CSC304 Lecture 12

Mechanism Design w/ Money:
Revenue maximization
Myerson’s Auction
Revenue Maximization
Welfare vs Revenue

• In welfare maximization, we want to maximize $\sum_i v_i(a)$
 - VCG = strategyproof + maximizes welfare on every single instance
 - Beautiful!

• In revenue maximization, we want to maximize $\sum_i p_i$
 - We can still use strategyproof mechanisms (revelation principle).
 - BUT...
Welfare vs Revenue

• Different strategyproof mechanisms are better for different instances.

• Example: 1 item, 1 bidder, unknown value v
 - strategyproof = fix a price r, let the agent decide to “take it” ($v \geq r$) or “leave it” ($v < r$)
 - Maximize welfare \rightarrow set $r = 0$
 - Must allocate item as long as the agent has a positive value
 - Maximize revenue \rightarrow $r = ?$
 - Different r are better for different v
Welfare vs Revenue

• We cannot optimize revenue on every instance
 ❆ Need to optimize the *expected* revenue in the Bayesian framework

• If we want to achieve higher expected revenue than VCG, we cannot always allocate the item
 ❆ Revenue equivalence principle!
Single Item + Single Bidder

• Value v is drawn from distribution with CDF F
• **Goal:** post the optimal price r on the item

• Revenue from price $r = r \cdot (1 - F(r))$ (Why?)

• **Optimal** $r^* = \text{argmax}_r \ r \cdot (1 - F(r))$
 ➢ “Monopoly price”
 ➢ Note: r^* depends on F, but not on v, so the mechanism is strategyproof.
Example

• Suppose F is the CDF of the uniform distribution over $[0, 1]$ (denote by $U[0, 1]$).
 ➢ CDF is given by $F(x) = x$ for all $x \in [0, 1]$.

• Recall: $E[\text{Revenue}]$ from price r is $r \cdot (1 - F(r))$
 ➢ Q: What is the optimal posted price?
 ➢ Q: What is the corresponding optimal revenue?

• Compare this to the revenue of VCG, which is 0
 ➢ This is because if the value is less than r^*, we are willing to risk not selling the item.
Single Item + Two Bidders

• $v_1, v_2 \sim U[0,1]$

• VCG revenue = 2nd highest bid = $\min(v_1, v_2)$
 - $E[\min(v_1, v_2)] = 1/3$ (Exercise!)

• Improvement: “VCG with reserve price”
 - Reserve price r
 - Highest bidder gets the item if bid more than r
 - Pays $\max(r, 2nd \text{highest bid})$
 - “Critical payment” : Pay the least value you could have bid and still won the item
Single Item + Two Bidders

• Reserve prices are ubiquitous
 ➢ E.g., opening bids in eBay auctions
 ➢ Guarantee a certain revenue to auctioneer if item is sold

• $E[\text{revenue}] = E[\max(r, \min(v_1, v_2))]$
 ➢ Maximize over r? Hard to think about.

• What about a strategyproof mechanism that is not VCG + reserve price?
 ➢ What about just BNIC mechanisms?
Single-Parameter Environments

• Roger B. Myerson solved revenue optimal auctions in “single-parameter environments”

• Proposed a simple auction that maximizes expected revenue
Single-Parameter Environments

• Each agent i...
 ➢ has a private value v_i drawn from a distribution with CDF F_i and PDF f_i
 ➢ is “satisfied” at some level $x_i \in [0,1]$, which gives the agent value $x_i \cdot v_i$
 ➢ is asked to pay p_i

• Examples
 ➢ Single divisible item
 ➢ Single indivisible item ($x_i \in \{0,1\}$ – this is okay too!)
 ➢ Many items, single-minded bidders (again $x_i \in \{0,1\}$)
Myerson’s Lemma

- **Myerson’s Lemma:**
 For a single-parameter environment, a mechanism is strategyproof if and only if for all i

 1. x_i is monotone non-decreasing in v_i
 2. $p_i = v_i \cdot x_i(v_i) - \int_0^{v_i} x_i(z)dz + p_i(0)$

(typically, $p_i(0) = 0$)

- Generalizes critical payments
 - For every “δ” allocation, pay the lowest value that would have won it
Myerson’s Lemma

