CSC304 Lecture 12

Mechanism Design w/ Money: Revenue maximization Myerson's Auction

Revenue Maximization

Welfare vs Revenue

- In welfare maximization, we want to maximize $\sum_i v_i(a)$
 - VCG = strategyproof + maximizes welfare on every single instance
 - > Beautiful!
- In revenue maximization, we want to maximize $\sum_i p_i$
 - > We can still use strategyproof mechanisms (revelation principle).
 - ≻ BUT...

Welfare vs Revenue

- Different strategyproof mechanisms are better for different instances.
- Example: 1 item, 1 bidder, unknown value v
 - > strategyproof = fix a price r, let the agent decide to "take it" ($v \ge r$) or "leave it" (v < r)
 - > Maximize welfare \rightarrow set r = 0
 - \circ Must allocate item as long as the agent has a positive value
 - > Maximize revenue $\rightarrow r = ?$

 \circ Different r are better for different v

Welfare vs Revenue

- We cannot optimize revenue on every instance
 - Need to optimize the *expected* revenue in the Bayesian framework
- If we want to achieve higher expected revenue than VCG, we cannot always allocate the item

> Revenue equivalence principle!

Single Item + Single Bidder

- Value v is drawn from distribution with CDF F
- Goal: post the optimal price *r* on the item
- Revenue from price $r = r \cdot (1 F(r))$ (Why?)
- Optimal $r^* = \operatorname{argmax}_r r \cdot (1 F(r))$
 - > "Monopoly price"
 - Note: r* depends on F, but not on v, so the mechanism is strategyproof.

Example

- Suppose F is the CDF of the uniform distribution over [0,1] (denote by U[0,1]).
 > CDF is given by F(x) = x for all x ∈ [0,1].
- Recall: E[Revenue] from price r is r · (1 − F(r))
 > Q: What is the optimal posted price?
 > Q: What is the corresponding optimal revenue?
- Compare this to the revenue of VCG, which is 0
 This is because if the value is less than r*, we are willing to risk not selling the item.

Single Item + Two Bidders

- $v_1, v_2 \sim U[0,1]$
- VCG revenue = 2^{nd} highest bid = $min(v_1, v_2)$ > $E[min(v_1, v_2)] = 1/3$ (Exercise!)
- Improvement: "VCG with reserve price"
 - > Reserve price r
 - \succ Highest bidder gets the item if bid more than r
 - > Pays max(r, 2nd highest bid)
 - "Critical payment": Pay the least value you could have bid and still won the item

Single Item + Two Bidders

- Reserve prices are ubiquitous
 - > E.g., opening bids in eBay auctions
 - > Guarantee a certain revenue to auctioneer if item is sold
- *E*[revenue] = *E*[max(*r*, min(*v*₁, *v*₂))]
 ≻ Maximize over *r*? Hard to think about.
- What about a strategyproof mechanism that is not VCG + reserve price?
 - > What about just BNIC mechanisms?

Single-Parameter Environments

- Roger B. Myerson solved revenue optimal auctions in "single-parameter environments"
- Proposed a simple auction that maximizes expected revenue

Single-Parameter Environments

- Each agent *i*...
 - > has a private value v_i drawn from a distribution with CDF F_i and PDF f_i
 - ▹ is "satisfied" at some level $x_i \in [0,1]$, which gives the agent value $x_i \cdot v_i$
 - \succ is asked to pay p_i

• Examples

- > Single divisible item
- > Single indivisible item ($x_i \in \{0,1\}$ this is okay too!)
- > Many items, single-minded bidders (again $x_i \in \{0,1\}$)

Myerson's Lemma

• Myerson's Lemma:

For a single-parameter environment, a mechanism is strategyproof if and only if for all *i*

1. x_i is monotone non-decreasing in v_i

2.
$$p_i = v_i \cdot x_i(v_i) - \int_0^{v_i} x_i(z) dz + p_i(0)$$

(typically, $p_i(0) = 0$)

- Generalizes critical payments
 - For every "δ" allocation, pay the lowest value that would have won it

