CSC304 Lecture 7

Game Theory : Security games, Applications to security

Until now...

- Simultaneous-move Games
- All players act simultaneously
- Nash equilibria = stable outcomes
- Each player is best responding to the strategies of all other players

Sequential Move Games

- Focus on two players: "leader" and "follower"
- 1. Leader commits to a (possibly mixed) strategy x_1
 - Cannot change later
- 2. Follower learns about x_1
 - Follower must believe that leader's commitment is credible
- 3. Follower chooses the best response x_2
 - > Can assume to be a pure strategy without loss of generality
 - If multiple actions are best response, break ties in favor of the leader

Sequential Move Games

- Wait. Does this give us anything new?
 - Can't I, as player 1, commit to playing x₁ in a simultaneous-move game too?
 - > Player 2 wouldn't believe you.

That's unless...

• You're as convincing as this guy.

How to represent the game?

- Extensive form representation
 - > Can also represent "information sets", multiple moves, ...

A Curious Case

P2 P1	Left	Right
Up	(1 , 1)	(3 , 0)
Down	(0 , 0)	(2 , 1)

- Q: What are the Nash equilibria of this game?
- Q: You are P1. What is your reward in Nash equilibrium?

A Curious Case

- Q: As P1, you want to commit to a pure strategy. Which strategy would you commit to?
- Q: What would your reward be now?

Commitment Advantage

P2 P1	Left	Right
Up	(1 , 1)	(3 , 0)
Down	(0 , 0)	(2 , 1)

- Reward in the unique Nash equilibrium = 1
- Reward when committing to Down = 2

Commitment Advantage

P2 P1	Left	Right
Up	(1 , 1)	(3 , 0)
Down	(0 , 0)	(2 , 1)

- Higher reward in committing to a mixed strategy
 - > P1 commits to: Up w.p. 0.5ϵ , Down w.p. $0.5 + \epsilon$
 - > P2 is still better off playing Right
 - \succ E[Reward] to P1 \approx 2.5
 - Note: If P1 plays both actions with probability exactly 0.5, we assume P2 plays Right (break ties in favor of leader)

Stackelberg vs Nash

- Committing first is always better than playing a simultaneous-move game?
- Yes!
 - If (x₁^{*}, x₂^{*}) is a NE, P1 can always commit to x₁^{*}, ensure that P2 will play x₂^{*}, and achieve the reward in the NE
 P1 may be able to commit to a better strategy than x₁^{*}
- Applications to security
 - Law enforcement is better off committing to a mixed patrolling strategy, and announcing the strategy publicly!

Stackelberg in Zero-Sum

• Recall the minimax theorem:

$$\max_{x_1} \min_{x_2} x_1^T A x_2 = \min_{x_2} \max_{x_1} x_1^T A x_2$$

- P1 goes first \rightarrow P1 chooses her minimax strategy
- P2 goes first \rightarrow P2 chooses her minimax strategy
- Minimax Theorem: It doesn't make a difference!
 Simultaneous-move P1 going first and P2 going first are
 - Simultaneous-move, P1 going first, and P2 going first are essentially identical scenarios.

Stackelberg in General-Sum

• 2-player non-zero-sum game with reward matrices A and $B \neq -A$ for the two players

$$\max_{x_1} x_1^T A f(x_1)$$

where
$$f(x_1) = \underset{x_2}{\operatorname{argmax}} x_1^T B x_2$$

• How do we compute this?

P2 P1	Left	Right
Up	(1 , 1)	(3 , 0)
Down	(0 , 0)	(2 , 1)

- Let us separately maximize the reward of P1 in 2 cases:
 - Strategies that cause P2 to play Left
 - Strategies that cause P2 to play Right
- Suppose P1 commits to Up w.p. p, Down w.p. 1 p

P2 P1	Left	Right
Up	(1 , 1)	(3 , 0)
Down	(0 , 0)	(2 , 1)

• Strategies that cause P2 to play Left

Reward of P1 assuming P2 plays Left

Max
$$p \cdot 1 + (1 - p) \cdot 0$$

s. t.
 $p \cdot 1 + (1 - p) \cdot 0 \ge p \cdot 0 + (1 - p) \cdot 1$
 $p \in [0,1]$
Condition that
causes P2 to play Left

