CSC373

Week 11:
Randomized Algorithms

Randomized Algorithms

Output

Input _ _
Randomized Algorithm Output

Input Deterministic Algorithm

Randomness

373F20 - Nisarg Shah 2

Randomized Algorithms

* Running time
> Harder goal: the running time should always be small

o Regardless of both the input and the random coin flips

> Easier goal: the running time should be small in expectation
o Expectation over random coin flips
o But it should still be small for every input (i.e. worst-case)

* Approximation Ratio

> The objective value of the solution returned should, in expectation,
be close to the optimum objective value

o Once again, the expectation is over random coin flips
o The approximation ratio should be small for every input

373F20 - Nisarg Shah 3

Derandomization

e After coming up with a randomized approximation
algorithm, one might ask if it can be “derandomized”

> Informally, the randomized algorithm is making random choices that,
in expectation, turn out to be good

> Can we make these “good” choices deterministically?

* For some problems...

> It may be easier to first design a simple randomized approximation
algorithm and then de-randomize it...

> Than to try to directly design a deterministic approximation
algorithm

373F20 - Nisarg Shah 4

Recap: Probability Theory

e Random variable X
» Discrete
o Takes value v, with probability p, v, w.p. p, ...
o Expected value E[X] =p; vy + 0y - vy + -
o Examples: coin toss, the roll of a six-sided die, ...

» Continuous
o Has a probability density function (pdf) f
o Its integral is the cumulative density function (cdf) F

« F(x) =Pr[X <x] = f f(®) dt
o Expected value E[X] = f_ooxf(x) dx

o Examples: normal distribution, exponential distribution, uniform
distribution over [0,1], ...

373F20 - Nisarg Shah 5

Recap: Probability Theory

* Things you should be aware of...
> Conditional probabilities
> Conditional expectations
> Independence among random variables
> Moments of random variables

> Standard discrete distributions: uniform over a finite set, Bernoulli,
binomial, geometric, Poisson, ...

> Standard continuous distributions: uniform over intervals,
Gaussian/normal, exponential, ...

373F20 - Nisarg Shah 6

Three Pillars

Linearity of Expectation Union Bound Chernoff Bound

I Il

* Deceptively simple, but incredibly powerful!

* Many many many many probabilistic results are just
interesting applications of these three results

373F20 - Nisarg Shah 7

Three Pillars

* Linearity of expectation
> E[X 4+ Y] = E[X] + E[Y]

> This does not require any independence assumptions about X and Y

> E.g. if you want to find out how many people will attend your party
on average, just ask each person the probability with which they will

attend and sum up the probabilities

o It does not matter whether some of them are friends and either
all will attend together or none will attend

373F20 - Nisarg Shah 8

Three Pillars

* Union bound
> For any two events A and B, Pr[A U B] < Pr[A] + Pr[B]

> “Probability that at least one of the n events A4, ..., 4,, will occur is at
most);; Pr[A4;]”

» Typically, A4, ..., 4,, are “bad events”
o You do not want any of them to occur

o If you can individually bound Pr[A4;] < 1/,,, for each i, then
probability that at least one them occurs < 1/2

o Thus, with probability > 1/,, none of the bad events will occur

e Chernoff bound & Hoeffding’s inequality
> Read up!

373F20 - Nisarg Shah 9

Exact Max-k-SAT

373F20 - Nisarg Shah

Exact Max-k-SAT

(Problem (recall)

> Input: An exact k-SAT formula @ = C; AC, A - A Cypy,
where each clause C; has exactly k literals, and a weight w; = 0 of
each clause (;

> Output: A truth assignment T maximizing the number (or total
\ weight) of clauses satisfied under t

\

J

> Let us denote by W (1) the total weight of clauses satisfied under t

373F20 - Nisarg Shah

Exact Max-k-SAT

e Recall our local search

> N, (7) = set of all truth assignments which can be obtained by
changing the value of at most d variables in T

* Result 1: Neighborhood N; (7) = 4/3-apx for Exact Max-2-
SAT.

* Result 2: Neighborhood N, (1) U ¢ = 3/,-apx for Exact Max-
2-SAT.

