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Abstract Assessment of student reasoning processes is one of the holy grails of 
intelligent tutoring.  One way in which students display their reasoning is 
through conversation.  In this paper we present work towards detecting where 
students are displaying “reasoning” in conversational speech.  Such technology 
would add to the body of work in educational data mining another means of 
monitoring student work. Because the concept of reasoning is somewhat 
abstract, we first discuss how we have operationalized it, achieving an 
agreement of 0.67 kappa between human raters.  We then discuss how we have 
used machine learning technology to predict whether a given speech segment 
contains a reasoning statement using features that can be extracted 
automatically using simple audio signal processing techniques. The result is 
promising with an f-score of 0.63.  
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1   Introduction 

Assessment of student reasoning processes is one of the holy grails of intelligent 
tutoring.  Much prior work in the educational data mining community [2, 5] has 
focused on the analysis of logfiles from intelligent tutoring systems in order to 
distinguish patterns of behavior that are indicative of shallow involvement (e.g., 
gaming the system) versus patterns of behavior that are indicative of deeper 
engagement with the material.  Other work has focused on the assessment of group 
processes from speech, where the goal has been to assess the extent to which students 
are participating equally in a conversation [6].  In this paper, we bring together these 
two lines of work, presenting an approach to assessment from speech where the goal 
is to distinguish segments of speech that are indicative of deep engagement with the 
material (e.g., explaining why or how something works) versus segments of speech 
that operate more on the surface (e.g., stating known facts).  We refer to segments of 
speech that display this deeper engagement with material explicit reasoning displays.   

An obvious application of such technology within the intelligent tutoring 
community would be for monitoring self-explanation during problem solving [3]. 



However, it would also be useful in the case of groups of students interacting with an 
intelligent tutoring system in order to determine which students are deeply engaged 
with the task versus those who are talking, but not contributing substantively to the 
intellectual work of the group.   In this paper we work with data collected in the midst 
of a group problem solving task, and thus we focus on the second of these two 
scenarios. 

In the remainder of the paper we first situate our work in the midst of current 
directions in speech processing.  Next we discuss our approach to operationalizing 
reasoning displays.  We then move on to a discussion of the technological 
contribution of the paper, which is an approach for automatically distinguishing 
between speech segments that contain reasoning displays and those that do not.  We 
then present an evaluation of our approach and conclude with a discussion of current 
directions. 

2   Motivation and Background 

The research goal of this work is to develop a technique to distinguish between 
segments of speech that contain an explicit display of reasoning from those that do 
not.  In the midst of group work, these explicit reasoning displays are important for 
achieving some of the important benefits of collaborative learning.  From a Piagetian 
perspective, for example, when a student participates in a discussion with other 
students who have different perspectives, it may provide opportunities for 
experiencing cognitive conflict if that students compares the perspectives of the other 
students to his own and notices the inconsistencies between them [4].  If students are 
not articulating their reasoning, then they won’t have the opportunity to do this 
valuable mental model comparison.  Thus, while we do not believe the articulation of 
reasoning is a sufficient condition for learning either in the student who articulated the 
reasoning or the other students who are listening, it can be seen as providing potential 
opportunities for learning. 

The task of distinguishing speech segments that contain reasoning displays from 
those that do not is a new task.  In this section, we discuss research on the current 
state of using machine learning technology and audio processing techniques for a 
variety of other speech processing tasks that can be seen as in league with our 
assessment problem, for example, detecting flirting [8] and emotion [1].  We see these 
as similar because what we are trying to predict from speech is related to “how” the 
words are spoken rather than the content of the words. Such structural aspects of 
speech reflect the speech style (e.g., prosody) rather than content. For instance, one 
can extract basic acoustic features such as variation and values of pitch, intensity of 
speech, amount of silence and duration of speech. Such feature choice reflects 
everyday observations about conversational speech. For example, increased variation 
in pitch might indicate that the speaker wants to deliver his ideas more clearly. 
Likewise, volume and duration of speech may signal that the speaker is explaining his 
ideas in detail, and is presenting his point of view about the subject matter.  



3   Operationalization of the reasoning process 

Our work focuses on discussions involving university students working together on a 
problem solving task.  In this section we describe the data, how we operationalized 
reasoning displays, and how we annotated the corpus using this operationalization. 