P2 P1	Left	Right
Up	(1 , 1)	(3 , 0)
Down	(0 , 0)	(2 , 1)

• Strategies that cause P2 to play Left

Max
$$p$$

s.t. Answer=1
 $p \ge 1 - p$
 $p \in [0,1]$

P2 P1	Left	Right
Up	(1 , 1)	(3 , 0)
Down	(0 , 0)	(2 , 1)

• Strategies that cause P2 to play Right

Max
$$p \cdot 3 + (1 - p) \cdot 2$$

s.t.
 $p \cdot 1 + (1 - p) \cdot 0 \le p \cdot 0 + (1 - p) \cdot 1$
 $p \in [0,1]$
Answer=2.5

Stackelberg via LPs

- High-level Idea:
 - > For each action s_2^* of P2...
 - Write a *linear program* with the mixed strategy x₁ of P1 as the unknown, which...
 - Maximizes the reward of P1 when P1 plays x₁, P2 responds with s₂^{*}...
 - > Subject to the constraint that x_1 in fact incentivizes P2 to play s_2^*

Stackelberg via LPs

• S_1 , S_2 = sets of actions of leader and follower

•
$$|S_1| = m_1, |S_2| = m_2$$

- $x_1(s_1)$ = probability of leader playing s_1
- π_1 , π_2 = reward functions for leader and follower

$$\max \Sigma_{s_1 \in S_1} x_1(s_1) \cdot \pi_1(s_1, s_2^*)$$

subject to
$$\forall s_2 \in S_2, \ \Sigma_{s_1 \in S_1} x_1(s_1) \cdot \pi_2(s_1, s_2^*) \ge$$

$$\Sigma_{s_1 \in S_1} x_1(s_1) \cdot \pi_2(s_1, s_2)$$

$$\Sigma_{s_1 \in S_1} x_1(s_1) = 1$$

$$\forall s_1 \in S_1, x_1(s_1) \ge 0$$

- One LP for each s_2^* , take the maximum over all m_2 LPs
- The LP corresponding to s₂^{*} optimizes over all x₁ for which s₂^{*} is the best response

Real-World Applications

- Security Games
 - Defender (leader) has k identical patrol units
 - Defender wants to defend a set of n targets T
 - > In a pure strategy, each resource can protect a subset of targets $S \subseteq T$ from a given collection S
 - A target is covered if it is protected by at least one resource
 - Attacker wants to select a target to attack

Real-World Applications

• Security Games

- For each target, the defender and the attacker have two utilities: one if the target is covered, one if it is not.
- Defender commits to a mixed strategy; attacker follows by choosing a target to attack.

Ah!

- Q: Because this is a 2-player Stackelberg game, can we just compute the optimal strategy for the defender in polynomial time...?
- Time is polynomial in the number of pure strategies of the defender
 - > In security games, this is $|\mathcal{S}|^k$
 - > Exponential in k
- Intricate computational machinery required...

Newsweek National News

Subscribe Now Make Newsweek Your Homepage Newsletters R55

The Element of Surprise

To help combat the terrorism threat, officials at Los Angeles Inter Airport are introducing a bold new idea into their arsenal: random of security checkpoints. Can game theory help keep us safe?

WEB EXCLUSIVE

By Andrew Murr Newsweek Updated: 1:00 p.m. PT Sept 28, 2007

Sept. 28, 2007 - Security officials at Los Angeles International Airport now have a new weapon in their fight against terrorism: complete, baffling randomness. Anxious to thwart future terror attacks in the early stages while plotters are casing the airport, LAX security patrols have begun using a new software program called ARMOR, NEWSWEEK has learned, to make the placement of security checkpoints completely unpredictable. Now all airport security officials have to do is press a button labeled

Security forces work the sidewalk -

"Randomize," and they can throw a sort of digital cloak of invisibility over where they place the cops' antiterror checkpoints on any given day.

LAX

Real-World Applications

- Protecting entry points to LAX
- Scheduling air marshals on flights
 - > Must return home
- Protecting the Staten Island Ferry
 Continuous-time strategies
- Fare evasion in LA metro
 Bathroom breaks !!!
- Wildlife protection in Ugandan forests
 - Poachers are not fully rational
- Cyber security

. . .