CSC304 Lecture 10

Mechanism Design w/ Money: Sponsored search; Bayesian framework; Bayes-Nash equilibria; First price auction

Announcements

- Reminder:
 - > Assignment 1 is due on Monday, Oct 14 by 3pm
 - > You can take up to two late days for the assignment
 - > On Wednesday, Oct 16, one of the TAs will go over assignment solutions in class

o Assignment solutions will NOT be posted online!

> The first midterm will be on Monday, Oct 21, 3:10-4pm in your assigned tutorial room

Recap : VCG

- Maximizes reported welfare
- Charges each agent the apparent reduction in welfare they cause to others due to their presence
- Satisfies four properties
 - > Welfare maximization
 - Strategyproofness
 - No payments to agents
 - > Individual rationality

This Lecture: More Auctions

- Sponsored search
- Other auction mechanisms
 - > 1st price auction and ascending (English) auction
 - Comparison to the 2nd price auction
- A different type of incentive guarantee
 - > Bayes-Nash Incentive Compatibility

Sponsored Search Auctions

About 549,000 results (0.84 seconds)

Need A Good Tax Accountant? - We are Tax Experts in Toronto.

Ad www.taxsos.ca/Tax-Accountant *

Solve Complex Tax Problems Quickly. Service Special. Contact Us Now! Highlights: Team Of Professionals, Free Consultation Available... 9 60 Green Lane, Unit 13, Thornhill, ON - Closing soon · 10:00 AM - 6:00 PM •

About Us

Why Choose Tax SOS

Cost of Services

Contact Us

Looking For An Accountant? - Get Expert & Trusted Advice - intuit.ca

Select From Over 50,000 QuickBooks Pro Advisors Bookkeeping · Accounting Service · Tax & Financial Planning · Quickbooks Setup · Business Consult...

AZ Accounting Toronto - Specializing in Small Business

🗚 www.azaccountingfirm.ca/ 🔻

Tax Consulting and Finance Services Services: Financial Statements, Professional Corporations, Self-Employed Individuals...

Specialized Tax Accountant - Best Tax Service For Less Now.

Ad www.crataxrescue.ca/CRATaxProblem/Tax-Accountant *

Quick Relief For CRA Tax Troubles. Get Free Meeting Today. Frequently Asked Question · 3 Easy Steps To Fix Taxes

Sponsored Search Auctions

- A search engine receives a query
- There are k advertisement slots > "Clickthrough rates" : $c_1 \ge c_2 \ge \cdots \ge c_k \ge c_{k+1} = 0$
- There are n advertisers (bidders)
 > Bidder i derives value v_i <u>per click</u>
 - > Value to bidder *i* for slot $j = v_i \cdot c_j$
 - \succ Without loss of generality, $v_1 \geq v_2 \geq \cdots \geq v_n$

• Question:

> Who gets which slot, and how much do they pay?

Sponsored Search : VCG

• VCG

- > Maximize welfare:
 - \circ bidder *j* gets slot *j* for $1 \leq j \leq k$, other bidders get nothing
- Payment of bidder j?
- Increase in social welfare to others if j abstains
 Bidders j + 1 through "k + 1" get upgraded by one slot
 - > Payment of bidder $j = \sum_{i=j+1}^{k+1} v_i \cdot (c_{i-1} c_i)$

> Payment of bidder
$$j \text{ per click} = \sum_{i=j+1}^{k+1} v_i \cdot \frac{c_{i-1} - c_i}{c_j}$$

Sponsored Search : VCG

• What if all the clickthrough rates are same?

$$> c_1 = c_2 = \dots = c_k > c_{k+1} = 0$$

> Payment of bidder
$$j \text{ per click}$$

 $\circ \sum_{i=j+1}^{k+1} v_i \cdot \frac{c_{i-1}-c_i}{c_j} = v_{k+1}$

Bidders 1 through k pay the value of bidder k + 1
 Familiar? VCG for k identical items

Sponsored Search : GSP

- Generalized Second Price Auction (GSP)
 - > For $1 \le j \le k$, bidder *j* gets slot *j* and pays the value of bidder j + 1 *per click*
 - > Other bidders get nothing and pay nothing
- Natural extension of the "second price" idea
 - > We considered this before for two identical slots
 - Not strategyproof
 - In fact, truth-telling may not even be a Nash equilibrium
 Image: Im

Sponsored Search : GSP

- But there is a good Nash equilibrium that...
 - realizes the VCG outcome, i.e., maximizes welfare, and
 - ➢ generates as much revenue as VCG ☺ [Edelman et al. 2007]
- Even the worst Nash equilibrium...
 - > gives 1.282-approximation to welfare ($PoA \leq 1.282$) and
 - generates at least half of the revenue of VCG [Caragiannis et al. 2011, Dutting et al. 2011, Lucier et al. 2012]
- So if the players achieve an equilibrium, things aren't so bad.

VCG vs GSP

• VCG

- Truthful revelation is a dominant strategy, so there's a higher confidence that players will reveal truthfully and the theoretical welfare/revenue guarantees will hold
- > But it is difficult to convey and understand

• GSP

- > Need to rely on players reaching a Nash equilibrium
- > But has good welfare and revenue guarantees and is easy to convey and understand
- Industry is split on this issue too!

From Theory to Reality

- Value is proportional to clickthrough rate?
 - Could it be that users clicking on the 2nd slot are more likely buyers than those clicking on the 1st slot?
- Misaligned values of advertisers and ad engines?
 - > An advertiser having a high value for a slot does not necessarily mean their ad is appropriate for the slot
- Market competition?
 - > What if there are other ad engines deploying other mechanisms and advertisers are strategic about which ad engines to participate in?

Bayesian Framework

- Useful for providing weaker incentive guarantees than strategyproofness
- Strategyproofness:
 - "It's best for me to tell the truth even if I know what other players are doing, and regardless of what they are doing."
- Weaker guarantee:
 - "I don't exactly know what others are going to do, but I have some idea. In expectation, it's best for me to tell the truth."
 - Incomplete information setting

Bayesian Framework

Setup

Distribution D_i for each agent i

 $\,\circ\,$ All distributions are known to all agents.

> Each agent *i*'s valuation v_i is sampled from D_i

 $\circ v_i$'s are independent of each other

 \circ Only agent *i* knows v_i

Private information of agent = "type" of agent

- > T_i = type space for agent i (support of $D_i \subseteq T_i$)
- A_i = set of possible actions/reports/bids of agent i
- > Strategy $s_i: T_i \rightarrow A_i$

 $\,\circ\,$ "How do I convert my valuation to my bid?"

Bayesian Framework

• Strategy profile $\vec{s} = (s_1, \dots, s_n)$

Interim/expected utility of agent *i* is

$$E_{\{v_j \sim D_j\}_{j \neq i}} [u_i(s_1(v_1), \dots, s_n(v_n))]$$

where utility u_i is "value derived – payment charged"

- > s̄ is a Bayes-Nash equilibrium (BNE) if s_i is the best strategy for agent i given s̄_{-i} (strategies of others)
 NOTE: I don't know what others' values are. But I know they are rational players, so I can reason about what strategies they might
 - use.

Example

- Sealed-bid first price auction for a single item
 - > Each agent *i* privately submits a bid b_i
 - > Agent i^* with the highest bid wins the item, pays b_{i^*}
- Suppose there are two agents

> Common prior: each has valuation drawn from U[0,1]

Claim: Both players using s_i(v_i) = v_i/2 is a BNE.
 ▶ Proof on the board.