
CSC304 Lecture 6

Game Theory : 
Minimax Theorem via 

Expert Learning
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2-Player Zero-Sum Games
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• Reward of P2 = - Reward of P1

➢ Matrix 𝐴 s.t. 𝐴𝑖,𝑗 is reward to P1 when P1 chooses her 𝑖𝑡ℎ

action and P2 chooses her 𝑗𝑡ℎ action

➢ Mixed strategy profile (𝑥1, 𝑥2) → reward to P1 is 𝑥1
𝑇 𝐴 𝑥2

• Minimax Theorem: For all 𝐴,

max
𝑥1

min
𝑥2

𝑥1
𝑇 𝐴 𝑥2 = min

𝑥2

max
𝑥1

𝑥1
𝑇 𝐴 𝑥2

➢ Proof through online expert learning!



Online Expert Learning
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• Setup:
➢ On each day, we want to predict if a stock price will go up 

or down

➢ 𝑛 experts provide their predictions every day

o Each expert says either up or down

➢ Based on their advice, we make a final prediction

➢ At the end of the day, we learn if our prediction was 
correct (reward = 1) or wrong (reward = 0)

• Goal:
➢ Do almost as good as the best expert in hindsight!



Online Expert Learning
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• Notation
➢ 𝑛 = #experts

➢ Predictions and ground truth: 1 or 0

➢ 𝑚𝑖
(𝑇)

= #mistakes of expert 𝑖 in first 𝑇 steps

➢ 𝑀(𝑇) = #mistakes of the algorithm in first 𝑇 steps

• Simplest idea: 
➢ Keep a weight for each expert

➢ Use weighted majority of experts to make prediction

➢ Decrease the weight of an expert whenever the expert 
makes a mistake



Online Expert Learning
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• Weighted Majority:
➢ Fix 𝜂 ≤ 1/2.

➢ Start with 𝑤𝑖
(1)

= 1.

➢ In time step 𝑡, predict 1 if the total weight of experts 
predicting 1 is larger than the total weight of experts 
predicting 0, and vice-versa.

➢ At the end of time step 𝑡, set 𝑤𝑖
(𝑡+1)

← 𝑤𝑖
(𝑡)

⋅ (1 − 𝜂) for 
every expert that made a mistake.



Online Expert Learning
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• Theorem: For every 𝑖 and 𝑇,

𝑀(𝑇) ≤ 2 1 + 𝜂 𝑚𝑖
(𝑇)

+
2 ln 𝑛

𝜂

• Proof:

➢ Consider a “potential function” Φ(𝑡) = σ𝑖 𝑤𝑖
(𝑡)

.

➢ If the algorithm makes a mistake in round 𝑡, at least half 
of the weight decreases by a factor of 1 − 𝜂:

Φ(𝑡+1) ≤ Φ(𝑡)
1

2
+

1

2
1 − 𝜂 = Φ(𝑡) 1 −

𝜂

2



Online Expert Learning
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• Theorem: For every 𝑖 and 𝑇,

𝑀(𝑇) ≤ 2 1 + 𝜂 𝑚𝑖
(𝑇)

+
2 ln 𝑛

𝜂

• Proof:
➢ Φ(1) = 𝑛

➢ Thus: Φ(𝑇+1) ≤ 𝑛 1 −
𝜂

2

𝑀(𝑇)

.

➢ Weight of expert 𝑖: 𝑤𝑖
(𝑇+1)

= 1 − 𝜂 𝑚𝑖
(𝑇)

➢ Use Φ(𝑇+1) ≥ 𝑤𝑖
𝑇+1

and − ln 1 − 𝜂 ≤ 𝜂 + 𝜂2

(as 𝜂 ≤ 1/2).



Online Expert Learning
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• Beautiful!
➢ Comparison to the best expert in hindsight.

➢ At most (roughly) twice as many mistakes + small additive 
term

➢ In the worst case over how experts make mistakes 

oNo statistical assumptions.

➢ Simple policy to implement.

• It can be shown that this bound is tight for any 
deterministic algorithm.



Randomized Weighted Majority
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• Randomization ⇒ beat the factor of 2

• Simple Change:
➢ At the beginning of round 𝑡, let 

oΦ1
(𝑡)

= total weight of experts predicting 1

oΦ0
𝑡

= total weight of experts predicting 0

➢ Deterministic: predict 1 if Φ1
(𝑡)

> Φ0
(𝑡)

, 0 otherwise.

➢ Randomized: predict 1 with probability 
Φ1

𝑡

Φ1
(𝑡)

+Φ0
(𝑡), 0 with 

the remaining probability.



Randomized Weighted Majority
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• Equivalently:

➢ “Pick an expert with probability proportional to weight, and 
go with their prediction”

➢ Pr[picking expert 𝑖 in step 𝑡] = 𝑝𝑖
𝑡

=
𝑤𝑖

𝑡

Φ 𝑡

• Let 𝑏𝑖
𝑡

= 1 if expert 𝑖 makes a mistake in step 𝑡, 0 otherwise.

