CSC304 Lectures 17-18

Voting 3: Axiomatic, Statistical, and Utilitarian Approaches to Voting

Recap

- We introduced a plethora of voting rules
 - > Plurality

Plurality with runoff

- > Borda
- > Veto > Kemeny
- > k-Approval
- > Copeland
- STV > Maximin
- Which is the right way to aggregate preferences?
 - GS Theorem: There is no good strategyproof voting rule.
 - For now, let us forget about incentives. Let us focus on how to aggregate given truthful votes.

Recap

- Set of voters $N = \{1, ..., n\}$
- Set of alternatives A, |A| = m
- Voter *i* has a preference ranking ≻_i over the alternatives

1	2	3
а	С	b
b	а	а
С	b	С

- Preference profile $\overrightarrow{\succ}$ = collection of all voter rankings
- Voting rule (social choice function) *f*
 - \succ Takes as input a preference profile $\overrightarrow{\succ}$
 - ≻ Returns an alternative $a \in A$

- Goal: Define a set of reasonable desiderata, and find voting rules satisfying them
 - Ultimate hope: a unique voting rule satisfies the axioms we are interested in!
- Sadly, it's often the opposite case.
 - Many combinations of reasonable axioms cannot be satisfied by any voting rule.
 - GS theorem: nondictatorship + ontoness + strategyproofness = Ø
 - > Arrow's theorem: we'll see

 Unanimity: If all voters have the same top choice, that alternative is the winner.

 $(top(\succ_i) = a \ \forall i \in N) \Rightarrow f(\overrightarrow{\succ}) = a$

> I used $top(\succ_i) = a$ to denote $a \succ_i b \forall b \neq a$

 Pareto optimality: If all voters prefer a to b, then b is not the winner.

$$(a \succ_i b \,\forall i \in N) \Rightarrow f(\overrightarrow{\succ}) \neq b$$

- Q: What is the relation between these axioms?
 - > Pareto optimality \Rightarrow Unanimity

- Anonymity: Permuting votes does not change the winner (i.e., voter identities don't matter).
 - E.g., these two profiles must have the same winner:
 {voter 1: a > b > c, voter 2: b > c > a}
 {voter 1: b > c > a, voter 2: a > b > c}
- Neutrality: Permuting the alternative names permutes the winner accordingly.
 - > E.g., say *a* wins on {voter 1: a > b > c, voter 2: b > c > a}
 - > We permute all names: $a \rightarrow b$, $b \rightarrow c$, and $c \rightarrow a$
 - > New profile: {voter 1: b > c > a, voter 2: c > a > b}

> Then, the new winner must be b.

- Neutrality is tricky
 - > As we defined it, it is inconsistent with anonymity!
 - \circ Imagine {voter 1: a > b, voter 2: b > a}
 - \circ Without loss of generality, say a wins
 - \circ Imagine a different profile: {voter 1: b > a, voter 2: a > b}
 - Neutrality: We just exchanged $a \leftrightarrow b$, so winner is b.
 - Anonymity: We just exchanged the votes, so winner stays *a*.
 - > Typically, we only require neutrality for...
 - Randomized rules: E.g., a rule could satisfy both by choosing a and b as the winner with probability ½ each, on both profiles
 - Deterministic rules allowed to return ties: E.g., a rule could return $\{a, b\}$ as tied winners on both profiles.

• Majority consistency: If a majority of voters have the same top choice, that alternative wins.

$$\left(|\{i: top(\succ_i) = a\}| > \frac{n}{2}\right) \Rightarrow f(\overrightarrow{\succ}) = a$$

Satisfied by plurality, but not by Borda count

• Condorcet consistency: If *a* defeats every other alternative in a pairwise election, *a* wins.

$$\left(\left|\left\{i:a >_{i} b\right\}\right| > \frac{n}{2}, \forall b \neq a\right) \Rightarrow f(\overrightarrow{\succ}) = a$$

- > Condorcet consistency \Rightarrow Majority consistency
- > Violated by both plurality and Borda count

• Is even the weaker axiom majority consistency a reasonable one to expect?

