CSC304 Lecture 16

Voting 2: Gibbard-Satterthwaite Theorem
Recap

• We introduced a plethora of voting rules
 - Plurality
 - Borda
 - Veto
 - k-Approval
 - STV
 - Plurality with runoff
 - Kemeny
 - Copeland
 - Maximin

• All these rules do something reasonable on a given preference profile
 - Only makes sense if preferences are truthfully reported
Recap

- Set of voters $N = \{1, \ldots, n\}$
- Set of alternatives A, $|A| = m$
- Voter i has a preference ranking \succ_i over the alternatives

- Preference profile $\succ = \text{collection of all voter rankings}$
- Voting rule (social choice function) f
 - Takes as input a preference profile \succ
 - Returns an alternative $a \in A$
Strategyproofness

• Would any of these rules incentivize voters to report their preferences truthfully?

• A voting rule f is **strategyproof** if for every
 - preference profiles \succsim,
 - voter i, and
 - preference profile \succsim' such that $\succsim'_j = \succsim_j$ for all $j \neq i$

 □ it is not the case that $f(\succsim') \succ_i f(\succsim)$
Strategyness

• None of the rules we saw are strategyproof!

• Example: Borda Count
 ➢ In the true profile, b wins
 ➢ Voter 3 can make a win by pushing b to the end

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>d</td>
<td>d</td>
<td>d</td>
</tr>
</tbody>
</table>

Winner: b

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>d</td>
<td>d</td>
<td>b</td>
</tr>
</tbody>
</table>

Winner: a
Borda’s Response to Critics

My scheme is intended only for honest men!

Random 18th century French dude
Strategyproofness

• Are there any strategyproof rules?
 ➢ Sure

• Dictatorial voting rule
 ➢ The winner is always the most preferred alternative of voter i

• Constant voting rule
 ➢ The winner is always the same

• Not satisfactory (for most cases)
Three Requirements

• **Strategyproof**: Already defined. No voter has an incentive to misreport.

• **Onto**: Every alternative can win under some preference profile.

• **Nondictatorial**: There is no voter i such that $f(\rightarrow)$ is always the top alternative for voter i.
Gibbard-Satterthwaite

• **Theorem:** For \(m \geq 3 \), no deterministic social choice function can be strategyproof, onto, and nondictatorial simultaneously 😞

• **Proof:** We will prove this for \(n = 2 \) voters.

 ➢ Step 1: Show that SP is equivalent to “strong monotonicity” [HW 3?]

 ➢ **Strong Monotonicity (SM):** If \(f(\succ) = a \), and \(\succ' \) is such that \(\forall i \in N, x \in A: a \succ_i x \Rightarrow a \succ'_i x \), then \(f(\succ') = a \).

 ○ If \(a \) is winning, and the votes change so that in each vote, \(a \) still defeats each alternative it defeated before, then \(a \) should still win.
Gibbard-Satterthwaite

• **Theorem:** For $m \geq 3$, no deterministic social choice function can be strategyproof, onto, and nondictatorial simultaneously 😞

• **Proof:** We will prove this for $n = 2$ voters.

 ➢ Step 2: Show that SP+onto implies “Pareto optimality” [HW 3?]

 ➢ **Pareto Optimality (PO):** If $a \succ_i b$ for all $i \in N$, then $f(\succ) \neq b$.

 o If there is a different alternative that *everyone* prefers, your choice is not Pareto optimal (PO).
Gibbard-Satterthwaite

• Proof for n=2: Consider a problem instance $I(a, b)$

<table>
<thead>
<tr>
<th>\succ_1</th>
<th>\succ_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
</tr>
</tbody>
</table>

Arbitrary Arbitrary

Say $f(\succ_1, \succ_2) = a$

• PO: $f(\succ_1, \succ_2) \in \{a, b\}$

<table>
<thead>
<tr>
<th>\succ_1</th>
<th>\succ_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
</tr>
</tbody>
</table>

Same as before

$\succ' = a$

• PO: $f(\succ_1, \succ'_2) \in \{a, b\}$

• SP: $f(\succ_1, \succ'_2) \neq b$

<table>
<thead>
<tr>
<th>\succ''</th>
<th>\succ''</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>A</td>
</tr>
<tr>
<td>A</td>
<td>N</td>
</tr>
<tr>
<td>N</td>
<td>Y</td>
</tr>
</tbody>
</table>

Due to strong monotonicity
Gibbard-Satterthwaite

• Proof for n=2:
 ➢ If f outputs a on instance $I(a, b)$, voter 1 can get a elected whenever she puts a first.
 o In other words, voter 1 becomes dictatorial for a.
 o Denote this by $D(1, a)$.
 ➢ If f outputs b on $I(a, b)$
 o Voter 2 becomes dictatorial for b, i.e., we have $D(2, b)$.