* Result 3: Neighborhood N, () + oblivious local search = 3/,-
apx for Exact Max-2-SAT.

373F20 - Nisarg Shah

Exact Max-k-SAT

e Recall our local search

> N, (7) = set of all truth assignments which can be obtained by
changing the value of at most d variables in T

* We claimed that 34-apx for Exact Max-2-SAT can be

k_
2 kl-apx for Exact Max-k-SAT
2

> Algorithm becomes slightly more complicated

generalized to

 What can we do with randomized algorithms?

373F20 - Nisarg Shah

Exact Max-k-SAT

* Recall:
» We haveaformulagp = C{ AC, A - A Cyy
» Variables = x4, ..., x,,, literals = variables or their negations
> Each clause contains exactly k literals

@ .. i i)
* The most naive randomized algorithm
> Set each variable to TRUE with probability 2 and to FALSE with
probability %5)

 How good is this?

373F20 - Nisarg Shah

Exact Max-k-SAT

* Recall:
» We haveaformulagp = C{ AC, A - A Cyy
» Variables = x4, ..., x,,, literals = variables or their negations
> Each clause contains exactly k literals

* Let T be a random assignment
» For each clause C;: Pr[C; is not satisfied] = 1/2k (WHY?)
o Hence, Pr[(; is satisfied] = (zk—1)/2k
> E[W ()] = X%, w; - Pr[C; is satisfied] (WHY?)

21 «m 2k—1
> E[W(T)] — Z_k . Zi:lwi > 7 - OPT

373F20 - Nisarg Shah

Derandomization

e Can we derandomize this algorithm?
> What are the choices made by the algorithm?
o Setting the values of x4, x5, ..., X,
> How do we know which set of choices is good?

* |dea:
> Do not think about all the choices at once.
> Think about them one by one.
> Goal: Gradually convert the random assignment 7 to a deterministic

assignment 7 such that W (%) = E[W (7)]

ke
o Combining with E[W (7)] = szl - OPT will give the desired

deterministic approximation ratio

373F20 - Nisarg Shah

Derandomization

e Start with the random assignment 7 and write...

E[W(r)] = Prlx; =T] - E[W(@)|xy =T] + Pr[x; = F] - E[W(2)|x; = F]
=1/ EW®@lx; =T+ 1/, - EW @)%, = F]

> Hence, max(E[W (t)|x; = T],E[W(1)|x; = F]) = E[W(7)]
o Whatis E[W (7)|x; =T]?

* Itis the expected weight when setting x; = T deterministically
but still keeping x5, ..., x,, random

> If we can compute both E[W (7)|x; = T] and E[W (7)|x; = F], and
pick the better one...

o Then we can set x; deterministically without degrading the
expected objective value

373F20 - Nisarg Shah

Derandomization

 After deterministically making the right choice for x; (say T),
we can apply the same logic to x,

EW(@|x; =T] = 1/2 EW@)|xy =T,x, =T]
+1/5 - EW(@|x, = T, x, = F]

> Pick the better of the two conditional expectations

"+ Derandomized Algorithm:
> Fori=1,..,n

oletz; =TifE[W(T)|xy =21, ., Xj—q = Zj_1,%; =T] =
EW()|x; = 24, ...,Xj_1 = Z;_1,x; = F], and z; = F otherwise

_ o Setx; = z;

J

373F20 - Nisarg Shah

Derandomization

* This is called the method of conditional expectations

> If we’re happy when making a choice at random, we should be at least
as happy conditioned on at least one of the possible values of that
choice

* Remaining question:
> How do we compute & compare the two conditional expectations:

EW(T)|x; =2z, ..., Xj—1 = Z;_1,x; = T] and
EW()|xy =2z, .., Xj_1 = Zj_1,x; = F]?