• Note: allocation determines unique payments

\[p_i = v_i \cdot x_i(v_i) - \int_0^{v_i} x_i(z)dz + p_i(0) \]

• A corollary: revenue equivalence
 ➢ If two mechanisms use the same allocation \(x_i \), they “essentially” have the same expected revenue

• Another corollary: optimal revenue auctions
 ➢ Optimizing revenue = optimizing some function of allocation (easier to analyze)
Myerson’s Theorem

• “Expected Revenue = Expected Virtual Welfare”
 ➢ Recall: \(p_i = v_i \cdot x_i(v_i) - \int_0^{v_i} x_i(z)dz + p_i(0) \)
 ➢ Take expectation over draw of valuations + lots of calculus

\[
E_{\{v_i \sim F_i\}}[\sum_i p_i] = E_{\{v_i \sim F_i\}}[\sum_i \varphi_i \cdot x_i]
\]

• \(\varphi_i = v_i - \frac{1-F_i(v_i)}{f_i(v_i)} \) = virtual value of bidder \(i \)

• \(\sum_i \varphi_i \cdot x_i = \text{virtual welfare} \)
Myerson’s Theorem

• **Myerson’s auction:**
 - A strategyproof auction maximizes the (expected) revenue if its allocation rule maximizes the virtual welfare subject to monotonicity and it charges critical payments.

• Charging critical payments is easy.

• But maximizing virtual welfare *subject to monotonicity* is tricky.
 - Let’s get rid of the monotonicity requirement!
Myerson’s Theorem Simplified

• Regular Distributions
 ➢ A distribution F is regular if its virtual value function $\varphi(v) = v - (1 - F(v))/f(v)$ is non-decreasing in v.
 ➢ Many important distributions are regular, e.g., uniform, exponential, Gaussian, power-law, ...

• Lemma
 ➢ If all F_i’s are regular, the allocation rule maximizing virtual welfare is already monotone.

• Myerson’s Corollary:
 ➢ When all F_i’s are regular, the strategyproof auction maximizes virtual welfare and charges critical payments.
Single Item + Single Bidder

• Setup:
 ➢ Single indivisible item, single bidder, value v drawn from a regular distribution with CDF F and PDF f

• Goal:
 ➢ Maximize $\varphi \cdot x$, where $\varphi = v - \frac{1-F(v)}{f(v)}$ and $x \in \{0,1\}$

• Optimal auction:
 ➢ $x = 1$ iff $\varphi \geq 0 \iff v \geq \frac{1-F(v)}{f(v)} \iff v \geq v^*$ where $v^* = \frac{1-F(v^*)}{f(v^*)}$
 ➢ Critical payment: v^*
 ➢ This is VCG with a reserve price of $\varphi^{-1}(0)$!
Example

• Optimal auction:
 ➢ $x = 1$ iff $\varphi \geq 0 \iff v \geq \frac{1-F(v)}{f(v)}$
 ➢ Critical payment: v^* such that $v^* = \frac{1-F(v^*)}{f(v^*)}$

• Distribution is $U[0,1]$:
 ➢ $x = 1$ iff $v \geq \frac{1-v}{1} \iff v \geq \frac{1}{2}$
 ➢ Critical payment = $\frac{1}{2}$
 ➢ That is, we post the optimal price of 0.5
Single Item + n Bidders

• Setup:
 ➢ Single indivisible item, each bidder i has value v_i drawn from a regular distribution with CDF F_i and PDF f_i

• Goal:
 ➢ Maximize $\sum_i \varphi_i \cdot x_i$ where $\varphi_i = v_i - \frac{1-F_i(v_i)}{f_i(v_i)}$ and $x_i \in \{0,1\}$ such that $\sum_i x_i \leq 1$
Single Item + n Bidders

• Optimal auction:

 ➢ If all $\varphi_i < 0$:
 o Nobody gets the item, nobody pays anything
 o For all i, $x_i = p_i = 0$