3.1   Data  

Our corpus was collected in a laboratory setting while students worked face-to-face in 
groups of three.  We are collecting data from a large number of groups as part of a 
formal group work study.  In this paper, we focus on a subset of the data that is being 
collected, which has already been transcribed and annotated.  The specific task the 
students are engaged in is to design a contraption to protect an egg when falling the 
distance of two flights of stairs.  This task involves applying a variety of principles of 
physics.  The data we focus on is a 30 minute discussion portion of each 3-student 
group work session when the participants were designing and building the egg holder.  

In order to collect clean speech with each student on a separate channel, each 
student wore a microphone.  Nevertheless, although it is possible to clearly identify 
the main speaker from an audio file, crosstalk, which is the other participants’ voices, 
could still be heard in the background. For each audio file, the main thirty-minute 
discussion sessions were transcribed and manually segmented for further analysis. 
The segmentation was conducted according to the following two rules.  
 

1. Begin a segment when the main speaker starts talking. If there is silence at 
the beginning of the file when the main speaker is silent, this means that 
there will be an “empty” segment in the beginning. 

2. A segment should contain the main speaker’s continuous speech. If there is 
an interruption (silence or crosstalk) that lasts for more than 1 second, a new 
segment should be created. When you create a new segment, there should be 
two boundaries – one that marks the end of the main speaker’s first 
utterance, and another that marks the start of the next utterance after the 
pause.  

 
Once the meetings were segmented, the corpus contained 619 segments, including 

data from all three participants, from the first meeting and 721 from the second 
meeting.  

3.2   Operationalization of Reasoning Displays

We are considering that there is a certain amount of information that has been given 
to the students, in the form of a task statement and training materials.  The displayed 
reasoning that we are interested in capturing is what goes beyond what is given and 
displays some understanding of a causal mechanism since typically some causal 
mechanism would be referenced in a discussion of how something works or why 
something is the way it is.  One purpose in segmenting student talk and identifying 



which segments display reasoning is so that amount of reasoning displayed can be 
quantified.  What we are coding is attempts at displayed reasoning.  Thus, we need to 
allow for displays of incorrect, incomplete, and incoherent reasoning to count as 
reasoning, as long as in our judgment we can believe an attempt at reasoning was 
going on.  That will necessarily be quite subjective – especially in the case of 
incoherent explanations.   

Our formulation of what counts as a reasoning display comes from the Weinberger 
& Fischer’s [11] notion of what counts as an “epistemic unit”, where what they look 
for is a connection between some detail from a scenario (which in their case is the 
object of the case study analyses their students are producing in their studies) with a 
theoretical concept (which comes from the attribution theory framework, which the 
students are applying to the case studies).  When they have seen enough text that they 
can see in it mention of a case study detail, a theoretical concept, and a connection 
between the two, they place a segment boundary.  Occasionally, a detail from a case 
study is described, but not in connection with a theoretical concept.  Or, a theoretical 
concept may be mentioned, but not tied to a case study detail.  In these cases, the units 
of text are considered degenerate, not quite counting as an epistemic unit. 

We have adapted the notion of an epistemic unit from Weinberger & Fischer, 
rather than using it the same way Weinberger et al. did in their work because the topic 
of our conversations is very different in nature.  We consider that the basic 
requirements for a unit of talk to count as a reasoning display is that it has to contain 
evidence of a connection between some detail from the problem the students are 
trying to solve, such as a choice of materials, or a way of combining materials, and 
relevant concept, such as from physics, which could be a principle that justifies a 
design choice.  As mentioned, we would like to distinguish this from just parroting 
what they have heard.  In our current formulation, we are considering the task and 
training materials that the experimenter has provided as what is given.  We would like 
to make a distinction between what is given and what the students contribute beyond 
that.   

Now we will make more concrete what our operationalization of reasoning looked 
like.  First, examine a segment of a conversation where we have highlighted the 
instances of displayed reasoning using bold italics. 

 

s1: i think we'll need only one rubber band because the 
rubber band is circular. We can just break it off right 
s3: oh yeah. that's a good idea. 
s2: See what are the weights 
s1: it is some significant difference 
s2: Yeah this is heavier. So this could be on top 
s3: yeah cause if we did that then that would fall on 
the bottom, right? It might do some spinning. 

