CSC304 Lecture 11

Mechanism Design w/ Money:
Revelation principle; First price, second price, and ascending auctions; Revenue equivalence
Recap: Bayesian Framework

All distributions known to all agents

Private value of i only known to i

All strategies known to all agents

All distributions known to all agents
Recap: Bayesian Framework

• Strategy profile $\tilde{s} = (s_1, \ldots, s_n)$

 ➢ Interim utility of agent i is

 \[
 E_{\{v_j \sim D_j\}_{j \neq i}} [u_i(s_1(v_1), \ldots, s_n(v_n))]
 \]

 where utility u_i is “value derived – payment charged”

 ➢ \tilde{s} is a Bayes-Nash equilibrium (BNE) if s_i is the best strategy for agent i given \tilde{s}_{-i} (strategies of others)

 o NOTE: I don’t know what others’ values are. But I know they are rational players, so I can reason about what strategies they might use.
Recap: 1st Price Auction

• Sealed-bid first price auction for a single item
 ➢ Each agent i privately submits a bid b_i
 ➢ Agent i^* with the highest bid wins the item, pays b_{i^*}

• Suppose there are two agents
 ➢ Common prior: each has valuation drawn from $U[0,1]$

• Claim: Both players using $s_i(v_i) = v_i/2$ is a BNE.
 ➢ Proof on the board.
Direct Revelation Mechanisms & The Revelation Principle
Direct Revelation

• **Direct-revelation**: mechanisms that ask you to report your private values
 - Doesn’t mean agents will report their true values.
 - Makes sense to ask “Would they, in equilibrium?”

• **Non-direct-revelation**: different action space than type space
 - Suppose your value for an item is in [0,1], but the mechanism asks you to either dive left or dive right.
 - Strategy $s_i: [0,1] \rightarrow \{left, right\}$
 - Truthfulness doesn’t make much sense.
 - But we can still ask: What is the outcome in equilibrium?
BNIC Mechanisms

• A direct revelation mechanism is Bayes-Nash incentive compatible (BNIC) if all players playing $s_i(v_i) = v_i$ is a BNE.
 - I don’t know what other’s valuations are, only the distributions they’re drawn from.
 - But as long as they report their true values, in expectation I would like to report my true value.

• Compare to strategyproofness
 - I know what others’ values are, and for every possible values they can have, I want to report my true values.
Revelation Principle

• Outcome = (allocation, payments)

• **Strategyproof version** [Gibbard, ‘73]
 - If a mechanism implements an outcome in dominant strategies, there’s a direct revelation strategyproof mechanism implementing the same outcome.

• **BNIC version** [Dasgupta et al. ‘79, Holmstrom ‘77, Myerson ‘79]
 - If a mechanism implements an outcome as BNE, there’s a direct revelation BNIC mechanism implementing the same outcome.
Revelation Principle

• Informal proof:

Player 1 : v_1

\[\vdots \]

Player $n : v_n$

Strategy s_1

\[\vdots \]

Strategy s_n

Original Mechanism

Outcome

New direct revelation truthful mechanism
Applying Revelation Principle

• We already saw...
 ➢ Sealed-bid 1st price auction
 ➢ 2 agents with valuations drawn from $U[0,1]$
 ➢ Each player halving his value was a BNE
 ➢ Not naturally BNIC (players don’t report value)

• Q: What is the BNIC variant of sealed-bid 1st price auction that we get using the revelation principle?

• Can also be used on non-direct-revelation mechs
Revenue of Auction Mechanisms & Revenue Equivalence
1st Price Auction

• For \(n \) players with iid valuations from \(U[0,1] \), “shadowing” the bid by a factor of \((n - 1)/n \) is a BNE

• \(E[\text{Revenue}] \) to the auctioneer?

 \[E_{\{v_i \sim U[0,1]\}_{i=1}^n} \left(\frac{n-1}{n} \right) \cdot \max_i v_i = \frac{n-1}{n+1} \]
 (Exercise!)

• Interestingly, this is equal to \(E[\text{Revenue}] \) from 2nd price auction

 \[E_{\{v_i \sim U[0,1]\}_{i=1}^n} \left[2\text{nd highest } v_i \right] = \frac{n-1}{n+1} \]
 (Exercise!)
Revenue Equivalence

• If two BNIC mechanisms A and B:
 1. Always produce the same allocation;
 2. Have the same expected payment to agent i for some type v_i^0 (e.g., “zero value for all” → zero payment);
 3. Have agent valuations drawn from distributions with “path-connected support sets”;

• Then they:
 ø Charge the same expected payment to all agent types;
 ø Have the same expected total revenue.
Revenue Equivalence

• Informally...
 ➢ If two BNIC mechanisms always have the same allocation, then they have the same $E[payments]$ and $E[revenue]$.
 ➢ Very powerful as it applies to any pair of BNIC mechanism

• 1st price (BNIC variant) and 2nd price auctions
 ➢ Have the same allocation:
 Item always goes to the agent with the highest valuation
 ➢ Thus, also have the same revenue
Non-Direct-Revelation Auctions

• ascending auction (a.k.a. English auction)
 ➢ all agents + auctioneer meet in a room.
 ➢ auctioneer starts the price at 0.
 ➢ all agents want the item, and have their hands raised.
 ➢ auctioneer raise the price continuously.
 ➢ agents drop out when price > value for them

• descending auction (a.k.a. Dutch auction)
 ➢ start price at a very high value.
 ➢ keep decreasing the price until some agent agrees to buy.