373F20 - Nisarg Shah

Derandomization

* E[W(T)lxl = Z1y 0 Xj—1 T Zi-1, X = T]
> YW, - Pr[C, is satisfied |x; = zq, ..., x;_1 = Zzj_1,%x; = T]
» Set the values of x4, ..., X;_1, X;
» If C,- resolves to TRUE already, the corresponding probability is 1
> If C,- resolves to FALSE already, the corresponding probability is 0

> Otherwise, if there are ¥ literals left in C,. after setting x4, ..., X;_1, X;,
£

the corresponding probability is 7

* Compute E[W (1)|x; = 24, ..., Xj_1 = Z;_1,x; = F] similarly

373F20 - Nisarg Shah

Max-SAT

e Simple randomized algorithm

k_
szl —approximation for Max-k-SAT

> Max-3-SAT = 7 /g
o [Hastad]: This is the best possible assuming P = NP
> Max-2-SAT =3/, = 0.75

o The best known approximation is 0.9401 using semi-definite
programming and randomized rounding

> Max-SAT = 1/,
o Max-SAT = no restriction on the number of literals in each clause

o The best known approximation is 0.7968, also using semi-definite
programming and randomized rounding

>

373F20 - Nisarg Shah

Max-SAT

* Better approximations for Max-SAT
> Semi-definite programming is out of the scope

> But we will see the simpler “LP relaxation + randomized rounding”
approach that gives 1 — 1/, ~ 0.6321 approximation

(e Max-SAT:

> Input: ¢ = C; A Cy, A --- A C,y, Where each clause C; has weight w; >
0 (and can have any number of literals)

> Output: Truth assignment that approximately maximizes the weight
of clauses satisfied

~

J

373F20 - Nisarg Shah

LP Formulation of Max-SAT

e First, IP formulation:
> Variables:

O V1, -, Vn € {0,1}
* y; = 1iff variable x; = TRUE in Max-SAT

O Z1, -, Zm € {0,1}
* Zj = 1 iff clause C] is satisfied in Max-SAT

o Program:

Maximize Zj Wj -« Z;

s.t.
Sxec; Vi +Ixec, A=) 2z Vi€l ..,m}
vi,zj € {0,1} vie{l,..,n},j€e{l,.., m}

373F20 - Nisarg Shah

LP Formulation of Max-SAT

e LP relaxation:
> Variables:

O V1, -, VYn € [0,1]
* y; = 1iff variable x; = TRUE in Max-SAT

O Z1, -, Zm € [0,1]
* Zj = 1 iff clause C] is satisfied in Max-SAT

o Program:

Maximize Zj Wj -« Z;

s.t.
Yxec; Vi +Enec; A—y) 2z Vi €{1,..,m}
Vi, Zj € [0,1] vie{l,..,n},je{l,.., m}

373F20 - Nisarg Shah

Randomized Rounding

* Randomized rounding
> Find the optimal solution (y*, z*) of the LP
» Compute a random IP solution y such that
o Each §; = 1 with probability y;" and 0 with probability 1 — y;
o Independently of other ;’s
o The output of the algorithm is the corresponding truth assignment

> What is Pr[(; is satisfied] if C; has k literals?

1-— xEC (1_yl) HxEC] (yl)
(xec; (1= ¥i) + Zgec, (yl)> (k—zj“>k
=1- 21— |—

N k

\ J \ J
| T

AM-GM inequality LP constraint

373F20 - Nisarg Shah

Randomized Rounding

e Claim

> 1—(1—%)1(2 (1—(1—%)k)-zforallze [0,1]and k €N

e Assuming the claim:

_\K
Pr[Cj is satisfied] >1— (k kZ]> > (1 — (1 — %)k> : zj* > (1 — i) .z]f‘

| J
|

* Hence, Standard inequality

E[#weight of clauses satisfied] > (1 — i) 2wz = (1 — i) - OPT

| J
|

Optimal LP objective = optimal ILP objective

373F20 - Nisarg Shah 26

Randomized Rounding

* Claim
k K
>1—(1—£) 2(1—(1—%))-zforalle[O,l]andkEN

* Proof of claim:

> True at z = 0 and z = 1 (same quantity on both sides)
> For0 <z < 1:
o LHS is a convex function Va'_ue

k=100

o RHS is a linear function 0.6}
o Hence, LHS = RHS m 0.5¢
041 —_ LHS

03¢ RHS
0.2¢f

0.1¢

373F20 - Nisarg Shah

Improving Max-SAT Apx

e Best of both worlds:

> Run both “LP relaxation + randomized rounding” and “naive
randomized algorithm”

> Return the best of the two solutions

> Claim without proof: This achieves a 3/, = 0.75 approximation!
o This algorithm can be derandomized.