1	2	3	4	5
а	а	а	b	b
b	b	b		
			а	а

• Consistency: If *a* is the winner on two profiles, it must be the winner on their union.

$$f(\overrightarrow{\succ}_1) = a \land f(\overrightarrow{\succ}_2) = a \Rightarrow f(\overrightarrow{\succ}_1 + \overrightarrow{\succ}_2) = a$$

- $\succ \text{Example:} \overrightarrow{\succ}_1 = \{ a \succ b \succ c \}, \ \overrightarrow{\succ}_2 = \{ a \succ c \succ b, b \succ c \succ a \}$
- > Then, $\overrightarrow{\succ}_1 + \overrightarrow{\succ}_2 = \{a > b > c, a > c > b, b > c > a\}$
- Is this reasonable?
 - Young [1975] showed that subject to mild requirements, a voting rule is consistent if and only if it is a positional scoring rule!
 - Thus, plurality with runoff, STV, Kemeny, Copeland, Maximin, etc are not consistent.

Weak monotonicity: If a is the winner, and a is "pushed up" in some votes, a remains the winner.
f(⇒) = a ⇒ f(⇒') = a if
1. b >_i c ⇔ b >'_i c, ∀i ∈ N, b, c ∈ A \{a}

"Order among other alternatives preserved in all votes"

- 2. $a \succ_i b \Rightarrow a \succ'_i b, \forall i \in N, b \in A \setminus \{a\}$ (a only improves) "In every vote, a still defeats all the alternatives it defeated"
- Contrast: strong monotonicity requires $f(\vec{\succ}') = a$ even if $\vec{\succ}'$ only satisfies the 2nd condition
 - > It is thus too strong. Equivalent to strategyproofness!
 - > Only satisfied by dictatorial/non-onto rules [GS theorem]

- Weak monotonicity: If a is the winner, and a is "pushed up" in some votes, a remains the winner.
 f(→) = a → f(→') = a, where
 b >_i c ⇔ b >_i' c, ∀i ∈ N, b, c ∈ A \{a} (Order of others preserved)
 a >_i b ⇒ a >_i' b, ∀i ∈ N, b ∈ A \{a} (a only improves)
- Weak monotonicity is satisfied by most voting rules
 - > Only exceptions (among rules we saw): STV and plurality with runoff
 - > But this helps STV be hard to manipulate
 - [Conitzer & Sandholm 2006]: "Every weakly monotonic voting rule is easy to manipulate on average."

STV violates weak monotonicity

7 voters	5 voters	2 voters	6 voters
а	b	b	С
b	С	С	а
С	а	а	b

7 voters	5 voters	2 voters	6 voters
а	b	а	С
b	С	b	а
С	а	С	b

- First *c*, then *b* eliminated
- Winner: *a*

- First *b*, then *a* eliminated
- Winner: *c*

- For social welfare functions that output a ranking:
- Independence of Irrelevant Alternatives (IIA):
 - If the preferences of all voters between a and b are unchanged, then the social preference between a and b should not change.
- Arrow's Impossibility Theorem
 - No voting rule satisfies IIA, Pareto optimality, and nondictatorship.
 - > Proof omitted.
 - Foundations of the axiomatic approach to voting

Statistical Approach

- Assume that there is a "true" ranking of alternatives
 - > Unknown to us apriori
- Votes $\{\succ_i\}$ are generated i.i.d. from a distribution parametrized by a ranking σ^*
 - > $\Pr[> |\sigma^*]$ denotes the probability of drawing a vote > given that the ground truth is σ^*
- Maximum likelihood estimate (MLE):
 > Given ⇒, return argmax_σ(Pr[⇒ |σ] = Πⁿ_{i=1} Pr[>_i |σ])

