CSC304 Lecture 9

Mechanism Design with Money: More VCG examples; greedy approximation of VCG; sponsored search

VCG Recap

f(ṽ) = a* = argmax_{a∈A} ∑_i ṽ_i(a)
 ≻ Choose the allocation maximizing *reported* welfare

•
$$p_i(\tilde{v}) = \left[\max_{a} \sum_{j \neq i} \tilde{v}_j(a)\right] - \left[\sum_{j \neq i} \tilde{v}_j(a^*)\right]$$

> Each agent pays the loss to others due to her presence

- Four properties
 - Strategyproofness
 - > Individual rationality (IR)
 - No payments to agents
 - > Welfare maximization

Seller as Agent

- Seller (S) wants to sell his car (c) to buyer (B)
- Seller has a value for his own car: $v_S(c)$
 - > Individual rationality for the seller mandates that seller must get revenue at least $v_S(c)$
- Idea: Add seller as another agent, and make his values part of the welfare calculations!

Seller as Agent

 $v_S(c) = 3$

- What if...
 - > We give the car to buyer when $v_B(c) > v_S(c)$ and
 - > Buyer pays seller $v_B(c)$: Not strategyproof for buyer!
 - > Buyer pays seller $v_S(c)$: Not strategyproof for seller!

What would VCG do?

 $v_S(c) = 3$

 $v_B(c) = 5$

- Allocation?
 - > Buyer gets the car (welfare = 5)
- Payment?
 - > Buyer pays: 3 0 = 3
 - > Seller pays: 0 5 = -5

Mechanism takes \$3 from buyer, and gives \$5 to the seller!

• Need external subsidy

Problems with VCG

- Difficult to understand
 - Need to reason about what welfare maximizing allocation in agent *i*'s absence
- Does not care about revenue
 > Although we can lower bound its revenue
- With sellers as agents, need subsidy
 With no subsidy, cannot get the other three properties
- Might be NP-hard to compute

Single-Minded Bidders

- Combinatorial auction for a set of *m* items *S*
- Each agent *i* has two private values (v_i, S_i)
 - $> S_i \subseteq S$ is the set of desired items
 - > When given a bundle of items A_i , agent has value v_i if S_i ⊆ A_i and 0 otherwise
 - Single-minded
- Welfare-maximizing allocation
 - > Agent *i* either gets S_i or nothing
 - Find a subset of players with the highest total value such that their desired sets are disjoint

Single-Minded Bidders

- Weighted Independent Set (WIS) problem
 - > Given a graph with weights on nodes, find an independent set of nodes with the maximum weight
 - Known to be NP-hard
- Easy to reduce our problem to WIS
 - > Not even $O(m^{0.5-\epsilon})$ approximation of welfare unless $NP \subseteq ZPP$
- Luckily, there's a simple, $\sqrt{m}\mbox{-approximation}$ greedy algorithm

Greedy Algorithm

- Input: (v_i, S_i) for each agent i
- Output: Agents with mutually independent S_i
- Greedy Algorithm:
 - Sort the agents in a specific order (we'll see).
 - > Relabel them as 1,2, ..., n in this order.
 - $\succ W \leftarrow \emptyset$
 - ≻ For i = 1, ..., n:
 - If $S_i \cap S_j = \emptyset$ for every $j \in W$, then $W \leftarrow W \cup \{i\}$

 \succ Give agents in W their desired items.

Greedy Algorithm

- Sort by what?
- We want to satisfy agents with higher values. > $v_1 \ge v_2 \ge \cdots \ge v_n \Rightarrow m$ -approximation \bigotimes
- But we don't want to exhaust too many items. $\geq \frac{v_1}{|S_1|} \geq \frac{v_2}{|S_2|} \geq \cdots \frac{v_n}{|S_n|} \Rightarrow m$ -approximation \circledast
- \sqrt{m} -approximation : $\frac{v_1}{\sqrt{|S_1|}} \ge \frac{v_2}{\sqrt{|S_2|}} \ge \cdots \frac{v_n}{\sqrt{|S_n|}}$?

