or 0
 - > $m_i^{(T)}$ = #mistakes of expert *i* in first *T* steps
 - > $M^{(T)}$ = #mistakes of the algorithm in first T steps

• Simplest idea:

- Keep a weight for each expert
- > Use weighted majority of experts to make prediction
- Decrease the weight of an expert whenever the expert makes a mistake

- Weighted Majority:
 - \succ Fix $\eta \leq 1/2$.
 - > Start with $w_i^{(1)} = 1$.
 - In time step t, predict 1 if the total weight of experts predicting 1 is larger than the total weight of experts predicting 0, and vice-versa.

> At the end of time step t, set $w_i^{(t+1)} \leftarrow w_i^{(t)} \cdot (1 - \eta)$ for every expert that made a mistake.

Theorem: For every *i* and *T*,

$$M^{(T)} \le 2(1+\eta) m_i^{(T)} + \frac{2\ln n}{\eta}$$

• Proof:

> Consider a "potential function" $\Phi^{(t)} = \sum_i w_i^{(t)}$.

> If the algorithm makes a mistake in round t, at least half of the weight decreases by a factor of $1 - \eta$:

$$\Phi^{(t+1)} \le \Phi^{(t)} \left(\frac{1}{2} + \frac{1}{2} (1-\eta) \right) = \Phi^{(t)} \left(1 - \frac{\eta}{2} \right)$$

• Theorem: For every i and T, $M^{(T)} \le 2(1+\eta) m_i^{(T)} + \frac{2\ln n}{\eta}$

• Proof:

$$\begin{split} & \Rightarrow \Phi^{(1)} = n \\ & \Rightarrow \text{Thus: } \Phi^{(T+1)} \leq n \left(1 - \frac{\eta}{2}\right)^{M^{(T)}}. \\ & \Rightarrow \text{Weight of expert } i: w_i^{(T+1)} = (1 - \eta)^{m_i^{(T)}} \\ & \Rightarrow \text{Use } \Phi^{(T+1)} \geq w_i^{(T+1)} \text{ and } - \ln(1 - \eta) \leq \eta + \eta^2 \\ & \text{(as } \eta \leq 1/2). \end{split}$$

- Beautiful!
 - > Comparison to the best expert *in hindsight*.
 - > At most (roughly) twice as many mistakes + small additive term
 - In the worst case over how experts make mistakes
 - \circ No statistical assumptions.
 - Simple policy to implement.
- It can be shown that this bound is tight for any deterministic algorithm.

- Randomization \Rightarrow beat the factor of 2
- Simple Change:
 - > At the beginning of round *t*, let

$$\circ \Phi_1^{(t)}$$
 = total weight of experts predicting 1
 $\circ \Phi_0^{(t)}$ = total weight of experts predicting 0

- > Deterministic: predict 1 if $\Phi_1^{(t)} > \Phi_0^{(t)}$, 0 otherwise.
- > Randomized: predict 1 with probability $\frac{\Phi_1^{(t)}}{\Phi_1^{(t)} + \Phi_0^{(t)}}$, 0 with the remaining probability.

- Equivalently:
 - "Pick an expert with probability proportional to weight, and go with their prediction"
 - > Pr[picking expert *i* in step *t*] = $p_i^{(t)} = \frac{w_i^{(t)}}{\Phi^{(t)}}$
- Let $b_i^{(t)} = 1$ if expert *i* makes a mistake in step *t*, 0 otherwise.
- Algorithm makes a mistake in round t with probability

$$\sum_{i} p_i^{(t)} b_i^{(t)} = \boldsymbol{p}^{(t)} \cdot \boldsymbol{b}^{(t)}$$