Statistical Approach

- Example: Mallows' model
 - Recall Kendall-tau distance d between two rankings:
 #pairs of alternatives on which they disagree
 - > Malllows' model: $\Pr[> |\sigma^*] \propto \varphi^{d(>,\sigma^*)}$, where ○ $\varphi \in (0,1]$ is the "noise parameter" ○ $\varphi \rightarrow 0$: $\Pr[\sigma^*|\sigma^*] \rightarrow 1$ ○ $\varphi = 1$: uniform distribution ○ Normalization constant $Z_{\varphi} = \sum_{>} \varphi^{d(>,\sigma^*)}$ does not depend on σ^*
 - > The greater the distance from the ground truth, the smaller the probability

Statistical Approach

- Example: Mallows' model
 - > What is the MLE ranking for Mallows' model?

$$\max_{\sigma} \prod_{i=1}^{n} \Pr[\succ_{i} | \sigma^{*}] = \max_{\sigma} \prod_{i=1}^{n} \frac{\varphi^{d(\succ_{i},\sigma^{*})}}{Z_{\varphi}} = \max_{\sigma} \frac{\varphi^{\sum_{i=1}^{n} d(\succ_{i},\sigma^{*})}}{Z_{\varphi}}$$

> The MLE ranking σ^* minimizes $\sum_{i=1}^n d(\succ_i, \sigma^*)$

> This is precisely the Kemeny ranking!

• Statistical approach yields a unique rule, but is specific to the assumed distribution of votes

Utilitarian Approach

- Each voter *i* still submits a ranking \succ_i
 - > But the voter has "implicit" numerical utilities $\{v_i(a) \ge 0\}$

$$\Sigma_a v_i(a) = 1$$

$$a \succ_i b \Rightarrow v_i(a) \ge v_i(b)$$

- Goal:
 - > Select a^* with the maximum social welfare $\sum_i v_i(a^*)$ \circ Cannot always find this given only rankings from voters
 - Refined goal: Select a* that gives the best worst-case approximation of welfare

Distortion

• The distortion of a voting rule *f* is its approximation ratio of social welfare, on the worst preference profile.

$$dist(f) = \sup_{valid \{v_i\}} \frac{\max \sum_i v_i(b)}{\sum_i v_i(f(\overrightarrow{\succ}))}$$

- > where each v_i is valid if $\Sigma_a v_i(a) = 1$
- $\overrightarrow{r} = (\overrightarrow{r}_1, ..., \overrightarrow{r}_n)$ where \overrightarrow{r}_i represents the ranking of alternatives according to v_i

Example

- Suppose there are 2 voters and 3 alternatives
- Suppose our *f* returns *c* on this profile

Optimal Deterministic Rules

- Theorem [Caragiannis et al. '17]: Plurality achieves $O(m^2)$ distortion.
- Proof:
 - > The winner is the top choice of at least n/m voters.
 - Each voter must have utility at least 1/m for her top choice. (WHY?)
 - > Plurality achieves social welfare at least $\frac{n}{m} \cdot \frac{1}{m} = \frac{n}{m^2}$
 - No alternative can achieve social welfare more than n (WHY?)
 - > QED!

Optimal Deterministic Rules

- Theorem [Caragiannis et al. '17]: Every deterministic voting rule has $\Omega(m^2)$ distortion.
- Proof:
 - > *n* voters divided into m 1 blocks of equal size
 - > Preference profile:
 - \circ voters in block i put a_i first, a_m next, and the rest arbitrarily
 - > If output = $a_m \Rightarrow \infty$ distortion (WHY?)
 - ≻ If output $\in \{a_1, \dots, a_{m-1}\} \Rightarrow \Omega(m^2)$ distortion

• Derivation on the board!

$$n/(m-1)$$
times
$$a_1 > a_m > \cdots$$

$$a_2 > a_m > \cdots$$

$$a_3 > a_m > \cdots$$

$$\vdots$$

$$a_{m-1} > a_m > \cdot$$

Optimal Randomized Rules

- Theorem [Boutilier et al. '15]: There is a randomized rule with $O(\sqrt{m \cdot \log m})$ distortion.
- Proof:

> Given profile $\overrightarrow{>}$, define the harmonic score sc(a, $\overrightarrow{>}$): ○ Each voter gives 1/k points to her k^{th} most preferred alternative

 \circ sc(a, $\overrightarrow{\succ}$) = sum of points received by a from all voters

> Want to compare sc(a, →) to social welfare sw(a, v)
○ sw(a, v) ≤ sc(a, →) (WHY?)
○ ∑_a sc(a, →) = n · ∑_{k=1}^m 1/k ≤ n · (ln m + 1)

Optimal Voting Rules

- Proof (continued):
 - > Golden voting rule:
 - Rule 1: Choose every *a* w.p. proportional to $sc(a, \overrightarrow{\succ})$
 - \circ Rule 2: Choose every *a* w.p. 1/m (uniformly at random)

 $_{\odot}$ Execute rule 1 and rule 2 with probability $^{1\!\!/}_{2}$ each

- > Distortion $\leq 2\sqrt{m \cdot (\ln m + 1)}$ (proof on the board!)
- ► Trick: Take optimal alternative $a^* \in \operatorname{argmax}_{a \in A} \operatorname{sw}(a, \vec{v})$ If $\operatorname{sc}(a^*, \overrightarrow{\succ}) \ge n\sqrt{(\ln m + 1)/m}$:
 - Rule 1 picks a^* with enough probability

○ Otherwise, we know $sw(a^*, \vec{v}) \le sc(a^*, \vec{\succ}) \le n\sqrt{(\ln m + 1)/m}$:

• Rule 2 generates enough social welfare (n/m).

Optimal Randomized Rules

- Theorem [Boutilier et al. '15]: No randomized rule has distortion better than $\sqrt{m}/3$.
- Proof:
 - > Pick \sqrt{m} special alternatives: $a_1, \ldots, a_{\sqrt{m}}$
 - > n voters divided into \sqrt{m} equal-size blocks
 - > Preference profile:
 - For $i \in \{1, ..., \sqrt{m}\}$, voters in block i put a_i first, and others arbitrarily
 - > Pigeonhole principle:
 - $\exists a_i \in \{a_1, \dots, a_{\sqrt{m}}\}$ that the voting rule picks with probability at most $1/\sqrt{m}$
 - Construct worst-case valuation to make a_i look as good as possible in hindsight to derive $\sqrt{m}/3$ distortion bound (proof on the board!)

Utilitarian Approach

- Pros: Uses minimal assumptions and yields a uniquely optimal voting rule
- Cons: The optimal rule is difficult to compute and unintuitive to humans
- This approach is currently deployed on RoboVote.org
 - It has been extended to select a set of alternatives, select a ranking, select public projects subject to a budget constraint, etc.

AI-Driven Decisions

RoboVote is a free service that helps users combine their preferences or opinions into optimal decisions. To do so, RoboVote employs state-of-the-art voting methods developed in artificial intelligence research. Learn More

Poll Types

RoboVote offers two types of polls, which are tailored to different scenarios; it is up to users to indicate to RoboVote which scenario best fits the problem at hand.

Objective Opinions

In this scenario, some alternatives are objectively better than others, and the opinion of a participant reflects an attempt to estimate the correct order. RoboVote's proposed outcome is guaranteed to be as close as possible — based on the available information — to the best outcome. Examples include deciding which product prototype to develop, or which company to invest in, based on a metric such as projected revenue or market share. Try the demo.

X

Subjective Preferences

In this scenario participants' preferences reflect their subjective taste; RoboVote proposes an outcome that mathematically makes participants as happy as possible overall. Common examples include deciding which restaurant or movie to go to as a group, which destination to choose for a family vacation, or whom to elect as class president. Try the demo.

Ready to get started?

CREATE A POLL