[Lehmann et al. 2011]

Proof of Approximation

- Definitions
 - > *OPT* = Agents satisfied by the optimal algorithm
 - > W = Agents satisfied by the greedy algorithm

> For
$$i \in W$$
,
 $OPT_i = \{j \in OPT, j \ge i : S_i \cap S_j \neq \emptyset\}$

- Claim 1: $OPT \subseteq \bigcup_{i \in W} OPT_i$
- Claim 2: It is enough to show that $\forall i \in W$ $\sqrt{m} \cdot v_i \ge \Sigma_{j \in OPT_i} v_j$

• Observation: For
$$j \in OPT_i$$
, $v_j \le v_i \cdot \frac{\sqrt{|S_j|}}{\sqrt{|S_i|}}$

Proof of Approximation

• Summing over all $j \in OPT_i$:

$$\Sigma_{j \in OPT_i} v_j \leq \frac{v_i}{\sqrt{|S_i|}} \cdot \Sigma_{j \in OPT_i} \sqrt{|S_j|}$$

• Using Cauchy-Schwarz (
$$\Sigma_i \ x_i y_i \leq \sqrt{\Sigma_i \ x_i^2 \cdot \sqrt{\Sigma_i \ y_i^2}}$$
)
 $\Sigma_{j \in OPT_i} \sqrt{|S_j| \cdot 1} \leq \sqrt{|OPT_i|} \cdot \sqrt{\Sigma_{j \in OPT_i} \ |S_j|}$
 $\leq \sqrt{|S_i|} \cdot \sqrt{m}$

Strategyproofness

• Agent i pays $p_i = v_{j^*} \cdot \sqrt{\frac{|S_i|}{|S_{j^*}|}}$

> j^* is the smallest index j > i such that $S_j \cap S_i \neq \emptyset$ and $S_j \cap S_k = \emptyset$ for all $k < j, k \neq i$

- How do I interpret j^* and p_i ?
 - > j^* = agent such that if agent i reports a value \tilde{v}_i low enough to fall below j^* in the ordering, she stops winning. Otherwise, she wins.
 - > p_i = lowest value *i* can report and still win

Strategyproofness

- Critical payment
 - > Charge each agent the lowest value they can report and still win
- Monotonic allocation
 - > If agent *i* wins when reporting (v_i, S_i) , she must win when reporting $v'_i \ge v_i$ and $S'_i \subseteq S_i$.
 - > Greedy allocation rule satisfies this.
- Theorem: Critical payment + monotonic allocation rule imply strategyproofness.

Moral

- VCG can sometimes be too difficult to implement
 - > May look into approximately maximizing welfare
 - > As long as the allocation rule is monotone, we can charge critical payments to achieve strategyproofness
 - > Note: approximation is needed for computational reasons
- Later in mechanism design without money...
 - > We will not be able to use payments to achieve strategyproofness
 - Hence, we will need to approximate welfare just to get strategyproofness, even without any computational restrictions

Sponsored Search Auctions

About 549,000 results (0.84 seconds)

Need A Good Tax Accountant? - We are Tax Experts in Toronto.

Ad www.taxsos.ca/Tax-Accountant 🔻

Solve Complex Tax Problems Quickly. Service Special. Contact Us Now! Highlights: Team Of Professionals, Free Consultation Available... 9 60 Green Lane, Unit 13, Thornhill, ON - Closing soon · 10:00 AM - 6:00 PM •

About Us

Why Choose Tax SOS

Cost of Services

Contact Us

Looking For An Accountant? - Get Expert & Trusted Advice - intuit.ca

Select From Over 50,000 QuickBooks Pro Advisors Bookkeeping · Accounting Service · Tax & Financial Planning · Quickbooks Setup · Business Consult...