• Algorithm makes a mistake in round 𝑡 with probability 

෍

𝑖

𝑝𝑖
𝑡

𝑏𝑖
𝑡

= 𝒑 𝑡 ⋅ 𝒃 𝑡

• 𝐸[#mistakes after 𝑇 rounds] = σ𝑡=1
𝑇 𝒑 𝑡 ⋅ 𝒃 𝑡



Randomized Weighted Majority
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Φ 𝑡+1 = σ𝑖 𝑤𝑖
𝑡+1

= σ𝑖 𝑤𝑖
𝑡

⋅ 1 − 𝜂𝑏𝑖
𝑡

= Φ 𝑡 − 𝜂 Φ 𝑡 σ𝑖 𝑝𝑖
𝑡

⋅ 𝑏𝑖
𝑡

= Φ 𝑡 1 − 𝜂 𝒑 𝑡 ⋅ 𝒃 𝑡

≤ Φ 𝑡 exp −𝜂 𝒑 𝑡 ⋅ 𝒃 𝑡

• Applying iteratively:
Φ 𝑇+1 ≤ 𝑛 ⋅ exp −𝜂 ⋅ 𝐸 #mistakes

• But Φ 𝑇+1 ≥ 𝑤𝑖
𝑇+1

≥ 1 − 𝜂 𝑚𝑖
𝑇

• QED!



Randomized Weighted Majority
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• Theorem: For every 𝑖 and 𝑇, the expected number of 
mistakes of randomized weighted majority in the first 𝑇
rounds is

𝑀 𝑇 ≤ 1 + 𝜂 𝑚𝑖
𝑇

+
2 ln 𝑛

𝜂

• Setting 𝜂 =
ln 𝑛

𝑇
: 𝑀 𝑇 ≤ 𝑚𝑖

𝑇
+ 𝑂 𝑇 ⋅ ln 𝑛

• We say that the algorithm has 𝑂 𝑇 ⋅ ln 𝑛 regret

• Sublinear regret in 𝑇

• Regret per round → 0 as 𝑇 → ∞
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How is this related to 
the minimax theorem?!!



Minimax via Regret Learning
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• Recall:

𝑉𝑅 = max𝑥1
min𝑥2

𝑥1
𝑇 𝐴 𝑥2

𝑉𝐶 = min𝑥2
max𝑥1

𝑥1
𝑇 𝐴 𝑥2

• Row player’s guarantee: my reward ≥ 𝑉𝑅

• Column player’s guarantee: row player’s reward ≤ 𝑉𝐶

• Hence, 𝑉𝑅 ≤ 𝑉𝐶 (trivial direction)

• To prove: 𝑉𝑅 = 𝑉𝐶



Minimax via Regret Learning
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• Scale values in 𝐴 to be in [0,1].
➢ Without loss of generality.

• Suppose for contradiction that 𝑉𝑅 = 𝑉𝐶 − 𝛿, 𝛿 > 0.

• Suppose row player 𝑅 uses randomized weighted 
majority (experts = row player’s actions)
➢ In each round, column player 𝐶 responds by choosing her 

action that minimizes the row player’s expected reward.



Minimax via Regret Learning
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• After 𝑇 iterations, row player’s reward is:

➢ 𝑉 ≤ 𝑇 ⋅ 𝑉𝑅

➢ 𝑉 ≥ “reward of best action in hindsight” − 𝑂 𝑇 ⋅ ln 𝑛

oReward of best action in hindsight ≥ 𝑇 ⋅ 𝑉𝐶 . 

oWhy?

o Suppose column player plays action 𝑗𝑡 in round 𝑡

o Equivalent to playing mixed strategy 𝑠 in each round

• 𝑠 picks 𝑡 ∈ {1, … , 𝑇} at random and plays 𝑗𝑡

oBy definition of 𝑉𝐶 , 𝑠 cannot ensure that row player’s 
reward is less than 𝑉𝐶

• Then, there is an action of row player with E[reward] 
at least 𝑉𝐶 against 𝑠



Minimax via Regret Learning
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• After 𝑇 iterations, row player’s reward is:

➢ 𝑉 ≤ 𝑇 ⋅ 𝑉𝑅

➢ 𝑉 ≥ 𝑇 ⋅ 𝑉𝐶 − 𝑂 𝑇 ⋅ ln 𝑛

➢ 𝑇 ⋅ 𝑉𝑅 = 𝑇 ⋅ (𝑉𝐶 − 𝛿) ≥ 𝑇 ⋅ 𝑉𝐶 − 𝑂 𝑇 ⋅ ln 𝑛

➢ 𝛿 𝑇 ≤ 𝑂 𝑇 ⋅ ln 𝑛

➢ Contradiction for sufficiently large 𝑇.

• QED!



Yao’s Minimax Principle
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• Goal: 
➢ Provide a lower bound on the expected running time that 

any randomized algorithm for a problem can achieve in 
the worst case over problem instances

• Note:
➢ Expectation (in running time) is over randomization of the 

algorithm

➢ The problem instance (worst case) is chosen to maximize 
this expected running time



Yao’s Minimax Principle
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• Notation
➢ Capital letters for “randomized”, small for deterministic

➢ 𝑑 : a deterministic algorithm

➢ 𝑅 : a randomized algorithm

➢ 𝑝 : a problem instance

➢ 𝑃 : a distribution over problem instances

➢ 𝑇 : running time

• We are interested in
min

𝑅
max

𝑝
𝑇(𝑅, 𝑝)



Yao’s Minimax Principle
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Det. Algorithms
P

ro
b

le
m

 In
st

an
ce

s Running 
times



Yao’s Minimax Principle
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• Minimax Theorem:
min

𝑅
max

𝑝
𝑇(𝑅, 𝑝) = max

𝑃
min

𝑑
𝑇(𝑑, 𝑃)

• So:
➢ To lower bound the E[running time] of any randomized 

algorithm 𝑅 on its worst-case instance 𝑝 by a quantity 𝑄…

➢ Choose a distribution 𝑃 over problem instances, and 
show that every det. algorithm 𝑑 has expected running 
time at least 𝑄 on problems drawn from 𝑃