 
The simple way of thinking about what constitutes a reasoning display is that it 

has to communicate an expression of some causal mechanism.  Often that will come 
in the form of an explanation, such as X because Y.  However, it can be more subtle 
than that, for example “Increasing the tension makes the spring springier.”  The basic 



premise was that a reasoning statement should reflect the process of drawing an 
inference or conclusion through the use of reason. Note that in the example with the 
spring, although there is no “because” clause, one could rephrase this in the following 
way, which does contain a “because” clause: “The spring will be springier because we 
will increase the tension.”  Reasoning statements stand in contrast to mere 
information sharing statements, which can be thought of as sharing of rote 
knowledge.  

Concepts. The basic building block of a reasoning statement is a concept. We 
identified 5 types of concepts relevant for our domain, namely theoretical concepts, 
prior knowledge, physical system properties, emergent system properties, and goals. 
For each concept, the definition and an example are illustrated in table 1.  

Table 1.  Definition and examples for the 5 concepts. The examples are from our dataset 
described in section 3.1, where students are discussing a best approach to build an egg holder. 
Note that the “system” in this case is the egg holder, plus any materials that are available for 
use.  

Type Definition Example 
Theoretical 
concept 

principles (i.e. physics principle) and 
theories  

when an object is falling, the force of 
impact when it hits the ground can be 
decreased by slowing down the speed.  

Prior 
Knowledge 

information based on common sense Using a small amount of tape would not 
be enough to hold two bowls together  

Physical 
system 
properties 

elements and characteristics of elements 
that are available for the system 

paper bowl is round, straws are flexible 

Emergent 
system 
properties 

characteristics of elements that appear 
in a process 

stability of an egg holder which 
emerges as a result of using certain 
materials 

Goal general believes/ perspectives, anything 
associated with strong expectations 
related to points of view 

aesthetics of an egg holder, i.e. trying to 
make the egg holder aesthetically 
pleasing 

Relationship. The presence of multiple concepts in a statement by itself does not 
determine whether a statement contains reasoning. Rather, the relationship between 
multiple concepts is the determining factor. For example, a simple list of concepts 
(e.g. this cup is round, and it is also white) is information sharing, and not reasoning. 
We identified two types of relationships that signal a reasoning process; 1. compare 
and contrast, 2. cause and effect.  

1. juxtapositions, compare and contrast, tradeoff: When the speaker compares 

two concepts, the speaker is making a judgment, which involves thinking 

about how two concepts are related to another.  

 

a. The speaker compares two materials (“that” & “rubber band”) for his 

solution. 

“I am thinking that might work better than a lot of rubber bands.”  



2. Cause and effect: When the speaker uses a cause-and-effect relationship, this 

process involves establishing the relationship between two concepts through a 

reasoning process. The general relation in this category is “doing x helps you 

achieve y” There are three main types of causal relationship a)cause and 

effect  b)in order to c)analogy. Example for each of the three types are 

illustrated below  

 

a. Let’s do A because of B. 

“Let’s use bubble wrap because it cushions the fall”  
b. Let’s do A in order to achieve B. 

“Let’s use rubber bands for tying the bag onto the bowl.”  
c. When a speaker makes an analogy, he is making a link due to the 

similarity between two concepts. Some of the keywords that signal 

analogies are “like”, “as”. 

“Oh, you’re trying to use the bowl as a parachute.”  

3.3   Reliability of Annotation

Two coders were initially trained using a manual that describes the above 
operationalization of reasoning displays in detail along with an extensive set of 
examples.  After each coding session, the coders discussed disagreements and refined 
the manual as needed. Most of the disagreements were due to the interpretation of 
what the students meant rather than the definition of reasoning itself. Therefore, later 
efforts focused more on defining how much context of a statement could be brought 
to bear on the interpretation and how.  In a final evaluation of reliability, we 
calculated kappa agreement of 0.67 between two coders over all the data. After 
calculation of the kappa, disagreements were settled by discussion between the two 
coders. 

4   Automatic assessment of reasoning processes 

The purpose of our investigations with speech technology were to determine the 
extent to which it is possible to use current machine learning technology to predict 
whether a given speech segment contains a reasoning statement or not using features 
extracted by means of simple audio processing techniques.  We first describe our 
approach.  In the subsequent section, we detail our promising results. 