 ➢ If some $\varphi_i \geq 0$:
 o Agent with highest φ_i wins the item, pays critical payment
 o $i^* \in \text{argmax}_i \varphi_i(v_i), x_{i^*} = 1, x_i = 0 \ \forall i \neq i^*$
 o $p_{i^*} = \varphi_{i^*}^{-1}\left(\max\left(0, \max_{j \neq i^*} \varphi_j(v_j)\right)\right)$

• Note: The item doesn’t necessarily go to the highest value agent!
Special Case: iid Values

- Suppose all distributions are identical (say CDF F and PDF f)

- Check that the auction simplifies to the following
 - Allocation: item goes to bidder i^* with highest value if her value $v_{i^*} \geq \phi^{-1}(0)$
 - Payment charged = $\max(\phi^{-1}(0), \max_{j \neq i^*} v_j)$

- This is again VCG with a reserve price of $\phi^{-1}(0)$
Example

- Two bidders, both drawing iid values from $U[0,1]$
 - $\varphi(v) = v - \frac{1-v}{1} = 2v - 1$
 - $\varphi^{-1}(0) = 1/2$

- Auction:
 - Give the item to the highest bidder if their value is at least $1/2$
 - Charge them $\max(\frac{1}{2}, 2^{\text{nd}} \text{ highest bid})$
Example

• Two bidders, one with value from \(U[0,1] \), one with value from \(U[3,5] \)

 \[
 \varphi_1(v_1) = 2v_1 - 1 \\
 \varphi_2(v_2) = v_2 - \frac{1-F_2(v_2)}{f_2(v_2)} = v_2 - \frac{1-v_2-\frac{3}{2}}{1/2} = 2v_2 - 5
 \]

• Auction:

 \[
 \text{If } v_1 < \frac{1}{2} \text{ and } v_2 < \frac{5}{2}, \text{ the item remains unallocated.}
 \]

 \[
 \text{Otherwise...}
 \]

 \[
 \text{o If } 2v_1 - 1 > 2v_2 - 5, \text{ agent 1 gets it and pays max}(\frac{1}{2}, v_2 - 2) \\
 \text{o If } 2v_1 - 1 < 2v_2 - 5, \text{ agent 2 gets it and pays max}(\frac{5}{2}, v_1 + 2)
 \]
Extensions

• Irregular distributions:
 ➢ E.g., multi-modal or extremely heavy tail distributions
 ➢ Need to add the monotonicity constraint
 ➢ Turns out, we can “iron” irregular distributions to make them regular and then use Myerson’s framework

• Relaxing DSIC to BNIC
 ➢ Myerson’s mechanism has optimal revenue among all DSIC mechanisms
 ➢ Turns out, it also has optimal revenue among the much larger class of BNIC mechanisms!
Approx. Optimal Auctions

• Optimal auctions become unintuitive and difficult to understand with unequal distributions, even if they are regular
 ➢ Simpler auctions preferred in practice
 ➢ We still want approximately optimal revenue

• Theorem [Hartline & Roughgarden, 2009]:
 ➢ For iid values from regular distributions, VCG with bidder-specific reserve prices gives a 2-approximation of the optimal revenue.
Approximately Optimal

• Still relies on knowing bidders’ distributions

• Theorem [Bulow and Klemperer, 1996]:

 For i.i.d. values,

 $E[\text{Revenue of VCG with } n + 1 \text{ bidders}] \geq E[\text{Optimal revenue with } n \text{ bidders}]$

• “Spend that effort in getting one more bidder than in figuring out the optimal auction”
Simple proof

• One can show that VCG with \(n + 1 \) bidders has the max revenue among all \(n + 1 \) bidder strategyproof auctions that always allocate the item via revenue equivalence.

• Consider the auction: “Run \(n \)-bidder Myerson on the first \(n \) bidders. If the item is unallocated, give it to agent \(n + 1 \) for free.”
 - \(n + 1 \) bidder DSIC auction
 - As much revenue as \(n \)-bidder Myerson auction
Optimizing Revenue is Hard

• Slow progress beyond single-parameter setting
 ➢ Even with just two items and one bidder with i.i.d. values for both items, the optimal auction DOES NOT run Myerson’s auction on individual items!
 ➢ “Take-it-or-leave-it” offers for the two items bundled might increase revenue

• But nowadays, the focus is on simple, approximately optimal auctions instead of complicated, optimal auctions.