> Recall:

o “naive randomized” = independently set each variable to
TRUE/FALSE with probability 0.5 each, which only gives 1/, = 0.5
approximation by itself

373F20 - Nisarg Shah

Back to 2-SAT

* Max-2-SAT is NP-hard (we didn’t prove this!)

e But 2-SAT can be efficiently solved

> “Given a 2-CNF formula, check whether all clauses can be satisfied
simultaneously.”

(Algorithm:
> Repeatedly eliminate a clause with one literal & set the literal to true
> Create a graph with each remaining literal as a vertex
> For every clause (x V y), add two edges: X = yand y — x
o U — v means if u is true, v must be true
> Formula is satisfiable iff no path from x to x or X to x for any x
\ o Can be checked in polynomial time

~

/

373F20 - Nisarg Shah

Random Walk + 2-SAT

e Here’s a cute randomized algorithm by Papadimitriou
[1991]

8 Algorithm:)

> Start with an arbitrary assignment.
> While there is an unsatisfied clause C = (x V y)
o Pick one of the two literals with equal probability.
\ o Flip the variable value so that C is satisfied. /

e But can’t this hurt the other clauses?
» In a given step, yes.
> But in expectation, we will still make progress.

373F20 - Nisarg Shah

Random Walk + 2-SAT

* Theorem:
> If there is a satisfying assignment t%, then this algorithm reaches a
satisfying assignment in 0(n?) expected time.
* Proof:
> Fix a satisfying assighment 7*
» Let 7y be the starting assignment
> Let 7; be the assignment after i iterations
» Consider the “hamming distance” d; between 7; and 7*
o Number of coordinates in which the two differ
od; € {0,1,..,n}

> Claim: the algorithm hits d; = 0 in O(n?) iterations in expectation,
unless it stops before that

373F20 - Nisarg Shah

Random Walk + 2-SAT

* Observation: d;;; =d; —1lord;;; =d; +1
> Because we change one variable in each iteration.

e Claim: Pr[d;;, =d; — 1] = 1/2

* Proof:
> Iteration i considers an unsatisfied clause C = (x V y)
> T satisfies at least one of x or y, while t; satisfies neither

> Because we pick a literal randomly, w.p. at least 2 we pick one
where 1; and " differ and decrease the distance

> Q: Why did we need an unsatisfied clause? What if we pick one of n
variables randomly and flip it?

373F20 - Nisarg Shah

Random Walk 2-SAT

e Answer:

: : . 1
> We want the distance to decrease with probability at least > o
matter how close or far we are from t~*

> If we are already close, choosing a variable at random will likely
choose one where 7 and " already match

> Flipping this variable will increase the distance with high probability

» An unsatisfied clause narrows it down to two variables s.t. T and t*
differ on at least one of them

373F20 - Nisarg Shah

Random Walk + 2-SAT

* Observation:d;;,;1 =d; —1lord;y; =d; +1
e Claim: Pr[d;4; =d; — 1] = 1/2

\Y
N =
IA
N =
\Y
N =
IA
N =

* How does this help?

373F20 - Nisarg Shah

Random Walk + 2-SAT

\Y
N -
IN
N =
v
N =
IN
N -

%
;

* How does this help?

> Can view this as a “Markov chain” and use known results
on “hitting time”
> But let’s prove it using elementary methods

373F20 - Nisarg Shah

Random Walk + 2-SAT

 For k > ¢, define:

> Ty p = expected number of iterations it takes to hit distance ¢
for the first time when you start at distance k

1 1
*Tipq=ox 140+ (1 + Tisz)

1 1
=~ (1) + 2% (1 + Tigian + Tivn)

. e . Which pillar did we use?
e Simplifying:

> Tig1,i S 2+ Tihgi41 S 4+ Tiyzi42 < < 0(M) + Ty < 0(0)
o Uses Ty, ,—1 = 1 (Why?)

