CSC304 Lecture 9

Mechanism Design with Money: More VCG examples; greedy approximation of VCG

VCG Recap

f(ṽ) = a* = argmax_{a∈A} ∑_i ṽ_i(a)
 ≻ Choose the allocation maximizing *reported* welfare

•
$$p_i(\tilde{v}) = \left[\max_{a} \sum_{j \neq i} \tilde{v}_j(a)\right] - \left[\sum_{j \neq i} \tilde{v}_j(a^*)\right]$$

> Each agent pays the loss to others due to her presence

- Four properties
 - Strategyproofness
 - > Individual rationality (IR)
 - No payments to agents
 - > Welfare maximization

Seller as Agent

- Seller (S) wants to sell his car (c) to buyer (B)
- Seller has a value for his own car: $v_S(c)$
 - > Individual rationality for the seller mandates that seller must get revenue at least $v_S(c)$
- Idea: Add seller as another agent, and make his values part of the welfare calculations!

Seller as Agent

 $v_S(c) = 3$

- What if...
 - > We give the car to buyer when $v_B(c) > v_S(c)$ and
 - > Buyer pays seller $v_B(c)$: Not strategyproof for buyer!
 - > Buyer pays seller $v_S(c)$: Not strategyproof for seller!

What would VCG do?

 $v_S(c) = 3$

 $v_B(c)=5$

• Allocation?

> Buyer gets the car (welfare = 5)

- Payment?
 - > Buyer pays: 3 0 = 3
 - > Seller pays: 0 5 = -5

Mechanism takes \$3 from buyer, and gives \$5 to the seller!

• Need external subsidy

Problems with VCG

- Difficult to understand
 - Need to reason about what welfare maximizing allocation in agent *i*'s absence
- Does not care about revenue
 > Although we can lower bound its revenue
- With sellers as agents, need subsidy
 With no subsidy, cannot get the other three properties
- Might be NP-hard to compute

Single-Minded Bidders

- Combinatorial auction for a set of *m* items *S*
- Each agent *i* has two private values (v_i, S_i)
 - > $S_i \subseteq S$ is the set of desired items
 - > When given a bundle of items A_i , agent has value v_i if $S_i \subseteq A_i$ and 0 otherwise
 - "Single-minded"
- Welfare-maximizing allocation
 - > Agent *i* either gets S_i or nothing
 - Find a subset of players with the highest total value such that their desired sets are disjoint

Single-Minded Bidders

- Weighted Independent Set (WIS) problem
 - Given a graph with weights on nodes, find an independent set of nodes with the maximum weight
 - Known to be NP-hard
- Easy to reduce our problem to WIS
 - > Not even $O(m^{0.5-\epsilon})$ approximation of welfare unless $NP \subseteq ZPP$
- Luckily, there's a simple, $\sqrt{m}\text{-}\mathsf{approximation}$ greedy algorithm

Greedy Algorithm

- Input: (v_i, S_i) for each agent i
- Output: Agents with mutually independent S_i
- Greedy Algorithm:
 - Sort the agents in a specific order (we'll see).
 - > Relabel them as 1,2, ..., n in this order.
 - $\succ W \leftarrow \emptyset$
 - > For i = 1, ..., n:
 - If $S_i \cap S_j = \emptyset$ for every $j \in W$, then $W \leftarrow W \cup \{i\}$

 \succ Give agents in W their desired items.

Greedy Algorithm

- Sort by what?
- We want to satisfy agents with higher values. $v_1 \ge v_2 \ge \cdots \ge v_n \Rightarrow m$ -approximation \otimes
- But we don't want to exhaust too many items. $\geq \frac{v_1}{|S_1|} \geq \frac{v_2}{|S_2|} \geq \cdots \frac{v_n}{|S_n|} \Rightarrow m$ -approximation \otimes
- \sqrt{m} -approximation : $\frac{v_1}{\sqrt{|S_1|}} \ge \frac{v_2}{\sqrt{|S_2|}} \ge \cdots \frac{v_n}{\sqrt{|S_n|}}$?

[Lehmann et al. 2011]

Proof of Approximation

- Definitions
 - > OPT = Agents satisfied by the optimal algorithm
 - > W = Agents satisfied by the greedy algorithm
- Claim 1: $OPT \subseteq \bigcup_{i \in W} OPT_i$
- Claim 2: It is enough to show that $\forall i \in W$ $\sqrt{m} \cdot v_i \ge \Sigma_{j \in OPT_i} v_j$

• Observation: For $j \in OPT_i$, $v_j \le v_i \cdot \frac{\sqrt{|S_j|}}{\sqrt{|S_i|}}$

Proof of Approximation

• Summing over all $j \in OPT_i$:

$$\Sigma_{j \in OPT_i} v_j \leq \frac{v_i}{\sqrt{|S_i|}} \cdot \Sigma_{j \in OPT_i} \sqrt{|S_j|}$$

• Using Cauchy-Schwarz (
$$\Sigma_i \ x_i y_i \leq \sqrt{\Sigma_i \ x_i^2} \cdot \sqrt{\Sigma_i \ y_i^2}$$
)
 $\Sigma_{j \in OPT_i} \sqrt{|S_j| \cdot 1} \leq \sqrt{|OPT_i|} \cdot \sqrt{\Sigma_{j \in OPT_i} \ |S_j|}$
 $\leq \sqrt{|S_i|} \cdot \sqrt{m}$

Strategyproofness

- Agent *i* pays $p_i = v_{j^*} \cdot \sqrt{\frac{|S_i|}{|S_{j^*}|}}$
 - j* is the smallest index j such that j is currently not selected by greedy but would be selected if we remove (v_i, S_i) from the system
 - > Exercise: Show that we must have $j^* > i$
 - ▶ Exercise: Show that $S_i \cap S_{j^*} \neq \emptyset$
 - Another interpretation: p_i = lowest value i can report and still win

Strategyproofness

- Critical payment
 - Charge each agent the lowest value they can report and still win
- Monotonic allocation
 - > If agent *i* wins when reporting (v_i, S_i) , she must win when reporting $v'_i \ge v_i$ and $S'_i \subseteq S_i$.
 - > Greedy allocation rule satisfies this.
- Theorem: Critical payment + monotonic allocation rule imply strategyproofness.

Moral

- VCG can sometimes be too difficult to implement
 - > May look into approximately maximizing welfare
 - > As long as the allocation rule is monotone, we can charge critical payments to achieve strategyproofness
 - Note: approximation is needed for computational reasons
- Later in mechanism design without money...
 - > We will not be able to use payments to achieve strategyproofness
 - Hence, we will need to approximate welfare just to get strategyproofness, even without any computational restrictions