Myerson's Lemma

• Note: allocation determines unique payments $n_i = n_i \cdot r_i(n_i) = \int_{-\infty}^{\infty} r_i(z) dz + n_i(0)$

$$p_i = v_i \cdot x_i(v_i) - \int_0^z x_i(z)dz + p_i(0)$$

- A corollary: revenue equivalence
 - If two mechanisms use the same allocation x_i, they "essentially" have the same expected revenue
- Another corollary: optimal revenue auctions
 - Optimizing revenue = optimizing some function of allocation (easier to analyze)

Myerson's Theorem

- "Expected Revenue = Expected Virtual Welfare"
 - > Recall: $p_i = v_i \cdot x_i(v_i) \int_0^{v_i} x_i(z) dz + p_i(0)$

> Take expectation over draw of valuations + lots of calculus

$$E_{\{v_i \sim F_i\}}[\Sigma_i p_i] = E_{\{v_i \sim F_i\}}[\Sigma_i \varphi_i \cdot x_i]$$

•
$$\varphi_i = v_i - \frac{1 - F_i(v_i)}{f_i(v_i)} =$$
virtual value of bidder *i*

• $\sum_i \varphi_i \cdot x_i$ = virtual welfare

Myerson's Theorem

• Myerson's auction:

- > A strategyproof auction maximizes the (expected) revenue if its allocation rule maximizes the virtual welfare subject to monotonicity and it charges critical payments.
- Charging critical payments is easy.
- But maximizing virtual welfare *subject to monotonicity* is tricky.
 - > Let's get rid of the monotonicity requirement!

Myerson's Theorem Simplified

- Regular Distributions
 - > A distribution F is regular if its virtual value function $\varphi(v) = v - (1 - F(v))/f(v)$ is non-decreasing in v.
 - Many important distributions are regular, e.g., uniform, exponential, Gaussian, power-law, ...
- Lemma
 - If all F_i's are regular, the allocation rule maximizing virtual welfare is already monotone.
- Myerson's Corollary:
 - > When all F_i 's are regular, the strategyproof auction maximizes virtual welfare and charges critical payments.

Single Item + Single Bidder

• Setup:

> Single indivisible item, single bidder, value v drawn from a regular distribution with CDF F and PDF f

• Goal:

Solution Maximize
$$\varphi \cdot x$$
, where $\varphi = v - rac{1 - F(v)}{f(v)}$ and $x \in \{0, 1\}$

• Optimal auction:

>
$$x = 1$$
 iff $\varphi \ge 0 \iff v \ge \frac{1 - F(v)}{f(v)} \iff v \ge v^*$ where $v^* = \frac{1 - F(v^*)}{f(v^*)}$

- > Critical payment: v^*
- > This is VCG with a reserve price of $\varphi^{-1}(0)!$

Example

• Optimal auction:

>
$$x = 1$$
 iff $\varphi \ge 0 \Leftrightarrow v \ge \frac{1 - F(v)}{f(v)}$
> Critical payment: v^* such that $v^* = \frac{1 - F(v^*)}{f(v^*)}$

• Distribution is *U*[0,1]:

>
$$x = 1$$
 iff $v \ge \frac{1-v}{1} \Leftrightarrow v \ge \frac{1}{2}$
> Critical payment $= \frac{1}{2}$

 \succ That is, we post the optimal price of 0.5

Single Item + n Bidders

• Setup:

> Single indivisible item, each bidder *i* has value v_i drawn from a regular distribution with CDF F_i and PDF f_i

• Goal:

> Maximize $\sum_i \varphi_i \cdot x_i$ where $\varphi_i = v_i - \frac{1 - F_i(v_i)}{f_i(v_i)}$ and $x_i \in \{0,1\}$ such that $\sum_i x_i \leq 1$

Single Item + n Bidders

• Optimal auction:

> If all $\varphi_i < 0$:

 \circ Nobody gets the item, nobody pays anything

- \circ For all *i*, $x_i = p_i = 0$
- \succ If some $\varphi_i \ge 0$:

O Agent with highest $φ_i$ wins the item, pays critical payment
 o i^{*} ∈ argmax_i φ_i(v_i), x_{i^{*}} = 1, x_i = 0 ∀i ≠ i^{*}

$$\circ p_{i^*} = \varphi_{i^*}^{-1} \left(\max\left(0, \max_{j \neq i^*} \varphi_j(v_j)\right) \right)$$

Note: The item doesn't necessarily go to the highest value agent!