*Ipo = Tn,n—l Tt T1,O = O(nz)

373F20 - Nisarg Shah

Random Walk + 2-SAT

e Can view this algorithm as a “drunken local search”
> We are searching the local neighborhood
> But we don’t ensure that we necessarily improve
> We just ensure that in expectation, we aren’t hurt
> Hope to reach a feasible solution in polynomial time

* Schoning extended this technique to k-SAT

» Schoning’s algorithm no longer runs in polynomial time, but this is
okay because k-SAT is NP-hard

> It still improves upon the naive 2™
> Later derandomized by Moser and Scheder [2011]

373F20 - Nisarg Shah

Schoning’s Algorithm for k-SAT

e Algorithm:
> Choose a random assignment ©
> Repeat 3n times (n = #variables)
o If T satisfies the CNF, stop

in the clause

_

~

o Else, pick an arbitrary unsatisfied clause and flip a random literal

J

373F20 - Nisarg Shah

Schoning’s Algorithm

* Randomized algorithm with one-sided error
> If the CNF is satisfiable, it finds an assignment with probability at

1 k \"
least (——)
2 k-1

> If the CNF is unsatisfiable, it never finds an assignment
e Expected #times we need to repeat in order to find a
n
satisfying assignment when one exists: (2 (1 — %))

> For k = 3, this gives 0(1.3333")
> For k = 4, this gives 0(1.5™)

373F20 - Nisarg Shah

Best Known Results

* 3-SAT

* Deterministic
» Derandomized Schoning’s algorithm: 0(1.3333")
> Best known: 0(1.3303™) [HSSW]

o If we are assured that there is a unique satisfying assignment:
0(1.3071™) [PPSZ]

e Randomized

> Nothing better known without one-sided error
> With one-sided error, best known is 0(1.30704™) [Modified PPSZ]

373F20 - Nisarg Shah

Random Walk + 2-SAT

 Random walks are not only of theoretical interest
> WalkSAT is a practical SAT algorithm
> At each iteration, pick an unsatisfied clause at random
> Pick a variable in the unsatisfied clause to flip:
o With some probability, pick at random.

o With the remaining probability, pick one that will make the fewest
previously satisfied clauses unsatisfied

> Restart a few times (avoids being stuck in local minima)

e Faster than “intelligent local search” (GSAT)
> Flip the variable that satisfies most clauses

373F20 - Nisarg Shah

Random Walks on Graphs

* Aleliunas et al. [1979]

> Let G be a connected undirected graph. Then a random walk starting
from any vertex will cover the entire graph (visit each vertex at least
once) in O(mn) steps.

* Limiting probability distribution

. o : . d;
> In the limit, the random walk will visit a vertex with degree d; in ﬁ
fraction of the steps

e Markov chains

> Generalize to directed (possibly infinite) graphs with unequal edge
traversal probabilities

373F20 - Nisarg Shah

Randomization for
Sublinear Running Time

373F20 - Nisarg Shah

Sublinear Running Time

e Given an input of length n, we want an algorithm that runs
intime o(n)
0.999 _N

> o(n) examples: logn,\/n,n logn’

> The algorithm doesn’t even get to read the full input!

* There are four possibilities:

> Exact vs inexact: whether the algorithm always returns the
correct/optimal solution or only does so with high probability (or
gives some approximation)

> Worst-case versus expected running time: whether the algorithm
always takes o(n) time or only does so in expectation (but still on
every instance)

373F20 - Nisarg Shah

Exact algorithmes,
expected sublinear time

373F20 - Nisarg Shah

Searching in Sorted List

* Input: A sorted doubly linked list with n elements.
> Imagine you have an array A with O(1) access to A[i]
> Ali] is a tuple (x;, p;, n;)
o Value, index of previous element, index of next element.
> Sorted: X, < x; < Xy,

* Task: Given x, check if there exists i s.t. x = x;

* Goal: We will give a randomized + exact algorithm with
expected running time 0(/n)!