4.1   Methods

The goal of this portion of our investigation was to distinguish reasoning statements 
from non reasoning statements using machine learning technology. This procedure 
consists of three main stages, namely, preparing the audio data, extracting features, 
and applying machine learning.  The details of each stage are presented below. 



The first step involved “cleaning up” the audio data and segmenting it into units for 
analysis. For each meeting participant, we collected an audio file containing his 
speech. Although each audio file mainly contained the main speaker’s speech, it also 
contained crosstalk, which is voice of other participants in the background. Since each 
audio file was used to analyze the main speaker’s talking behavior, we were only 
interested in the main speaker’s audio data. Therefore, we cleaned up the audio files 
by removing the crosstalk by using a relatively simple algorithm. Since the crosstalk 
was relatively low in volume, we set a threshold parameter of 0.1 over the volume. 
The range of the main speaker’s regular signal lies in the interval [1-, 1]. To remove 
the cross talk, we first generated speech segmentation boundaries using the threshold. 
The choice of threshold value is detailed in the next paragraph. Next, we zero out all 
signals that were marked as non-speech using this threshold. 

To find the threshold value, we experimented with threshold values between 0.05 
and 0.2, with increments of 0.01. First, for any value that was below the threshold of 
0.1, i.e. values between -0.1 and 0.1, the value was reduced to 0. For each threshold 
value, we generated segment boundaries by scanning the signal from left to right after 
applying the threshold. Next, we set up a cost function, which computed the cost of 
aligning these segment boundaries to the gold standard (human segmentation 
described in section 3.1). The threshold of 0.1 was the value that minimized the cost 
function. We also varied the value of the threshold to see how much of the actual 
speech was lost, and 0.1 was found to minimize the loss of speech while removing 
most of the background noise. In summary, this method of choosing the threshold 
value was relatively simple, yet computationally inexpensive and effective.  

Once the crosstalk was removed, the audio file was segmented according to the 
following 4 steps. First, the signal was scanned from left to right using a window of 
500ms. Second, at each time when the signal became non-zero, it was marked as a 
start time. Third, the window kept on moving across the signal until all the values 
inside the window became zero. Finally, a backwards search was done to locate the 
exact end point within the last 500ms window.  

After the initial stage of cleaning up and segmenting the data into units, the second 
stage involved transforming each segmented unit into a set of feature-value pairs. 
Each segment was labeled using the gold standard label described in section 3.2. For 
the feature set, a total of 50 features were initially extracted for each segment, 
including, speaker id, duration of the segment, 40 Mel Frequency Cepstral 
Coefficients (mfcc), 4 amplitude features, and 4 pitch features. However, to train the 
model, only 5 features of the 50 were used; the speaker id, duration, and the top three 
features from principal component analysis (PCA) for the rest of the 48 features. The 
decision to include only 3 of the 48 features results in substantial amount of reduction 
in computing power, yet utilized most of the essential information captured from 
acoustic features. 

The initial 40 mfcc features are the result of applying a set of 40 standard filters, 
which are available as part of VoiceBox Matlab Toolbox [10]. These mfccs reflects 
the distribution of energy level. The 4 amplitude features are: the value of the 
amplitude of the overall segment, mean, median, and standard deviation value of the 1 
second windows in a given speech segment. Similarly, the 4 pitch features are: pitch 
of the overall segment, mean, median, and standard deviation of pitch over 1 second 
windows in a given segment. The pitch features were extracted according to the YIN 



algorithm [12]. The amplitude features reflect the intensity and energy level of 
speech. Therefore, the mean value of amplitude could show the volume of the speaker 
and the standard deviation of amplitude could be used to show the amount of 
variation of intensity in the speaker’s speech segment. The pitch features also reflect 
intensity of speech. All three types of features represent structural aspect of the 
speech signal rather than the content. 

The third and final stage involved predicting whether it is possible to use machine 

learning to automatically label segments of speech as a “reasoning” or “non 

reasoning” contribution with high enough accuracy using the set of features just 

described. We used a structural support vector machine (SVM) learning algorithm [7]. 