Special Case: iid Values

- Suppose all distributions are identical (say CDF F and PDF f)
- Check that the auction simplifies to the following
 - > Allocation: item goes to bidder i^* with highest value if her value $v_{i^*} \ge \varphi^{-1}(0)$
 - > Payment charged = $\max\left(\varphi^{-1}(0), \max_{j\neq i^*} v_j\right)$
- This is again VCG with a reserve price of $\varphi^{-1}(0)$

Example

• Two bidders, both drawing iid values from U[0,1]

>
$$\varphi(v) = v - \frac{1-v}{1} = 2v - 1$$

> $\varphi^{-1}(0) = 1/2$

- Auction:
 - > Give the item to the highest bidder if their value is at least ¹/₂
 - > Charge them max(½, 2nd highest bid)

Example

• Two bidders, one with value from *U*[0,1], one with value from *U*[3,5]

$$\triangleright \varphi_1(v_1) = 2v_1 - 1$$

$$\Rightarrow \varphi_2(v_2) = v_2 - \frac{1 - F_2(v_2)}{f_2(v_2)} = v_2 - \frac{1 - \frac{v_2 - 3}{2}}{\frac{1}{2}} = 2v_2 - 5$$

- Auction:
 - > If v₁ < ¼ and v₂ < 5/2, the item remains unallocated.
 > Otherwise...

○ If $2v_1 - 1 > 2v_2 - 5$, agent 1 gets it and pays $\max(\frac{1}{2}, v_2 - 2)$ ○ If $2v_1 - 1 < 2v_2 - 5$, agent 2 gets it and pays $\max(\frac{5}{2}, v_1 + 2)$

Extensions

- Irregular distributions:
 - > E.g., multi-modal or extremely heavy tail distributions
 - > Need to add the monotonicity constraint
 - > Turns out, we can "iron" irregular distributions to make them regular and then use Myerson's framework
- Relaxing DSIC to BNIC
 - » Myerson's mechanism has optimal revenue among all DSIC mechanisms
 - > Turns out, it also has optimal revenue among the much larger class of BNIC mechanisms!

Approx. Optimal Auctions

- Optimal auctions become unintuitive and difficult to understand with unequal distributions, even if they are regular
 - Simpler auctions preferred in practice
 - > We still want approximately optimal revenue
- Theorem [Hartline & Roughgarden, 2009]:
 - For iid values from regular distributions, VCG with bidderspecific reserve prices gives a 2-approximation of the optimal revenue.

Approximately Optimal

- Still relies on knowing bidders' distributions
- Theorem [Bulow and Klemperer, 1996]:
 - > For i.i.d. values, $E[Revenue of VCG with n + 1 bidders] \ge E[Optimal revenue with n bidders]$
- "Spend that effort in getting one more bidder than in figuring out the optimal auction"

Simple proof

• One can show that VCG with n + 1 bidders has the max revenue among all n + 1 bidder strategyproof auctions that always allocate the item

> Via revenue equivalence

- Consider the auction: "Run *n*-bidder Myerson on the first *n* bidders. If the item is unallocated, give it to agent n + 1 for free."
 - > n + 1 bidder DSIC auction
 - > As much revenue as *n*-bidder Myerson auction

Optimizing Revenue is Hard

- Slow progress beyond single-parameter setting
 - Even with just two items and one bidder with i.i.d. values for both items, the optimal auction DOES NOT run Myerson's auction on individual items!
 - "Take-it-or-leave-it" offers for the two items bundled might increase revenue
- But nowadays, the focus is on simple, approximately optimal auctions instead of complicated, optimal auctions.