• For every pair of alternatives (a, b), at least one of $D(1, a)$ and $D(2, b)$ holds.
Proof for $n=2$:

- Take a pair (a^*, b^*)
- Suppose wlog that $D(1, a^*)$ holds
- Then, we show that voter 1 is a dictator, i.e., $D(1, x)$ holds for every other x as well
- Take $x \neq a^*$
- Because $|A| \geq 3$, there exists $y \in A\backslash\{a^*, x\}$.
- For (x, y), at least one of $D(1, x)$ and $D(2, y)$ holds
- But $D(2, y)$ is incompatible with $D(1, a^*)$
 - Who wins if voter 1 puts a^* first and voter 2 puts y first?
- Thus, we have $D(1, x)$, as required. ■
Circumventing G-S

• Randomization
 ➢ Gibbard characterized all randomized strategyproof rules
 ➢ Somewhat better, but still too restrictive

• Restricted preferences
 ➢ Median for facility location (more generally, for single-peaked preferences on a line)
 ➢ Will see other such settings later

• Money
 ➢ E.g., VCG is nondictatorial, onto, and strategyproof, but charges payments to agents
Circumventing G-S

• Equilibrium analysis
 ➢ Maybe good alternatives still win under Nash equilibria?

• Lack of information
 ➢ Maybe voters don’t know how other voters will vote?
Circumventing G-S

• Computational complexity (Bartholdi et al.)
 ➢ Maybe the rule is manipulable, but it is NP-hard to find a successful manipulation?
 ➢ Groundbreaking idea! NP-hardness can be good!!

• Not NP-hard: plurality, Borda, veto, Copeland, maximin, ...

• NP-hard: Copeland with a peculiar tie-breaking, STV, ranked pairs, ...
Circumventing G-S

• Computational complexity
 ➢ Unfortunately, NP-hardness just says it is hard for some worst-case instances.
 ➢ What if it is actually easy for most practical instances?
 ➢ Many rules admit polynomial time manipulation algorithms for fixed #alternatives (m)
 ➢ Many rules admit polynomial time algorithms that find a successful manipulation on almost all profiles (the fraction of profiles converges to 1)

• Interesting open problems regarding the design of voting rules that are hard to manipulate on average
Social Choice

• Let’s forget incentives for now.
• Even if voters reveal their preferences truthfully, we do not have a “right” way to choose the winner.

• Who is the right winner?
 ➢ On profiles where the prominent voting rules have different outputs, all answers seem reasonable [HW3].
Axiomatic Approach

• Define axiomatic properties we may want from a voting rule

• We already defined some:
 ➢ Majority consistency
 ➢ Condorcet consistency
 ➢ Ontoness
 ➢ Strategyproofness
 ➢ Strong monotonicity (equivalent to SP)
 ➢ Pareto optimality
Axiomatic Approach

• We will see four more:
 ➢ Unanimity
 ➢ Weak monotonicity
 ➢ Consistency (!)
 ➢ Independence of irrelevant alternatives (IIA)

• Problem?
 ➢ Cannot satisfy many interesting combinations of properties
 ➢ Arrow’s impossibility result
 ➢ Other similar impossibility results
Other Approaches?

• Statistical
 ➢ There exists an objectively true answer
 ○ E.g., say the question is: “Sort the candidates by the #votes they will receive in an upcoming election.”
 ➢ Every voter is trying to estimate the true ranking
 ➢ Goal is to find the most likely ground truth given votes

• Utilitarian
 ➢ Back to “numerical” welfare maximization, but we still ask voters to only report ranked preferences
 ○ $a \succ_i b \succ_i c$ simply means $v_i(a) \geq v_i(b) \geq v_i(c)$
 ➢ How well can we maximize welfare subject to such partial information?