We ran two sets of different experiments. Note that our data consists of conversation 

from two different meetings, each lasting 30 minutes in length. We will refer to each 

meeting as meeting 1 and meeting 2 from here on. Although the task given for the two 

meetings were identical in that three participants build an egg holder with given 

materials, the nature of the conversation was different because different participants 

were involved in the meeting. For our purpose, the amount of reasoning differed for 

each meeting. 208 out of 619 segments (30% of data) were coded as “reasoning” 

contributions in meeting 1, where as 59 out of 721 segments (10% of data) were 

coded as “reasoning” contributions in meeting 2. 

The goal of the first set of experiment was to test whether the addition of acoustic 

features would improve the prediction. Using the same training (meeting 1 data) and 

test (meeting 2 data) sets, we ran four experiments, where we varied the number of 

features. For the baseline case, only speaker id and speech duration features were 

used. Then for the subsequent 3 experiments we added additional features, which 

reflects the structural aspects of speech, namely 1 pca, 2 pca, and 3 pca. 1 pca is the 

top feature that we narrowed down from the 48 acoustic features (40 mfcc, 4 

amplitude, 4 pitch) that we collected using the principle component analysis (PCA). 2 

pca are the top two features, and 3 pca are the top three features.  

The first set of experiment would not only show the usefulness of acoustic features, 

but also how “good” our model is when tested on a new set of data that is collected 

from different participants. However, we expected that the performance of the model 

would not be as good as it could be given that it was build using data from only one 

meeting. Therefore, for the second set of experiment, we combined data from both 

meeting 1 and 2 to create the training and the test set. The training set used was 80% 

of randomly selected data from each of meeting 1 and 2. The remaining 20% from 

both meetings were used as the test set. The details and results of these experiments 

are presented in section 4.2  

4.2   Results

The results of the two sets of machine learning experiments are shown in table 2. For 
the first set of experiments, as we added additional acoustic features, the f-score 
improved as expected. Although adding 1pca did not improve the f-score, additional 2 
or 3 top acoustic features improved the f-score from about 42% to 47%. The 
improvement was mostly due to improvement in the recall, rather than precision. 



The second set of experiments showed similar results in that addition of acoustic 
features improved the f-scores. However, with the introduction of a more varied data 
set where we combined meeting 1 and meeting 2 data, the best f-score is 62%. This 
shows promise in that with the addition of more data, our score could be improved. 

Table 2.  Machine learning experiment results  

exp#  training set test set features used Recall 
(%) 

Precision 
(%) 

F-score 
(%) 

id, duration 40.68 43.64 42.11 
id, duration, 1 pca 38.99 46.93 42.59 
id, duration, 2 pca 49.15 46.03 47.54 

1  100% of 
meeting1 

100% of 
meeting2 

id, duration, 3 pca 47.46 45.90 46.67 
id, duration 35.29 92.31 51.06 
id, duration, 1 pca 44.12 83.33 57.69 
id, duration, 2 pca 52.94 75 62.07 

2 80% of 
(meeting1 + 
meeting2) 

remaining 20% 
of (meeting1 + 
meeting2) 

id, duration, 3 pca 52.94 75 62.07 

  
For both sets of experiments, duration of segment was the top indicator for 

determining whether a contribution contained reasoning or not. This result matches 
the heuristic that if a contribution contains reasoning, it is longer duration because the 
speaker needs time to express his thoughts. 

5   Conclusions and Current Directions 

In this paper, we presented our work towards automatic detection of reasoning 
displays in speech data. Our work shows promise in that 1) humans can distinguish 
reasoning and non-reasoning statements with reasonable reliability, and 2) using 
machine learning, classification of a statement as reasoning/ non-reasoning is feasible, 
even with limited training data. However, our results should be considered 
preliminary since the amount of data was limited to two meeting sessions. We are 
currently collecting and annotating audio data from additional meetings to validate 
our result further as well as testing its generality across a wider variety of student 
groups. In terms of technological improvements, our next steps include incorporating 
sequential information explicitly within the feature space rather than incorporating it 
as part of the structural svm [7] machine learning algorithm. We expect this to 
improve performance since it would simplify the complexity of the learning 
algorithm.  In addition, we would like to find other features that would reflect the 
coding process used by human annotators or the structure of the language data by 
incorporating content related features. One initial step towards incorporating such 
content related feature would be using speech recognition to spot key words that 
indicate cause and effect relationships such as “because” or “for”. 
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