AZ Accounting Toronto - Specializing in Small Business

Ad www.azaccountingfirm.ca/ *

Tax Consulting and Finance Services Services: Financial Statements, Professional Corporations, Self-Employed Individuals...

Specialized Tax Accountant - Best Tax Service For Less Now.

Ad www.crataxrescue.ca/CRATaxProblem/Tax-Accountant 🔻

Quick Relief For CRA Tax Troubles. Get Free Meeting Today. Frequently Asked Question · 3 Easy Steps To Fix Taxes

Sponsored Search Auctions

- A search engine receives a query
- There are k advertisement slots > "Clickthrough rates" : $c_1 \ge c_2 \ge \cdots \ge c_k \ge c_{k+1} = 0$
- There are n advertisers (bidders)
 > Bidder i derives value v_i per click
 - > Value to bidder *i* for slot $j = v_i \cdot c_j$
 - \succ Without loss of generality, $v_1 \geq v_2 \geq \cdots \geq v_n$

• Question:

> Who gets which slot, and how much do they pay?

Sponsored Search : VCG

- VCG
 - > Maximize welfare:
 - \circ bidder *j* gets slot *j* for $1 \leq j \leq k$, other bidders get nothing
 - Payment of bidder j?
- Increase in social welfare to others if j abstains
 Bidders j + 1 through "k + 1" get upgraded by one slot
 - > Payment of bidder $j = \sum_{i=j+1}^{k+1} v_i \cdot (c_{i-1} c_i)$

> Payment of bidder
$$j \text{ per click} = \sum_{i=j+1}^{k+1} v_i \cdot \frac{c_{i-1} - c_i}{c_j}$$

Sponsored Search : VCG

• What if all the clickthrough rates are same?

$$> c_1 = c_2 = \dots = c_k > c_{k+1} = 0$$

- Payment of bidder j <u>per click</u> $\gg \sum_{i=j+1}^{k+1} v_i \cdot \frac{c_{i-1}-c_i}{c_j} = v_{k+1}$
- Bidders 1 through k pay the value of bidder k + 1
 Familiar? VCG for k identical items

Sponsored Search : GSP

- Generalized Second Price Auction (GSP)
 - > For $1 \le j \le k$, bidder j gets slot j and pays the value of bidder j + 1 **per click**
 - > Other bidders get nothing and pay nothing
- Natural extension of the "second price" idea
 - > We considered this before for two identical slots
 - Not strategyproof
 - In fact, truth-telling may not even be a Nash equilibrium
 S

Sponsored Search : GSP

- But there is a good Nash equilibrium that...
 - > realizes the VCG outcome, i.e., maximizes welfare, and
 - ➢ generates as much revenue as VCG ☺ [Edelman et al. 2007]
- Even the worst Nash equilibrium...
 - > gives 1.282-approximation to welfare ($PoA \leq 1.282$) and
 - generates at least half of the revenue of VCG [Caragiannis et al. 2011, Dutting et al. 2011, Lucier et al. 2012]
- So if the players achieve an equilibrium, things aren't so bad.

VCG vs GSP

- VCG
 - Truthful revelation is a dominant strategy, so there's a higher confidence that players will reveal truthfully and the theoretical welfare/revenue guarantees will hold
 - > But it is difficult to convey and understand
- GSP
 - > Need to rely on players reaching a Nash equilibrium
 - > But has good welfare and revenue guarantees and is easy to convey and understand
- Industry is split on this issue too!

From Theory to Reality

- Value is proportional to clickthrough rate?
 - Could it be that users clicking on the 2nd slot are more likely buyers than those clicking on the 1st slot?
- Misaligned values of advertisers and ad engines?
 An advertiser having a high value for a slot does not necessarily mean their ad is appropriate for the slot
- Market competition?
 - > What if there are other ad engines deploying other mechanisms and advertisers are strategic about which ad engines to participate in?