• $E[\text{#mistakes after } T \text{ rounds}] = \sum_{t=1}^{T} p^{(t)} \cdot b^{(t)}$

$$\begin{split} \Phi^{(t+1)} &= \sum_{i} w_{i}^{(t+1)} = \sum_{i} w_{i}^{(t)} \cdot \left(1 - \eta b_{i}^{(t)}\right) \\ &= \Phi^{(t)} - \eta \Phi^{(t)} \sum_{i} p_{i}^{(t)} \cdot b_{i}^{(t)} \\ &= \Phi^{(t)} \left(1 - \eta p^{(t)} \cdot b^{(t)}\right) \\ &\leq \Phi^{(t)} \exp\left(-\eta p^{(t)} \cdot b^{(t)}\right) \end{split}$$

- Applying iteratively: $\Phi^{(T+1)} \le n \cdot \exp(-\eta \cdot E[\#\text{mistakes}])$
- But $\Phi^{(T+1)} \ge w_i^{(T+1)} \ge (1-\eta)^{m_i^{(T)}}$
- QED!

• Theorem: For every *i* and *T*, the expected number of mistakes of randomized weighted majority in the first *T* rounds is

$$M^{(T)} \le (1+\eta)m_i^{(T)} + \frac{2\ln n}{\eta}$$

• Setting
$$\eta = \sqrt{\frac{\ln n}{T}} : M^{(T)} \le m_i^{(T)} + O(\sqrt{T \cdot \ln n})$$

- We say that the algorithm has $O(\sqrt{T \cdot \ln n})$ regret
- Sublinear regret in T
- Regret per round $\rightarrow 0$ as $T \rightarrow \infty$

How is this related to the minimax theorem?!!

• Recall:

$$V_R = \max_{x_1} \min_{x_2} x_1^T A x_2$$
$$V_C = \min_{x_2} \max_{x_1} x_1^T A x_2$$

- Row player's guarantee: my reward $\geq V_R$
- Column player's guarantee: row player's reward $\leq V_C$
- Hence, $V_R \leq V_C$ (trivial direction)
- To prove: $V_R = V_C$

- Scale values in A to be in [0,1].
 > Without loss of generality.
- Suppose for contradiction that $V_R = V_C \delta$, $\delta > 0$.
- Suppose row player R uses randomized weighted majority (experts = row player's actions)
 - In each round, column player C responds by choosing her action that minimizes the row player's expected reward.

- After T iterations, row player's reward is:
 - $> V \leq T \cdot V_R$
 - > V ≥ "reward of best action in hindsight" $O(\sqrt{T \cdot \ln n})$ Reward of best action in hindsight ≥ $T \cdot V_C$.
 Why?
 - \odot Suppose column player plays action j_t in round t
 - \circ Equivalent to playing mixed strategy s in each round
 - s picks $t \in \{1, ..., T\}$ at random and plays j_t
 - \odot By definition of V_C , s cannot ensure that row player's reward is less than V_C
 - Then, there is an action of row player with E[reward] at least V_C against s

• After *T* iterations, row player's reward is:

$$V \leq T \cdot V_{R}$$

$$V \geq T \cdot V_{C} - O(\sqrt{T \cdot \ln n})$$

$$T \cdot V_{R} = T \cdot (V_{C} - \delta) \geq T \cdot V_{C} - O(\sqrt{T \cdot \ln n})$$

$$\delta T \leq O(\sqrt{T \cdot \ln n})$$

> Contradiction for sufficiently large T.

• QED!

• Goal:

- Provide a lower bound on the expected running time that any randomized algorithm for a problem can achieve in the worst case over problem instances
- Note:
 - Expectation (in running time) is over randomization of the algorithm
 - The problem instance (worst case) is chosen to maximize this expected running time

- Notation
 - Capital letters for "randomized", small for deterministic
 - > d : a deterministic algorithm
 - > R : a randomized algorithm
 - > p : a problem instance
 - > P : a distribution over problem instances
 - ≻ T : running time
- We are interested in $\min_{R} \max_{p} T(R,p)$

• Minimax Theorem:

 $\min_{R} \max_{p} T(R,p) = \max_{P} \min_{d} T(d,P)$

- So:
 - To lower bound the E[running time] of any randomized algorithm R on its worst-case instance p by a quantity Q...
 - Choose a distribution P over problem instances, and show that every det. algorithm d has expected running time at least Q on problems drawn from P