373F20 - Nisarg Shah

Searching in Sorted List

* Motivation:

» Often we deal with large datasets that are stored in a large file on
disk, or possibly broken into multiple files

> Creating a new, sorted version of the dataset is expensive

> It is often preferred to “implicitly sort” the data by simply adding
previous-next pointers along with each element

> Would like algorithms that can operate on such implicitly sorted
versions and yet achieve sublinear running time

o Just like binary search achieves for an explicitly sorted array

373F20 - Nisarg Shah

Searching in Sorted List

/Algorithm: \

> Select y/n random indices R

> Access x; for each j € R

> Find “accessed x; nearest to x in either direction”
o either the largest among all x; < x...

o or the smallest among all x; = x

> If you take the largest x; < x, start from there and keep going “next”
until you find x or go past its value

If you take the smallest x; = x, start from there and keep going

>
\ “previous” until you find x or go past its value /

373F20 - Nisarg Shah

Searching in Sorted List

* Analysis sketch:
> Suppose you find the largest x; < x and keep going “next”
> Let x; be smallest value = x
» Algorithm stops when it hits x;
> Algorithm throws \/n random “darts” on the sorted list
> Chernoff bound:
o Expected distance of x; to the closest dart to its left is 0(y/n)
o We'll assume this without proof!
> Hence, the algorithm only does “next” 0(y/n) times in expectation

373F20 - Nisarg Shah

Searching in Sorted List

* Note:

> We don’t really require the list to be doubly linked. Just “next”
pointer suffices if we have a pointer to the first element of the list
(a.k.a. “anchored list”).

* This algorithm is optimal!

* Theorem: No algorithm that always returns the correct
answer can run in o(y/n) expected time.
> Can be proved using “Yao’s minimax principle”

> Beyond the scope of the course, but this is a fundamental result with
wide-ranging applications

373F20 - Nisarg Shah

Sublinear Geometric Algorithms

* Chazelle, Liu, and Magen [2003] proved the ©(y/n) bound
for searching in a sorted linked list

> Their main focus was to generalize these ideas to come up with
sublinear algorithms for geometric problems

> Polygon intersection: Given two convex polyhedra, check if they
intersect.

> Point location: Given a Delaunay triangulation (or Voronoi diagram)
and a point, find the cell in which the point lies.

> They provided optimal O (1/n) algorithms for both these problems.

373F20 - Nisarg Shah

Inexact algorithmes,
expected sublinear time

373F20 - Nisarg Shah

Estimating Avg Degree in Graph

* Input:

» Undirected graph G with n vertices

> 0(1) access to the degree of any queried vertex
* Qutput:

> Estimate the average degree of all vertices

> More precisely, we want to find a (2 + €)-approximation in expected
time 0(e°Wyn)

e Wait!

> Isn’t this equivalent to “given an array of n numbers between 1 and
n — 1, estimate their average”?

> No! That requires (1(n) time for any constant approximation!

o Consider an instance with constantly many n — 1’s, and all other
1’s: you may not discover any n — 1 until you query Q(n) numbers

373F20 - Nisarg Shah

Estimating Avg Degree in Graph

 Why are degree sequences more special?

e Erd6és—Gallai theorem:

» dq = -+ = d, is a degree sequence iff their sum is even and
iadi Sk(k—1) + X g1 d;

* Intuitively, we will sample 0(y/n) vertices

> We may not discover the few high degree vertices but we’ll find their
neighbors and thus account for their edges anyway!

373F20 - Nisarg Shah

Estimating Avg Degree in Graph
; A

Algorithm:

> Take 8/¢ random subsets S; € V with |S;| = O (\/?ﬁ)

> Compute the average degree dg, in each §;.

> Return d = min; dg,

_

* Analysis beyond the scope of this course
> This gets the approximation right with probability at least 2

> By repeating the experiment Q(logn) times and reporting the
median answer, we can get the approximation right with probability
at least 1 — 1/0(n) and a bad approximation with the other 1/0(n)
probability cannot hurt much

373F20 - Nisarg Shah

