CSC304 Lecture 9

Mechanism Design with Money:
More VCG examples;
greedy approximation of VCG
VCG Recap

- \(f(\tilde{\nu}) = a^* = \arg\max_{a \in A} \sum_i \tilde{\nu}_i(a) \)
 - Choose the allocation maximizing reported welfare

- \(p_i(\tilde{\nu}) = \left[\max_a \sum_{j \neq i} \tilde{\nu}_j(a) \right] - \left[\sum_{j \neq i} \tilde{\nu}_j(a^*) \right] \)
 - Each agent pays the loss to others due to her presence

- Four properties
 - Strategyproofness
 - Individual rationality (IR)
 - No payments to agents
 - Welfare maximization
Seller as Agent

• Seller (S) wants to sell his car (c) to buyer (B)

• Seller has a value for his own car: $v_S(c)$
 - Individual rationality for the seller mandates that seller must get revenue at least $v_S(c)$

• Idea: Add seller as another agent, and make his values part of the welfare calculations!
Seller as Agent

\[v_S(c) = 3 \quad \text{and} \quad v_B(c) = 5 \]

• What if...
 - We give the car to buyer when \(v_B(c) > v_S(c) \) and
 - Buyer pays seller \(v_B(c) \): Not strategyproof for buyer!
 - Buyer pays seller \(v_S(c) \): Not strategyproof for seller!
What would VCG do?

\[v_S(c) = 3 \quad \text{and} \quad v_B(c) = 5 \]

- **Allocation?**
 - Buyer gets the car (welfare = 5)

- **Payment?**
 - Buyer pays: \(3 - 0 = 3 \)
 - Seller pays: \(0 - 5 = -5 \)

Mechanism takes $3 from buyer, and gives $5 to the seller!

- Need external subsidy
Problems with VCG

• Difficult to understand
 ➢ Need to reason about what welfare maximizing allocation in agent i’s absence

• Does not care about revenue
 ➢ Although we can lower bound its revenue

• With sellers as agents, need subsidy
 ➢ With no subsidy, cannot get the other three properties

• Might be NP-hard to compute
Single-Minded Bidders

• Combinatorial auction for a set of m items S

• Each agent i has two private values (v_i, S_i)
 - $S_i \subseteq S$ is the set of desired items
 - When given a bundle of items A_i, agent has value v_i if $S_i \subseteq A_i$ and 0 otherwise
 - “Single-minded”

• Welfare-maximizing allocation
 - Agent i either gets S_i or nothing
 - Find a subset of players with the highest total value such that their desired sets are disjoint
Single-Minded Bidders

• Weighted Independent Set (WIS) problem
 ➢ Given a graph with weights on nodes, find an independent set of nodes with the maximum weight
 ➢ Known to be NP-hard

• Easy to reduce our problem to WIS
 ➢ Not even $O(m^{0.5-\epsilon})$ approximation of welfare unless $NP \subseteq ZPP$

• Luckily, there’s a simple, \sqrt{m}-approximation greedy algorithm
Greedy Algorithm

• **Input:** \((v_i, S_i)\) for each agent \(i\)
• **Output:** Agents with mutually independent \(S_i\)

• **Greedy Algorithm:**
 - Sort the agents in a specific order (we’ll see).
 - Relabel them as 1, 2, …, \(n\) in this order.
 - \(W \leftarrow \emptyset\)
 - For \(i = 1, \ldots, n\):
 - If \(S_i \cap S_j = \emptyset\) for every \(j \in W\), then \(W \leftarrow W \cup \{i\}\)
 - Give agents in \(W\) their desired items.
Greedy Algorithm

• Sort by what?

• We want to satisfy agents with higher values.
 \(v_1 \geq v_2 \geq \cdots \geq v_n \Rightarrow m\text{-approximation} \)

• But we don’t want to exhaust too many items.
 \(\frac{v_1}{|S_1|} \geq \frac{v_2}{|S_2|} \geq \cdots \frac{v_n}{|S_n|} \Rightarrow m\text{-approximation} \)

• \(\sqrt{m}\text{-approximation} : \frac{v_1}{\sqrt{|S_1|}} \geq \frac{v_2}{\sqrt{|S_2|}} \geq \cdots \frac{v_n}{\sqrt{|S_n|}} \) ?

[Lehmann et al. 2011]
Proof of Approximation

• Definitions
 - \(OPT \) = Agents satisfied by the optimal algorithm
 - \(W \) = Agents satisfied by the greedy algorithm
 - For \(i \in W \),
 \[
 OPT_i = \{ j \in OPT, j \geq i : S_i \cap S_j \neq \emptyset \}
 \]

• Claim 1: \(OPT \subseteq \bigcup_{i \in W} OPT_i \)

• Claim 2: It is enough to show that \(\forall i \in W \)
 \[
 \sqrt{m} \cdot v_i \geq \sum_{j \in OPT_i} v_j
 \]

• Observation: For \(j \in OPT_i \), \(v_j \leq v_i \cdot \frac{\sqrt{|S_j|}}{\sqrt{|S_i|}} \)
Proof of Approximation

• Summing over all \(j \in OPT_i \):

\[\Sigma_{j \in OPT_i} v_j \leq \frac{v_i}{\sqrt{|S_i|}} \cdot \Sigma_{j \in OPT_i} \sqrt{|S_j|} \]

• Using Cauchy-Schwarz (\(\Sigma_i x_i y_i \leq \sqrt{\Sigma_i x_i^2} \cdot \sqrt{\Sigma_i y_i^2} \))

\[\Sigma_{j \in OPT_i} \sqrt{|S_j|} \cdot 1 \leq \sqrt{|OPT_i|} \cdot \sqrt{\Sigma_{j \in OPT_i} |S_j|} \]
\[\leq \sqrt{|S_i|} \cdot \sqrt{m} \]
Strategyproofness

- Agent i pays $p_i = v_{j^*} \cdot \sqrt{\frac{|S_i|}{|S_{j^*}|}}$

 - j^* is the smallest index j such that j is currently not selected by greedy but would be selected if we remove (v_i, S_i) from the system

 - **Exercise:** Show that we must have $j^* > i$

 - **Exercise:** Show that $S_i \cap S_{j^*} \neq \emptyset$

 - **Another interpretation:** $p_i = \text{lowest value } i \text{ can report and still win}$
Strategyproofness

• **Critical payment**
 - Charge each agent the lowest value they can report and still win

• **Monotonic allocation**
 - If agent i wins when reporting (v_i, S_i), she must win when reporting $v_i' \geq v_i$ and $S_i' \subseteq S_i$.
 - Greedy allocation rule satisfies this.

• **Theorem:** Critical payment + monotonic allocation rule imply strategyproofness.
Moral

• VCG can sometimes be too difficult to implement
 ➢ May look into approximately maximizing welfare
 ➢ As long as the allocation rule is monotone, we can charge critical payments to achieve strategyproofness
 ➢ Note: approximation is needed for computational reasons

• Later in mechanism design without money...
 ➢ We will not be able to use payments to achieve strategyproofness
 ➢ Hence, we will need to approximate welfare just to get strategyproofness, even without any computational restrictions